Physics 218
Lecture 19
Dr. David Toback
Checklist for Today

• Things due Last Thursday:
 - Read Chapters 12 & 13

• Things that were due Monday:
 - Chapter 10 & 11 HW on WebCT

• Things that are due tomorrow for Recitation
 - Chapter 12&13 problems
 - Read Lab hand out on webpage

• Things due next Monday
 - Chapter 12 & 13 in WebCT
The Schedule

This Week (3/31)
• Mon: Chapter 10 & 11 due material in WebCT
• Tues: Second lecture on Chaps 12 & 13
• Wed: Recitation on Chapters 12 & 13, Lab
• Reading for Thurs: Chapters 14-16
• Thurs: Lecture: Chap 14

Next week (4/7)
• Mon: Chapter 12 & 13 material due in WebCT
• Tues: Second Lecture on Chap 14
• Wed: Recitation on Chap 14, Lab
• Thurs Lecture: Chap 15, Part 1

Week after that (4/14)
• Monday: Chapter 14 due in WebCT
• Tues: Exam 3 (Chaps 10-13)
• Wed: Recitation on Chap 15, Lab
• Thurs: Lecture on Chap 15, Part 2
Overview

- Chapters 12-16 are about Rotational Motion
- While we’ll do Exam 3 on Chapters 10-13, we’ll do the lectures on 12-16 in six combined lectures
- Give extra time after the lectures to Study for the exam
- The book does the math, I’ll focus on the understanding and making the issues more intuitive
Overview: Rotational Motion

- Take our results from "linear" physics and do the same for "angular" physics
- Analogue of
 - Position
 - Velocity
 - Acceleration
 - Force
 - Mass
 - Momentum
 - Energy

Start here!

Chapters 1-3
Rotation and Translation

Objects can both translate and rotate at the same time. They do both around their center of mass.
Rolling without Slipping

- In reality, car tires both rotate and translate
- They are a good example of something which rolls (translates, moves forward, rotates) without slipping

- Is there friction? What kind?
Derivation

The trick is to pick think of the wheel as sitting still and the ground moving past it with speed V.

Velocity of ground (in bike frame) = $-\omega R$

\rightarrow Velocity of bike (in ground frame) = ωR
A bicycle with initial linear velocity \(V_0 \) (at \(t_0=0 \)) decelerates uniformly (without slipping) to rest over a distance \(d \). For a wheel of radius \(R \):

a) What is the angular velocity at \(t_0=0 \)?
b) Total revolutions before it stops?
c) Total angular distance traversed by the wheel?
d) The angular acceleration?
e) The total time until it stops?
Uniform Circular Motion

• Fancy words for moving in a circle with constant \textit{speed}
• We see this around us all the time
 - Moon around the earth
 - Earth around the sun
 - Merry-go-rounds
• Constant ω and \textit{Constant R}
Uniform Circular Motion - Velocity

- Velocity vector $= |V|$ tangent to the circle

- *Is this ball accelerating?*
 - Yes! why?
Centripetal Acceleration

- "Center Seeking"
- Acceleration vector = $\frac{V^2}{R}$ towards the center
- Acceleration is perpendicular to the velocity

$\vec{a} = \frac{V^2}{R} (-\hat{r})$

\hat{r} direction
Circular Motion: Get the speed!

Speed = distance/time

Distance in 1 revolution divided by the time it takes to go around once

Speed = \(\frac{2\pi r}{T} \)

Note: The time to go around once is known as the Period, or \(T \)
The Trick To Solving Problems

\[\sum \vec{F} = m \vec{a} \]

\[= m \left(\frac{v^2}{R} \right) (-\hat{r}) \]
You are a driver on the NASCAR circuit. Your car has mass m and is traveling with a speed V around a curve with Radius R. What angle, θ, should the road be banked so that no friction is required?
Skidding on a Curve

A car of mass m rounds a curve on a flat road of radius R at a speed V. What coefficient of friction is required so there is no skidding? Kinetic or static friction?
A small ball of mass m is suspended by a cord of length L and revolves in a circle with a radius given by \[r = L \sin \theta. \]

1. What is the velocity of the ball?
2. Calculate the period of the ball
Exam 2

- Class average for the 2nd exam (including the 5 points) was 65%
 \hspace{1cm} Average for first two exams is a 69%

- Note for students who didn't take the mini-practice exam:
 \hspace{1cm} Exam 2 Average=51%!!! High score=75
 \hspace{1cm} Two exam average = 60%, almost 20 points below those who took it

- Planning on only a small curve for now, will decide after the 3rd exam
Should you Q-drop?

• Many have asked “should I q-drop?”
 - Talk to your advisor and read my FAQ!
 - Generic advice: Drop if you can’t keep up with the homework by yourself
Next Time

• Wednesday Recitation: Recitation on Chapters 12 & 13
• Wednesday Lab: Elastic Collisions
• Thursday: Lecture on Chapter 14
• Monday: Chapters 12 & 13 due in WebCT