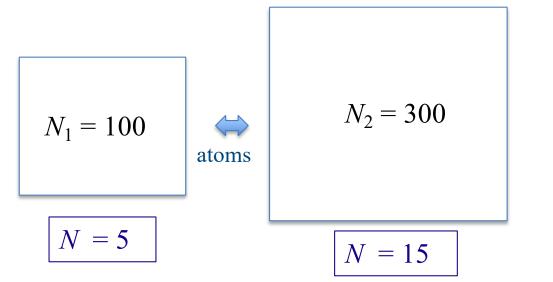
Notes for today

- Homework: due tomorrow at the <u>beginning</u> of class.
- I am still looking for a volunteer for problems 5 and 6.
- Lecture recordings etc.: Reminder again that you should let me know if you have a Covid quarantine (or other University excuse). I can share lecture recording or a zoom link to view the lecture in real time.
- Enable the microphone

Recall: $S \equiv k_B ln(\Omega)$ (Boltzmann)



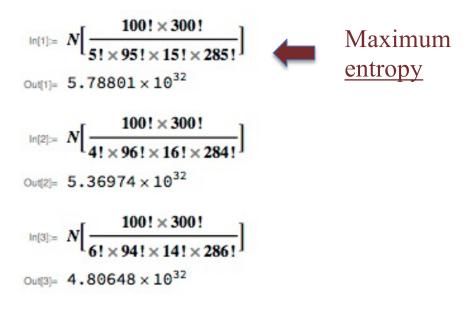
100 & 300 "bins"

20 total atoms, expected location of atoms?

• used $\Omega_i = \frac{N!}{n!(N-n)!}$

• independent configurations: <u>multiply</u> multiplicities.

• peak value based on maximum Ω



Recall: $S \equiv k_B ln(\Omega)$ (Boltzmann)

$$N_1 = 100$$
 \iff atoms

$$N_2 = 300$$

thermodynamic analysis for large N:

$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN$$

Extremum for S: equalize $-\frac{\mu}{T} = \frac{\partial S}{\partial n_i}$

General conditions, $T_1 = T_2 \& \mu_1 = \mu_2$ (chapter 2) Can use Stirling approximation, $\ln N! \cong N \ln N - N...$ Find, $\frac{n_1}{N_1} = \frac{n_2}{N_2}$ this situation

• used $\Omega_i = \frac{N!}{n!(N-n)!}$

• independent configurations: <u>multiply</u> multiplicities.

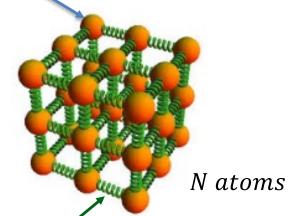
• peak value based on maximum Ω

Vibrational energy for solid as a whole:

 $U = q\hbar\omega_o$

Omitted zero-point energy (redefine zero of energy)

Solid contains *q* = total number of quanta of oscillation >> Many equivalent ways to distribute this energy << $U = \hbar \omega_o (n + \frac{1}{2})$ each atom



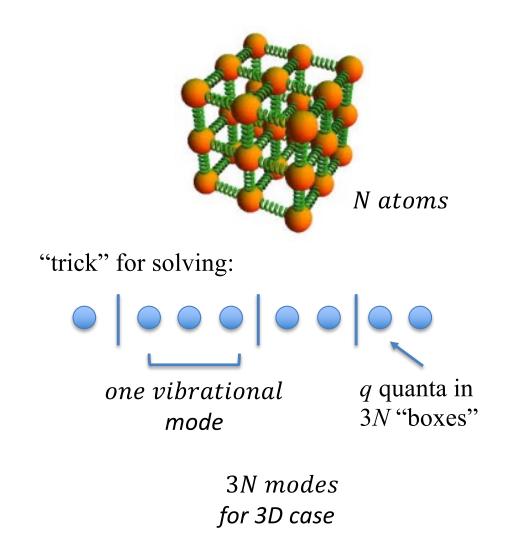
• Actual solid: bonds <u>connect</u> atoms, normal vibrational modes cover range of oscillation frequencies, determine vibrational energy & entropy.

• Einstein simplified model: Each atom acts as a 3D oscillator, with same frequency each site. With quantized oscillator energies, correctly models low-*T* downturn; qualitatively correct.

• Other crystal excitations may also contribute to entropy (e.g. conduction electrons in a metal) but vibrations are often the largest contribution

Vibrational energy for solid as a whole:

$$U = q\hbar\omega_o$$



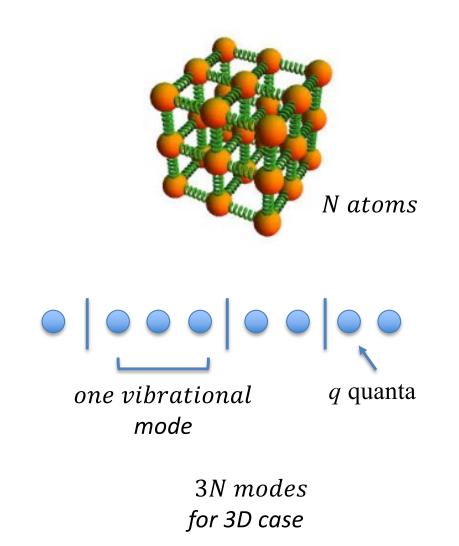
Vibrational energy for solid as a whole:

$$U = q\hbar\omega_o$$

binomial with q quanta, 3N oscillators:

$$\Omega = \frac{(3N+q-1)!}{(q)!(3N-1)!}$$

& $S = k_B ln(\Omega)$



binomial with q quanta, 3N oscillators:

Find,
$$S = k_B \left[3N \ln \left(1 + \frac{q}{3N} \right) + q \ln \left(1 + \frac{3N}{q} \right) \right]$$

 $\frac{1}{T} = \frac{k_B}{\hbar \omega_o} \ln \left(1 + \frac{3N}{q} \right)$

binomial with *q* quanta, 3*N* oscillators: $\Omega = \frac{(3N+q-1)!}{(q)!(3N-1)!}$

Find, $S = k_B \left[3N \ln\left(1 + \frac{q}{3N}\right) + q \ln\left(1 + \frac{3N}{q}\right) \right]$

 $U/\hbar\omega_o$

$$\frac{1}{T} = \frac{k_B}{\hbar\omega_o} \ln\left(1 + \frac{3N}{q}\right)$$

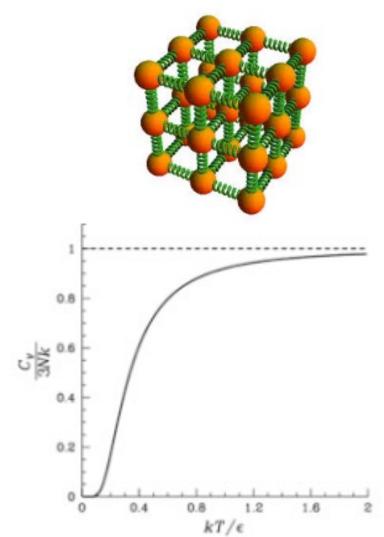
$$U = \frac{3N\hbar\omega_o}{e^{\hbar\omega_o/k_BT} - 1}$$

binomial with q quanta, 3N oscillators:

$$\Omega = \frac{(3N+q-1)!}{(q)!(3N-1)!}$$

$$U = \frac{3N\hbar\omega_o}{e^{\hbar\omega_o/k_BT} - 1} \equiv 3N\hbar\omega_o\langle n \rangle$$

"Bose-Einstein distribution for undermined particle number" (with particles = quanta ≈ "phonons")



$$U \sim e^{-\hbar\omega_o/k_BT}$$
 low-*T* (activated form)

 $U = 3Nk_BT$ high-T (correct <u>classical</u> limit)

Equipartition theorem

$$U = \frac{3N\hbar\omega_o}{e^{\hbar\omega_o/k_BT} - 1} \equiv 3N\hbar\omega_o\langle n \rangle$$

 $U \sim e^{-\hbar\omega_o/k_BT}$ low-T $U = 3Nk_BT$ high-T

- Correct classical limit helps validate the choice, $S = k_B ln(\Omega)$
- Actually, vibrational normal modes have *different* frequencies, not all identical (low-*T* details not correct)
- In high *T* limit, magnitude of $\hbar \omega_o$ becomes irrelevant, result is exact.

