4. [25pts] A block of mass \(m \) slides down to the bottom from rest at the top of an incline of height \(h \) and an incline angle \(\theta = 37^\circ \). The coefficient of kinetic friction between the incline and the block is \(\mu = \frac{3}{5} \).

(It is useful to note that \(\sin(37^\circ) \approx \frac{3}{5} \) and \(\cos(37^\circ) \approx \frac{4}{5} \).)

(a) What is the work done by the gravity force? (4pts)

\[
W_g = mg \sin \theta \left(\frac{h}{\sin \theta} \right) = mgh \sqrt{1}
\]

(b) What is the work done by the normal force? (3pts)

Since the normal force is \(\perp \) to the direction of motion, no work is done by the normal force.

\[
W_{\text{normal}} = 0
\]

(c) What is the work done by the friction force? (4pts)

\[
W_f = -\mu (mg \cos \theta) \left(\frac{h}{\sin \theta} \right) = -\frac{2}{5} (mg) \left(\frac{4}{5} \right) h \left(\frac{5}{3} \right) = -\frac{8}{15} mgh
\]

(d) Use the work-energy principle to determine the speed of the block just before it hits the bottom. (4pts)

\[
\frac{1}{2}mv^2 - 0 = mgh - \frac{8}{15} mgh
\]

\[
\therefore \sqrt{\frac{1}{2}v^2} = \left(\frac{15 - 8}{15} \right) mg \quad \Rightarrow \quad v = \sqrt{\frac{1}{2}gh} \quad \Rightarrow \quad v = 3.02 \sqrt{h}
\]

(f) Let us consider a one-dimensional system. An object of mass \(m \) is pulled by a net force \(F \), moving from \(x = 0 \) to \(x = a \). The net force may not be a constant so that the total work done by this net force is \(W = \int_0^a F \, dx \). Prove, starting from Newton’s second law of motion \(F = ma \), that \(W \) is equal to the change of the kinetic energy of the object (10pts)

\[
F = m \frac{dv}{dt}
\]

\[
F \cdot dx = m \frac{dv}{dt} \cdot dx
\]

\[
F \cdot dx = m \frac{dv}{dt} \cdot dx \cdot dt
\]

\[
F \, dv = mv \cdot dv
\]

\[
W = \int_0^a F \, dx = \int_v^0 \left(\frac{1}{2}mv^2 \right) \, dv = \left[\frac{1}{2}mv^2 \right]_v^i = \frac{1}{2}mv_i^2 - \frac{1}{2}mv_f^2 = \Delta K
\]