Q9.1

The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate?

A. \(t = 1 \) s

B. \(t = 2 \) s

C. \(t = 3 \) s

D. \(t = 4 \) s

E. \(t = 5 \) s
A9.1

The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate?

A. $t = 1\ s$
B. $t = 2\ s$
C. $t = 3\ s$
D. $t = 4\ s$
E. $t = 5\ s$
Q9.2

A DVD is initially at rest so that the line \(PQ\) on the disc’s surface is along the \(+x\)-axis. The disc begins to turn with a constant \(\alpha_z = 5.0\ \text{rad/s}^2\). At \(t = 0.40\ \text{s}\), what is the angle between the line \(PQ\) and the \(+x\)-axis?

A. 0.40 rad
B. 0.80 rad
C. 1.0 rad
D. 2.0 rad
A9.2

A DVD is initially at rest so that the line PQ on the disc’s surface is along the $+x$-axis. The disc begins to turn with a constant $\alpha_z = 5.0 \text{ rad/s}^2$.

At $t = 0.40 \text{ s}$, what is the angle between the line PQ and the $+x$-axis?

- A. 0.40 rad
- B. 0.80 rad
- C. 1.0 rad
- D. 2.0 rad
A DVD is rotating with an ever-increasing speed. How do the centripetal acceleration a_{rad} and tangential acceleration a_{tan} compare at points P and Q?

A. P and Q have the same a_{rad} and a_{tan}.

B. Q has a greater a_{rad} and a greater a_{tan} than P.

C. Q has a smaller a_{rad} and a greater a_{tan} than P.

D. P and Q have the same a_{rad}, but Q has a greater a_{tan} than P.
A DVD is rotating with an ever-increasing speed. How do the centripetal acceleration a_{rad} and tangential acceleration a_{tan} compare at points P and Q?

A. P and Q have the same a_{rad} and a_{tan}.

B. Q has a greater a_{rad} and a greater a_{tan} than P.

C. Q has a smaller a_{rad} and a greater a_{tan} than P.

D. P and Q have the same a_{rad}, but Q has a greater a_{tan} than P.

A9.3
Q9.4

Compared to a gear tooth on the rear sprocket (on the left, of small radius) of a bicycle, a gear tooth on the front sprocket (on the right, of large radius) has

A. a faster linear speed and a faster angular speed.
B. the same linear speed and a faster angular speed.
C. a slower linear speed and the same angular speed.
D. the same linear speed and a slower angular speed.
E. none of the above
A9.4

Compared to a gear tooth on the rear sprocket (on the left, of small radius) of a bicycle, a gear tooth on the front sprocket (on the right, of large radius) has

A. a faster linear speed and a faster angular speed.
B. the same linear speed and a faster angular speed.
C. a slower linear speed and the same angular speed.
D. the same linear speed and a slower angular speed.

E. none of the above
You want to double the radius of a rotating solid sphere while keeping its kinetic energy constant. (The mass does not change.) To do this, the final angular velocity of the sphere must be

A. 4 times its initial value.
B. twice its initial value.
C. the same as its initial value.
D. 1/2 of its initial value.
E. 1/4 of its initial value.
You want to double the radius of a rotating solid sphere while keeping its kinetic energy constant. (The mass does not change.) To do this, the final angular velocity of the sphere must be

A. 4 times its initial value.
B. twice its initial value.
C. the same as its initial value.
D. 1/2 of its initial value.
E. 1/4 of its initial value.

The correct answer is D. 1/2 of its initial value.
The three objects shown here all have the same mass \(M \) and radius \(R \). Each object is rotating about its axis of symmetry (shown in blue). All three objects have the same rotational kinetic energy. Which one is rotating fastest?

A. thin-walled hollow cylinder
B. solid sphere
C. thin-walled hollow sphere
D. two or more of these are tied for fastest
The three objects shown here all have the same mass M and radius R. Each object is rotating about its axis of symmetry (shown in blue). All three objects have the same rotational kinetic energy. Which one is rotating fastest?

A. thin-walled hollow cylinder

B. solid sphere

C. thin-walled hollow sphere

D. two or more of these are tied for fastest
A thin, very light wire is wrapped around a drum that is free to rotate. The free end of the wire is attached to a ball of mass m. The drum has the same mass m. Its radius is R and its moment of inertia is $I = (1/2)mR^2$.

As the ball falls, the drum spins.

At an instant that the ball has translational kinetic energy K, the drum has rotational kinetic energy

A. K.
B. $2K$.
C. $K/2$.
D. none of these
A thin, very light wire is wrapped around a drum that is free to rotate. The free end of the wire is attached to a ball of mass m. The drum has the same mass m. Its radius is R and its moment of inertia is $I = (1/2)mR^2$. As the ball falls, the drum spins.

At an instant that the ball has translational kinetic energy K, the drum has rotational kinetic energy

A. K.
B. $2K$.
C. $K/2$.
D. none of these