USEFUL INFORMATION

For two point particles
\[
\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \hat{r}
\]

\[
d\vec{r} = \frac{dx}{dt} \hat{x} + \frac{dy}{dt} \hat{y} = \frac{dr}{dt} \hat{r} + r \frac{d\theta}{dt} \hat{\phi}
\]

\[
V(\vec{r}_2) - V(\vec{r}_1) = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{E} \cdot d\vec{r}
\]

\[
C = \frac{Q}{V} \quad R = \rho \frac{l}{A}
\]

\[
\oint \vec{E} \cdot d\vec{S} = \frac{Q_{\text{inside}}}{\varepsilon_0}
\]

\[
V = iR \quad \vec{E} = \rho \vec{j}
\]

For parallel plates \(C = \frac{A\varepsilon_0}{d} \)

WARNING: In any circuit problem, failure to indicate the direction of currents and/or the failure to indicate where charge is located on capacitors will result in no credit being given.

1.
2.
3.
4.
1. (25 points) In the circuit below, all the R's, and V's are known. Obtain enough equations so that you could find the currents in each resistor if the circuit was put together a long time ago. You must clearly indicate what you are doing or you will receive no credit!

Laws or Definitions

Application

2 points Result: Find each current if $R_1 = 3\Omega$, $R_2 = 6\Omega$, $R_3 = 4\Omega$, and $V = 6$ volts.
2. (25 points) In the circuit below, all the R/s, C/s and V/s are known. Obtain enough equations so that you could find the currents in each resistor and the charges on each capacitor if the circuit was put together a long time ago. You must clearly indicate what you are doing or you will receive no credit!

![Circuit Diagram]

Laws or Definitions

Application

2 points Result: Find all charges and currents if $R_1 = R_4 = 3\Omega$, $R_2 = R_3 = 6\Omega$, $C_1 = C_2 = 4\mu f$, $C_3 = 6\mu f$ and $V_1 = 6\text{volts and } V_2 = 12\text{volts}$
3. (25 points) A very, very long, hollow cylinder has inner radius A, outer radius B. It has a known uniform charge per unit volume ρ.

Find the difference in the electric potential between a point on the axis and a point a distance $A+D$ from the axis of the cylinder, where $A+D < B$.

Laws or Definitions

Application

Result: Find the difference in electrical potential if $D = A$.
4. (25 points) A spherical shell is made of material with constant resistivity \(\rho_0 \). The shell has inner radius \(A \) and outer radius \(B \). It is inside a second spherical shell that has inner radius \(B \) and outer radius \(G \). The second spherical shell is made of material with resistivity that varies with the distance from the center of the spheres, \(r \), according to \(\rho(r) = \rho_0 \frac{r^2}{G^2} \). The plus terminal of a battery is connected to the inner surface at \(A \). Find the current that would flow if the minus terminal of the battery is connected to a point on the surface at \(B \). Find the current that would flow if the minus terminal of the battery is instead connected to a point on the surface at \(G \).

\[\text{Laws or Definitions} \]

\[\text{Application} \]

\[\text{Result: Find each current if } B = 2A \text{ and } G = 4A. \]