
! Reminder, web address:  rossgroup.tamu.edu/408page.html 
Has HW, syllabus, slides posted. 

! Reading:  starting ch. 15.  Today we will discuss the 
probabilities going into problems 4 and 5.

! I am still looking for a volunteer for problems 5 and 6.
! Lecture recordings etc.:  Reminder again that you should let 

me know if you have a Covid quarantine (or other University 
excuse). I can share lecture recording or a zoom link to view  
the lecture in real time. I am still experimenting with various 
improvements for the zoom recording.

Notes for today



Recall:  Ideal gas

Energy (ideal gas specific case)𝑈= !
"
𝑁𝑘#𝑇.

𝑃𝑉= 𝑁𝑘#𝑇. Equation of state (ideal gas specific case.

vs General Relationships (for all systems, but recall these 
are for controlled processes):

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝑆 =
1
𝑇𝑑𝑈 +

𝑃
𝑇 𝑑𝑉 −

𝜇
𝑇𝑑𝑁

𝑆 = 𝑆(𝑈, 𝑉,𝑁) or  𝑈 = 𝑈(𝑆, 𝑉,𝑁) [fundamental equation] 

With 𝑇 = $%
$& '(

𝑒𝑡𝑐.⇒ complete model of behavior.



Entropy define: 𝑆 ≡ 𝑘#𝑙𝑛 Ω

" Fundamental assumption of statistical mechanics
" As before we assume equilibrium;  then Ω = multiplicity, 

defined as number of accessible states (e.g. # of states at a 
given total energy, spatially accessible by particles in container 
volume, without violating known N, etc.)

" Classically states counted by “phase space bins” d3r. .d3p; in 
QM Ω counts number of eigenstates. Terminology –
microstate: locally defined state (all quantum numbers) 
macrostate: specified by macroscopic parameters.

" Note, QM superposition is not the same thing, this is a 
“mixed state”.

𝜓) +𝜓" vs.  𝜓) + 𝑒*+𝜓": phase is random/rapidly 
changing:  incoherent sum

" Extensive property:  can see from definition.

(Boltzmann)



Entropy define: 𝑆 ≡ 𝑘#𝑙𝑛 Ω

" Fundamental assumption of statistical mechanics
" As before we assume equilibrium;  then Ω = multiplicity, 

defined as number of accessible states (e.g. # of states at a 
given total energy, spatially accessible by particles in container 
volume, without violating known N, etc.)

(Boltzmann)

Fundamental Postulate of Statistical Mechanics:
Over time an isolated system in equilibrium will be found in 

each accessible microstate with equal probability.

Ergodic hypothesis invoked here:  all states that can be visited 
will be visited. Difficult to justify in detail; possibly not needed 
when very large numbers of states are involved.



Second Law of Thermodynamics:
Spontaneous processes always tend toward a macrostate with 

the largest number of accessible microstates; e.g. spontaneous 
processes have Δ𝑆 ≥ 0 (total entropy for all interacting systems, 
increases overall entropy of everything — isolated system, or 
”entropy of universe”)

•  Separate law of nature based on observed behavior, not derived 
from physics of microscopic behavior.

•  Examples include free expansion; over-writing great novel on 
your laptop by random bits; mixing sugar and salt.



Probabilities and multiple events:

probability of n events occurring in N turns:
𝑃 = (𝑝,-,./).(𝑝.01,-,./)(1.

(!
.! (1. !

• # permutations = multiplicity Ω, for a single type of 
process (or for identical particles occupying multiple 
states)  [ideal gas in phase space “bins”, “phonon” 
vibrational excitations,…]

• More generally, need product of multiplicities (e.g. 2 
systems taken together, 2 distinguishable types of 
particles, etc.)

• Note 2-state system of ch. 15 is distinguishable.

Example: for sequence of coin flips, what is probability of H-T-T-T 
in order?
Probability of 2H & 2T, any order?    



Large numbers:

probability of n events occurring in N turns:
𝑃 = (𝑝,-,./).(𝑝.01,-,./)(1.

(!
.! (1. !

For large 𝑁 equivalent to 
Gaussian distribution;  relative 
width shrinks ∝ 1/ 𝑁

See e.g. Reif text.



Binomial distribution, large N:

Recall 𝑃.! =
𝑁
𝑛)

𝑝.!(1 − 𝑝)(1.! normalized probability, n1 successes.

Binomial theorem,  𝑝 + 𝑞 ! = ∑"!#$
! !

"!
𝑝"!𝑞!%"!

•   So:        𝑛& = 𝑝 '
'(
∑"!#$
! !

"!
𝑝"!𝑞!%"! = 𝑁𝑝 easy to show.
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Further note on Binomial distribution, large N:

Recall 𝑃.! =
𝑁
𝑛)

𝑝.!(1 − 𝑝)(1.! normalized probability, n1 successes.

Binomial theorem,  𝑝 + 𝑞 ! = ∑"!#$
! !

"!
𝑝"!𝑞!%"!

•   So:        𝑛& = 𝑝 '
'(
∑"!#$
! !

"!
𝑝"!𝑞!%"! = Np easy to show.

•   width of peak: 𝑛&) = 𝑝 '
'(
𝑝 '
'(
∑"!#$
! !

"!
𝑝"!𝑞!%"!

= 𝑝 '
'(

𝑁𝑝 𝑝 + 𝑞 !%&

→ 𝑁𝑝 𝑁𝑝 + 𝑞 = 𝑛& ) + 𝑁𝑝𝑞
RMS width ∝ 𝑁

Note also, 4th moment treat in similar way:  find ratio of 2nd and 4th
moments identical to Gaussian distribution (Bell curve).

Multiplicity:  sufficient for fixed-energy 
systems (microcanonical ensemble this chapter).

Probabilities important for distribution of 
possible energies (Canonical ensemble &  
Boltzmann distribution, ch. 16)



Physical examples:

Diffusing atoms randomly located on lattice   
≈ 2-state random magnetization problem
(Rough equivalent situation for ideal gas 
atoms)

Small ∆U

“Low-T state”:  Entropy = 0
(e.g. Copper + gold can order this way)

If kBT >> ∆U,  larger entropy overwhelmingly 
favors this configuration
(we will see a more formal way to treat such a fixed 
temperature case later)



Imbalanced example:

N1 = 100 N2 = 300
atoms

• independent 
configurations: 
probabilities multiply.
• peak value based on 
maximum Ω

N = 5 N = 15

20 total atoms, expected location of atoms?

100 & 300 “bins”

Maximum 
entropy


