
! Reading:  This week finishing chapter 15, then we continue 
with (the remainder of) chapter 2.  Soon:  ch. 3

Notes for today



Hypersphere counting argument (text)

• Solution: choose a range of energies, between (U–∆U) and
U rather than fixed U.
For large N: find that for arbitrarily small ∆U, result includes
same number of states as for ∆U=U!

nmax=U/ℏ𝜔

Einstein solid

Ω =
1
6
𝑈/ℏ𝜔 !

one atom
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Fixed energy in microcanonical ensemble: 

Find: range of allowed U can be immeasurably small,
however Ω can nevertheless be immense for a macroscopic
system.
(We need to assure that ∆U is not so small that counting
statistics no longer work– not a problem for large systems.)
Or, can even define all energies less than U to be included
rather than a thin shell (e.g. for computational convenience),
result will be the same.
For small systems, a probabilistic treatment might be
preferable (e.g. canonical ensemble)



Fixed energy in microcanonical ensemble: 

Statistical mechanics version of microcanonical ensemble:
fixed U formally considered to include small energy spread,
for large systems leads to well-defined, continuous behavior.
– Then use 𝑺 = 𝒌𝑩𝒍𝒏𝜴, from which all thermal properties
can be derived (assuming Ω can be obtained for given
𝑈,𝑉,𝑁).

Thermodynamics version: U & S are continuous properties;
no conflict with microscopic view for large N.
– Then 𝑺(𝑼, 𝑽,𝑵) determined e.g. from calorimetry, allows
all properties of the system to be derived.

U, V, N



Fundamental behavior: 

Thermodynamics: U & S continuous properties; 𝑆(𝑈, 𝑉,𝑁)
once determined, allows all properties of the system to be
derived.

U, V, N𝑆 ⟹

Or: Once 𝑈(𝑆, 𝑉,𝑁) is determined, also allows all properties
to be derived. U-centered fundamental relation always* (in
principle) can invert to S-centered form.

* 3rd postulate, S increases as U increases. 
(Requires T > 0).



Fundamental behavior: 

Thermodynamics: U & S continuous properties; 𝑆(𝑈, 𝑉,𝑁) or
𝑈(𝑆, 𝑉,𝑁 ) once determined, allow all properties to be
derived.

Fundamental equation: 𝑆(𝑈, 𝑉,𝑁) or 𝑈(𝑆, 𝑉,𝑁)

𝑆 = 𝑁𝑘1𝑙𝑛
𝑉
𝑁

4𝜋𝑚𝑈
3𝑁ℎ2

3/2
+
5
2𝑁𝑘1

𝑈 = 𝐶 𝑉𝑁𝑆 4/3



Fundamental behavior: 

Fundamental equation: 𝑆(𝑈, 𝑉,𝑁) or 𝑈(𝑆, 𝑉,𝑁)

First law:  
𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝑆 =
1
𝑇 𝑑𝑈 +

𝑃
𝑇 𝑑𝑉 −

𝜇
𝑇𝑑𝑁

Connect to 
physical properties



Fundamental behavior: 

Fundamental equation: 𝑺(𝑼, 𝑽,𝑵𝟏, 𝑵𝟐…) or 𝑼(𝑺, 𝑽,𝑵𝟏, 𝑵𝟐…)
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𝝏𝑺 𝑽𝑵

−𝑷 =
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𝝁 =
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𝝏𝑵 𝑺𝑽

Equations of 
state
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𝟏
𝑻
= 𝝏𝑺

𝝏𝑼 𝑽𝑵

𝑷
𝑻
=

𝝏𝑺
𝝏𝑽 𝑼𝑵

−
𝝁
𝑻
=

𝝏𝑺
𝝏𝑵 𝑼𝑽

Fundamental equation: 𝑺(𝑼, 𝑽,𝑵𝟏, 𝑵𝟐…) or 𝑼(𝑺, 𝑽,𝑵𝟏, 𝑵𝟐…)

Note T, P, µ not 
fundamental equations 
in microcanonical; single 
equation of state can’t 
determine all behavior 
(constants of integration)



• Entropy maximum principle
assures heat flow from high to 
low temperature.

• Individual S can decrease; 
overall always increases toward 
equilibrium = maximum.

• Universe entropy thus always 
increasing.

• At equilibrium, 𝑇4 = 𝑇2 since 
𝑑𝑆4 =−𝑑𝑆2 for fluctuations at 
extremum, where dS = 0.

Thermal equilibrium we have seen: 

1 2Q

𝑇4 < 𝑇2

Overall 𝑑𝑆 = + <=
>!
− <=

>"
> 0

2nd law corollary
fix V & N



• Again use additive property of 
entropy.

• Also 𝑑𝑈4 =−𝑑𝑈2 = 𝑑𝑈
• Once in equilibrium 𝑑𝑈–

exchange terms cancel.
• Also at equilibrium, 𝑃4 = 𝑃2

since 𝑑𝑆4 =−𝑑𝑆2 for 
fluctuations at extremum, where 
dS = 0.

Mechanical equilibrium: 

1 2

Overall 𝑑𝑆 = <=
>!
+ ?!<@

>!
− <=

>"
− ?"<@

>"
= 0

fix S & N

𝑑𝑉

Thermally 
conducting 
piston

Note thermally 
conducting = 
“diathermal”

dU



• Use additive property of entropy.
• Also 𝑑𝑈4 =−𝑑𝑈2 = 𝑑𝑈

Chemical equilibrium: 

1 2

Overall 𝑑𝑆 = <=
>!
− E!<F

>!
− <=

>"
+ E"<F

>"
= 0

fix volumes

𝑑𝑁
dU

Conductive barrier. 
Also one particle type 
can flow.
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Chemical equilibrium: 

1 2
fix volumes

𝑑𝑁𝑎
dU

Conductive barrier. 
Also one particle type 
can flow.

Overall 𝑑𝑆 = <=
>!
− E!#<F!

>!
− <=

>"
+ E"#<F!

>"
= 0

Generalize to multiple particle types:  Find chemical potentials for 
each particle type equal at equilibrium:
𝜇G"

same both sides, 𝜇F"
same both sides, 𝜇FG"

same both sides…

Different values for 
each constituent

• Use additive property of entropy.
• Also 𝑑𝑈4 =−𝑑𝑈2 = 𝑑𝑈
• At equilibrium, 𝜇4 = 𝜇2 since 
𝑑𝑆4 =−𝑑𝑆2 for fluctuations at 
extremum, where dS = 0.



Chemical equilibrium: 

1 2

𝑑𝑁𝑎
dU

Chemical potential:  Important feature for chemical reactions (or 
particle dissociation, etc.), also electron interchange (computer 
devices, electronic phase transitions), Bose condensation and 
quantum fluids, etc. 


