Monte Carlo Study of Asymmetry of top-quark pairs at the Fermilab Tevatron

Reporter: Xuji Zhao

Advisor: Prof. David Toback
The Standard Model

- **Quarks**
 - **u** (up) with mass ≈ 2.3 MeV/c2, charge $\frac{2}{3}$, spin $\frac{1}{2}$
 - **c** (charm) with mass ≈ 1.275 GeV/c2, charge $\frac{2}{3}$, spin $\frac{1}{2}$
 - **t** (top) with mass ≈ 173.07 GeV/c2, charge $\frac{2}{3}$, spin $\frac{1}{2}$
 - **d** (down) with mass ≈ 4.8 MeV/c2, charge $\frac{-1}{3}$, spin $\frac{1}{2}$
 - **s** (strange) with mass ≈ 95 MeV/c2, charge $\frac{-1}{3}$, spin $\frac{1}{2}$
 - **b** (bottom) with mass ≈ 4.18 GeV/c2, charge $\frac{-1}{3}$, spin $\frac{1}{2}$
- **Leptons**
 - **e** (electron) with mass 0.511 MeV/c2, charge -1, spin $\frac{1}{2}$
 - **\(\nu_e\)** (electron neutrino) with mass <2.2 eV/c2, charge 0, spin $\frac{1}{2}$
 - **\(\nu_\mu\)** (muon neutrino) with mass <0.17 MeV/c2, charge 0, spin $\frac{1}{2}$
 - **\(\nu_\tau\)** (tau neutrino) with mass <15.5 MeV/c2, charge 0, spin $\frac{1}{2}$
- **Gauge Bosons**
 - **g** (gluon) with mass ≈ 126 GeV/c2
 - **\(\gamma\)** (photon) with mass 0, charge 1, spin 0
 - **\(W\)** (W boson) with mass 80.4 GeV/c2, charge ± 1, spin 1
 - **\(Z\)** (Z boson) with mass 91.2 GeV/c2, charge 0, spin 1
Tevarton

- Collider - a research tool in particle physics

- Physicists accelerate particles to very high kinetic energy in collider

- Collisions of proton & anti-proton produce top-quark pairs (discovered in 1955 in a collider at Fermilab)
Top Quark

- Collisions of proton & anti-proton = top + anti-top quark production
- Very heavy
- Very short lived

Fascinating Particle
Properties need to be further understood
Forward-backward Asymmetry (A_{FB})

Backward
- top quark follow anti-proton direction

Forward
- top quark follow the proton direction

Asymmetry - difference between top quarks going forward and the fraction of them going backward

Hot topic at Tevatron for years
A_{FB} Prediction

Theory
SM Prediction
- small asymmetry

Experiment
at Tevatron
- large asymmetry

New physics?

Possible alternative hypotheses
- Axigluon
Experimental Measurement
Methodology

- CDF used empirically determined function to model A_{FB}
- Test if this function works for Axigluon models

$$A(|q\eta|) = a \cdot \tanh\left[\frac{1}{2} \cdot |q\eta|\right]$$

how asymmetric

how forward
Axigluon Simulation

- Simulate a variety of axigluon models by Monte Carlo
- Applied methodology CDF used
- Test if we get back the true A_{FB} in the model
Measurement Test

• Difference between measured A_{FB} and generated A_{FB} consistent with generated A_{FB} until very large A_{FB}

Methodology works well!
Conclusions

• The AFB of top quark pairs at the Tevatron is still a hot topic

• CDF measured AFB of top quark pairs inconsistent with Standard Model prediction

• Validated methodology used by CDF with a variety of axigluon models

• Gain confidence of AFB measurement at CDF