Notes:

Homework : Due next Tuesday. (I am not sure yet about
presentations, depends upon timing, | will send email.)

Last class day: Weds. Dec 8.

Final Exam: Friday Dec. 10, 12:30 PM, in room 203. Exam will
be comprehensive, with no particular focus on new material. A
formula sheet will be allowed, similar to the previous exam.

| have a sample exam | will post — the format will be similar to
exam 1, but with more problems & fewer parts per problem
(tentatively 8 problems).



Bose gases; Bose-condensation

Bose distribution function (u = 0)
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Bose gases; Bose-condensation
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series-solution shown 1n text
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where A is the “thermal wavelength” (equation 18.26) and
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I will focus on analytical
results for low-7 regime.
Zero slope in u vs T at T: 2nd
order phase transition.
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Bose gases; Bose-condensation D(e) = 1% (Zm
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» T <T,., ucan’t further increase, so
appears that N should decrease.

* Actually, zero-level condensate is not
included in integration assuming
continuum of levels D (¢); setting u =0
means infinite » in ground level.
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Some numerics; position chemical potential just below zero:

Integrate[Sqrt[x] / (Exp[x] -1), {x, 0, Infinity}] ]

§ o 3- : :
5 V' Zeta| Integration for N,.iq With

Integrate[Sqrt[x] / (Exp[x] -1), {x, 0, Infinity}] // N

2.31516 —_

Exp[l1/1000] // N

1.001 < corresponds to e ~PH

Integrate[x* .5/ (1.001 «Exp[x] -1), {x, 0, Infinity}]

221713 o

N[Exp[l1/1000000], 10]
1.000001000

Integrate[x* .5/ (1.000001 *Exp[x] -1), {x, 0, Infinity}]
2.31202

zero chemical potential

n =1000 in ground state.

n=10°

Excited population
essentially same as for
u=0




Result: zero level treat separately.

Bose condensate region: states “pile on” to ,
h* (N
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ground state. kT. = 6.626 — (_) /
. - ) ¢c— = 2m \V
u Just less than zero. (approaches zero in large

N limit, where transition becomes sharp.)

/ Modified summation for N below 7.
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0 1 2 with non-degenerate ground state.)

1/1,
& note Noypiteq Which I refer to in HW
problem with small # of particles



Result: zero level treat separately.

Bose condensate region: states “pile on” to
ground state.

u Just less than zero. (approaches zero in large-

N limit, where transition becomes sharp.)
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Also note, transition occurs when
thermal wavelengths (roughly)
overlap:




Solutions below T
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Superfluid liquid helium: Example of Bose condensed
state in strongly interacting conditions (not “Bose gas”)
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Superfluid liquid helium: Example of Bose condensed
state in strongly interacting conditions (not “Bose gas”)
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Dilute gases:

Frequency
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- i 160k harmonic trap

IV induced by applied
B-field.
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Ketterle group webpage
(Na gas condensation)

Nobel prize 2001 Cornell, Ketterle, Wieman.

Combined optical, magnetic-trap cooling process.

Used harmonic-well trap: small modifications from results using square-
well D(¢).

Measurement of temperature & related properties by imaging particles
after turning off trap



|ldeal Bose-condensed gas:
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Some thermo (for 7<7T,):

® D(&)e ® 13/2dy
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jo ehe 1007 ¢ (kT) o et—1 (KT)
= C., = Eg S = §H Entropy due only to excited states
oo 3T

Condensate U=0; §=0. (“particles in lockstep™)



Molecule
of the

Bose-Einstein
Condensate




|ldeal Bose-condensed gas:
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Some thermo (for 7<7T,):
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& these also give G as expected
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