Giorgio Bellettini returns as CDF co-spokesperson

Scientist Giorgio Bellettini has worked on the CDF experiment for more than 35 years — since before Fermilab broke ground on the detector building. Now he will co-lead the CDF experiment as the collaboration closes out more than three decades of taking and analyzing data. On June 1, Bellettini will begin his two-year term as CDF co-spokesperson, joining Texas A&M University Professor David Toback. He replaces Costas Vellidis, to whom Bellettini tips his hat. "Costas worked superbly on the data analysis," he said. "He did a great job — so great that I cannot repeat it."

Bellettini is, however, repeating his successful CDF leadership role: He was co-spokesperson in 1995 when CDF scientists discovered the top quark together with DZero.

A scientist at the Italian National Institute of Nuclear Physics and the University of Pisa, Bellettini is well-known for helping create a strong community of Italian scientists at Fermilab. In 1979, when the CDF detector was still in its conceptual design phase, Bellettini agreed with scientists Bob Diebold and Alvin Tollestrup to recruit scientists from Italy to join the newly formed Italy-U.S.-Japan collaboration to design and build the experiment. Building on that effort, in 1984 he began a program for Italian students to participate in various projects at Fermilab.

Now that he is back steering the CDF...
WalkingWorks program begins - register now

Wednesday Walkers

Pedometers available for WalkingWorks program

Swim lessons at Fermilab Pool

Adult water aerobics at Fermilab Pool

Outdoor soccer

H4 Training discount for Fermilab employees

——— Submit an announcement ———

Archives

Fermilab Today

Director's Corner

Frontier Science Result

Physics in a Nutshell

Tip of the Week

User University Profiles

Related content

——— Info ———

Fermilab Today is online at: www.fnal.gov/today/

Send comments and suggestions to: today@fnal.gov

Visit the Fermilab home page

Unsubscribe from Fermilab Today

ship, Bellettini will help ensure that the experiment's remaining scientific findings are published and will merge them with DZero papers to preserve the Tevatron's legacy. At the same time, he will continue to actively recruit Italian students and researchers to join the laboratory's muon and neutrino experiments and its accelerator and technical R&D programs.

"Dave's job and mine is to supervise the physics at CDF," Bellettini said. "I also plan to continue to be instrumental in expanding the Italian involvement in advancing experimental research at the laboratory — in all the new active areas."

His predecessor Costas Vellidis knows he's leaving the experiment in good hands.

"Giorgio is exactly the leader that CDF needs to finish the legacy effort. His deep knowledge of the experiment and huge experience as a leader and mentor are ideal to shape the end phase of the physics program and supervise its completion," Vellidis said. "His enthusiasm is essential to keep the collaboration on board in this final effort."

——— Leah Hesla ———

In the News

Record-energy collisions coming soon at the LHC

From Physics Today, May 2015

The machine that discovered the Higgs boson is flexing its muscles again. The results could be stunning new findings or striking new mysteries.

As the Large Hadron Collider revs up for a new run, particle physicists everywhere are holding their breath to see what new physics might be revealed by proton–proton collisions at record-high energy and intensity. Does the Higgs decay as expected? Are there other Higgs particles? Will supersymmetric particles or higher dimensions show up? Will dark matter be found? What explains the imbalance of matter and antimatter?

After two years of repairs and upgrades, test beams coursed through parts of the 27-km-long circular accelerator in early March, and the first 13-TeV collisions are expected as early as June. The discovery of the Higgs with 8-TeV collisions was spectacular, but the particle's mass and the lack of other new particles still have theorists guessing — and sometimes discouraged

It takes a close view to appreciate the colors and textures of pine bark. Photo: Leticia Shaddix, PPD

Tiny pine cones grow by the footbridge near Lederman Science Center. Photo: Leticia Shaddix, PPD

In the News

The watcher in the water

From The Economist, May 16, 2015

"Trust, but verify." That was Ronald Reagan's mantra for nuclear agreements, though the proverb itself is Russian. But verifying that a country is not cheating on one important matter of nuclear diplomacy, the manufacture of plutonium, is hard. At the moment, it can be done only by visiting the site of any and every nuclear reactor which could be employed for the task — even then, one might be hidden away. But if a project now being undertaken in America works well, hiding reactors will become much more difficult.

The Water Cherenkov Monitor for Antineutrinos, or WATCHMAN, brainchild of the energy department and the National Nuclear Security Administration, should be able to spot a suspicious reactor up to 1,000km away.
A network of such devices, set up within range of someone who might not be playing by the rules, should indeed verify whether he can be trusted. Read more

— about physics beyond the standard model. "If we don't see something now with 13 TeV, then we can't say it's around the corner," says Nima Arkani-Hamed of the Institute for Advanced Study in Princeton, New Jersey. "The LHC will at least begin to give us a real verdict on a broad class of theories. That's why it's a particularly dramatic time." Read more