4. (35 pts) A point charge \(Q_1 = -4.0 \times 10^{-9} \) C is on the negative y-axis at \(r_1 = 4 \) cm from the origin. A point charge \(Q_2 = 6.0 \times 10^{-9} \) C makes a counterclockwise angle \(\theta = 132^\circ \) to the positive z-axis, at \(r_2 = 5 \) cm from the origin. A charge \(Q = -4.0 \times 10^{-9} \) C is placed at the origin. \(Q_1 \) and \(Q_2 \) act on \(Q \) with forces \(\vec{F}_1 \) and \(\vec{F}_2 \).

\[\vec{F}_1 = \frac{k |Q|}{r_1^2} \]

\[\vec{F}_2 = \frac{k |Q| |Q_2|}{r_2^2} \]

\[|\vec{F}_1| = \frac{9 \times 10^{-5} \text{N}}{ \text{C}^2} \]

\[|\vec{F}_2| = \frac{8.64 \times 10^{-5} \text{N}}{ \text{C}^2} \]

b. On the figure, draw \(\vec{F}_1 \) and \(\vec{F}_2 \) with their tails on \(Q \), and in relative proportion.

c. Find \(F_x \), the x-component of the total force \(\vec{F} \) on \(Q \).
\[F_x = |\vec{F}_2| \cos 132^\circ + 0 = -5.78 \times 10^{-5} \text{N} \]

d. Find \(F_y \), the y-component of \(\vec{F} \).
\[F_y = |\vec{F}_1| + |\vec{F}_2| \sin 132^\circ = 9 \times 10^{-5} \text{N} + 6.42 \times 10^{-5} \text{N} = 15.42 \times 10^{-5} \text{N} \]

e. Find the angle \(\vec{F} \) makes with respect to the x-axis, and on the figure sketch the direction of \(\vec{F} \).
\[\tan \theta = \frac{F_y}{F_x} = \frac{15.42}{-5.78} \]
\[\theta = -69.45^\circ \] (\(\theta \) in 2nd quadrant)

f. Find \(|\vec{F}| \).
\[|\vec{F}| = \sqrt{F_x^2 + F_y^2} = \sqrt{(-5.78)^2 + (15.42)^2} \times 10^{-5} \text{N} = 16.47 \times 10^{-5} \text{N} \]

g. \(Q_1 \) and \(Q_2 \) are rotated clockwise by 16 degrees about the origin. From parts e) and f) find the new \(F_x \).
\[F_x = |\vec{F}| \cos (110.5^\circ - 16^\circ) = -1.292 \times 10^{-5} \text{N} \]