Exam 1 Review: Chapters 1-4
An air-traffic controller observes two planes on the radar "directly east" of the airport. One is at a radial distance d_1 and angle θ_1 above the horizontal, the other is at a distance d_2 and angle θ_2. What is the distance between the two planes? (Given d_1, d_2, θ_1, and θ_2 find the distance d_{12} between the planes.)
A basketball player releases the ball from a height h_1 at an angle θ and initial velocity v_0 in an attempt to put the ball into the basket which is at height h_2 and a horizontal distance d. Calculate the distance d if the ball is to make it into the basket. (given h_1, h_2, θ, and v_0 find d)
A coyote wearing an ACME rocket pack is traveling along a road at a constant velocity \(v_0 \) and spots a road runner directly ahead at a distance \(d_0 \). The road runner is standing still but spots the coyote at \(t = 0 \) and races with constant acceleration \(a \) toward a cave opening which is at a distance \(d_c \) from the road runner. Find the velocity \(v_0 \) such that the coyote just manages to catch the road runner at the entrance to the cave. (given \(d_0, d_c, \) and \(a \) find \(v_0 \) so that the poor hungry coyote gets to have roast road runner for dinner.)
A carnival ride is a large cylinder that rotates along its axis with a frequency f revolutions per second. People are supposed to stand along the wall of the cylinder at radius R and feel an acceleration $5g$ when the cylinder is rotating. Find the radius R such that this is the case.
5)

A ball is dropped (from rest) from a window at height h and is seen to reach the ground in a certain time. The ball-dropper then climbs to a height $2h$ but wants the ball to reach the ground in the original time. Find the velocity v_0 that must be given to this ball to achieve the goal.
A cannon ball is fired with a velocity v_0 at an angle α from a height $y_0 = 0$ from position $x_0 = 0$. It strikes a cliff a distance D away at a height H. What is the value of the height H in terms of the other given variables.
Consider the block shown at the right. The block is on an incline with angle \(\theta \) and a person is pulling on a rope with force \(F \) at an angle \(\alpha \) relative to the surface of the ramp as shown. The mass of the block is \(m \) and there is no friction. What is the total force acting on the block along the line parallel to the ramp (along the dotted line)?
A block of mass M_1 is attached to a mass M_2 with a massless rope as shown. A force F is causing the two blocks to accelerate upward. What is the tension in the rope in terms of M_1, M_2, F, and g?