Notes for today

- Reminder, web address: rossgroup.tamu.edu/408page.html Has HW, syllabus, slides posted.
- Reading: starting ch. 15. Today we will discuss the probabilities going into problems 4 and 5.
- I am still looking for a volunteer for problems 5 and 6.
- Lecture recordings etc.: Reminder again that you should let me know if you have a Covid quarantine (or other University excuse). I can share lecture recording or a zoom link to view the lecture in real time. I am still experimenting with various improvements for the zoom recording.

Recall: Ideal gas

$$
\begin{array}{ll}
U=\frac{3}{2} N k_{B} T . & \text { Energy (ideal gas specific case) } \\
P V=N k_{B} T . & \text { Equation of state (ideal gas specific case. }
\end{array}
$$

vs General Relationships (for all systems, but recall these are for controlled processes):

$$
\begin{aligned}
d U & =T d S-P d V+\mu d N \\
d S & =\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{T} d N \\
S & =S(U, V, N) \text { or } U=U(S, V, N) \text { [fundamental equation] }
\end{aligned}
$$

With $T=\left(\frac{\partial U}{\partial S}\right)_{V N}$ etc. \Rightarrow complete model of behavior.

Entropy define: $\quad S \equiv k_{B} \ln (\Omega)$
 (Boltzmann)

* Fundamental assumption of statistical mechanics
* As before we assume equilibrium; then $\Omega=$ multiplicity, defined as number of accessible states (e.g. \# of states at a given total energy, spatially accessible by particles in container volume, without violating known N, etc.)
* Classically states counted by "phase space bins" $d^{3} r \cdot d^{\beta} p$; in QM Ω counts number of eigenstates. Terminology microstate: locally defined state (all quantum numbers) macrostate: specified by macroscopic parameters.
* Note, QM superposition is not the same thing, this is a "mixed state".
$\psi_{1}+\psi_{2}$ vs. $\psi_{1}+e^{i \phi} \psi_{2}$: phase is random/rapidly changing: incoherent sum
* Extensive property: can see from definition.

Entropy define: $\quad S \equiv k_{B} \ln (\Omega)$
 (Boltzmann)

* Fundamental assumption of statistical mechanics
* As before we assume equilibrium; then $\Omega=$ multiplicity, defined as number of accessible states (e.g. \# of states at a given total energy, spatially accessible by particles in container volume, without violating known N, etc.)

Fundamental Postulate of Statistical Mechanics:

Over time an isolated system in equilibrium will be found in each accessible microstate with equal probability.

Ergodic hypothesis invoked here: all states that can be visited will be visited. Difficult to justify in detail; possibly not needed when very large numbers of states are involved.

Second Law of Thermodynamics:

Spontaneous processes always tend toward a macrostate with the largest number of accessible microstates; e.g. spontaneous processes have $\Delta S \geq 0$ (total entropy for all interacting systems, increases overall entropy of everything - isolated system, or "entropy of universe")

- Separate law of nature based on observed behavior, not derived from physics of microscopic behavior.
- Examples include free expansion; over-writing great novel on your laptop by random bits; mixing sugar and salt.

Probabilities and multiple events:

probability of n events occurring in N turns:

$$
P=\left(p_{\text {event }}\right)^{n}\left(p_{\text {no-event }}\right)^{N-n} \frac{N!}{n!(N-n)!}
$$

- \# permutations = multiplicity Ω, for a single type of process (or for identical particles occupying multiple states) [ideal gas in phase space "bins", "phonon" vibrational excitations,...]
- More generally, need product of multiplicities (e.g. 2 systems taken together, 2 distinguishable types of particles, etc.)
- Note 2-state system of ch. 15 is distinguishable.

Example: for sequence of coin flips, what is probability of H-T-T-T in order?
Probability of 2H \& 2T, any order?

Large numbers:

probability of n events occurring in N turns:

$$
P=\left(p_{\text {event }}\right)^{n}\left(p_{\text {no-event }}\right)^{N-n} \frac{N!}{n!(N-n)!}
$$

$N\left[\frac{1000!}{500!\times 500!}\right]$
2.70288×10^{299}
For large N equivalent to
Gaussian distribution; relative width shrinks $\propto 1 / \sqrt{N}$
$\operatorname{Plot}\left[\frac{1000!}{(500+n)!(500-n)!},\{n,-200,200\}\right.$, PlotRange $->$ All $]$

See e.g. Reif text.

Binomial distribution, large N:

Recall $P_{n_{1}}=\binom{N}{n_{1}} p^{n_{1}}(1-p)^{N-n_{1}}$ normalized probability, n_{1} successes.

Binomial theorem, $(p+q)^{N}=\sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}$

- So: $\left\langle n_{1}\right\rangle=p \frac{\partial}{\partial p} \sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}=N p \quad$ easy to show.

Binomial distribution, large N:

Recall $P_{n_{1}}=\binom{N}{n_{1}} p^{n_{1}}(1-p)^{N-n_{1}}$ normalized probability, n_{1} successes.

Binomial theorem, $(p+q)^{N}=\sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}$

- So: $\left\langle n_{1}\right\rangle=p \frac{\partial}{\partial p} \sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}=N p \quad$ easy to show.
- width of peak: $\left\langle n_{1}{ }^{2}\right\rangle=p \frac{\partial}{\partial p} p \frac{\partial}{\partial p} \sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}$

$$
\begin{aligned}
& =p \frac{\partial}{\partial p}\left[N p(p+q)^{N-1}\right] \\
& \rightarrow N p[N p+q]=\left\langle n_{1}\right\rangle^{2}+N p q
\end{aligned}
$$

Further note on Binomial distribution, large N:

- So: $\left\langle n_{1}\right\rangle=p \frac{\partial}{\partial p} \sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}=\mathrm{Np} \quad$ easy to show.
- width of peak: $\left\langle n_{1}{ }^{2}\right\rangle=p \frac{\partial}{\partial p} p \frac{\partial}{\partial p} \sum_{n_{1}=0}^{N}\binom{N}{n_{1}} p^{n_{1}} q^{N-n_{1}}$

$$
=p \frac{\partial}{\partial p}\left[N p(p+q)^{N-1}\right]
$$

$$
\rightarrow N p[N p+q]=\left\langle n_{1}\right\rangle^{2}+N p q \text { RMS width } \propto \sqrt{N}
$$

Note also, $4^{\text {th }}$ moment treat in similar way: find ratio of $2^{\text {nd }}$ and $4^{\text {th }}$ moments identical to Gaussian distribution (Bell curve).

Physical examples:

Diffusing atoms randomly located on lattice ≈ 2-state random magnetization problem (Rough equivalent situation for ideal gas atoms)

\downarrow Small ΔU

If $k_{B} T \gg \Delta U$, larger entropy overwhelmingly favors this configuration
(we will see a more formal way to treat such a fixed temperature case later)
"Low- T state": Entropy $=0$
(e.g. Copper + gold can order this way)

Imbalanced example:

20 total atoms, expected location of atoms?

- independent configurations: probabilities multiply. - peak value based on maximum Ω

[^0]
[^0]: $\ln (1)=N\left[\frac{100!\times 300!}{5!\times 95!\times 15!\times 285!}\right]$
 Ouf1) $=5.78801 \times 10^{32}$
 $\operatorname{In}[2]=N\left[\frac{100!\times 300!}{4!\times 96!\times 16!\times 284!}\right]$
 Out2) $=5.36974 \times 10^{32}$
 $\ln (3)=N\left[\frac{100!\times 300!}{6!\times 94!\times 14!\times 286!}\right]$
 Ои(3) $=4.80648 \times 10^{32}$

