Notes:

Homework : Set \#10 is posted, due next Tuesday.

Today: chapter 18, plus section 17.3. (I covered other parts of chapter 17 before. You should read all of the short chapter 17.)

Fermions, Bosons:

\triangleright Fermions, no double-occupation of same state (all single-particle states have distinct quantum numbers). Pauli exclusion.
electrons, positrons, neutrons, ${ }^{3} \mathrm{He}$ atoms, ...
\triangleright Bosons, unlimited occupation of any state (Bose condensation for $T \rightarrow 0$).
photons, phonons, gluons, Higgs bosons, ${ }^{4} \mathrm{He}$ atoms, ...
\triangleright Fermions $J=1 / 2,3 / 2,5 / 2 \ldots$; Bosons $J=0,1,2, \ldots$
\triangleright Comes from ± 1 phase change upon interchanging two particles (Dirac).

Fermions, $\quad \mathbf{T} \approx 0$:

Discrete energy levels

Continuum cavity states (e.g. "Fermi gas")
(electrons with spin $1 / 2$, double each orbital state)

$$
S=0
$$

$$
F=E
$$

Fermions, $\quad \mathbf{T} \approx \mathbf{0}$:

Discrete energy levels

Continuum cavity states (e.g. "Fermi gas")
(electrons with spin $1 / 2$, double each orbital state)

$$
\left.\begin{array}{l}
S=0 \\
F=E
\end{array}\right\} \begin{array}{ll}
\mu=(\text { highest } & \\
\begin{array}{ll}
\mu=c c u p i e d) \\
\text { result specific for } T \sim 0
\end{array} & \varepsilon_{F} \\
\begin{array}{l}
\varepsilon_{F}=\text { "Fermi energy" } \\
\text { (continuum case) }
\end{array}
\end{array}
$$

Recall classical indistinguishable case,

$$
\begin{aligned}
& Z=\frac{1}{N!}\left[Z_{i}\right]^{N} \quad Z_{i}=\int_{0}^{\infty} \frac{V}{h^{3}} 4 \pi p^{2} d p e^{-\beta p^{2} / 2 m}=\frac{V m^{3}}{h^{3}} 4 \pi\left(\frac{\sqrt{2 \pi}}{(\beta m)^{3 / 2}}\right) \\
& \quad=2 V\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} \equiv 2 V / \lambda_{t h}^{3}
\end{aligned}
$$

Thermal DeBroglie

$$
Z=\sum_{\substack{\text { states } i \\ \text { "orbitals" }}} \operatorname{Exp}\left[-E_{i} / k T\right]
$$

wavelength

$$
\begin{array}{r}
S=k(\beta U+\ln Z)=k\left(-\beta \frac{\partial}{\partial \beta} \ln Z+\ln Z\right) \\
S=N k_{B} \ln \left[\frac{V}{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}\right]+\frac{5}{2} N k_{B}=N k_{B} \ln \left[\frac{V}{N \lambda_{t h}^{3}}\right]+\frac{5}{2} N k_{B}
\end{array}
$$

Gibbs factor takes into account indistinguishable particles

Fermions, Bosons:

\triangleright Fermions, no double-occupation of same state (all single-particle states have distinct quantum numbers). Pauli exclusion.
electrons, positrons, neutrons, ${ }^{3} \mathrm{He}$ atoms, ...

- Bosons, unlimited occupation of any state (Bose condensation for $T \rightarrow 0$).
photons, phonons, gluons, Higgs bosons, ${ }^{4} \mathrm{He}$ atoms, ...
\triangleright Fermions $J=1 / 2,3 / 2,5 / 2 \ldots$; Bosons $J=0,1,2, \ldots$
\triangleright Comes from ± 1 phase change upon interchanging two particles (Dirac).

Example 2 particles, 3 states:

A	B	
A		B
B	A	
	A	B
B		A
	B	A
$A B$		
	$A B$	
		$A B$

A	A	
	A	A
A		A
	$?$	

Fermi \& Bose cases?
(Z contains 9 terms)
Classical: distinguishable $3^{2}=9$ possible microstates vs. indistinguishable $3^{2} / \mathrm{N}!=$ " 4.5 microstates"
(in classical = "Maxwell-Boltzmann" limit, this works well.)

Ensembles:

Internal energy (or Entropy): $\quad d U=T d S-P d V+\mu d N$
Closed system, well-defined energy (or e.g. $E \pm \Delta E / 2$):
Microcanonical ensemble $S=k \ln \Omega$ maximized $\quad U(S, V, N)$

Helmholtz free energy: $F=U-T S$.

$$
\begin{array}{cc}
F(T, V, N) \quad d F=-S d T-P d V+\mu d N & \begin{array}{l}
\text { Canonical } \\
\text { ensemble }
\end{array} \\
F=-k T \ln Z \text { minimized } & \text { ender }
\end{array}
$$

Grand Potential $\quad \Psi=U-T S-\mu N$.
$\Psi(T, V, \mu) \quad \Psi=-k T \ln Z_{g}$ minimized
Grand canonical ensemble
handles Bose or Fermi statistics more easily
Section 17.3

Fixed position but atom \& heat permeable

Grand Canonical Ensemble:

$$
Z_{g}=\sum_{i, N} e^{\left(-E_{i}+\mu N\right) / k T}
$$

For individual states i

Grand Canonical Ensemble (μ, T, V constant):

Probability of state i in equilibrium

$$
P_{i}=\frac{1}{Z_{g}} e^{\left(-E_{i}+\mu N\right) / k T}
$$

"呂" Grand Canonical partition fn.

$$
Z_{g}=\sum_{i, N} e^{\left(-E_{i}+\mu N\right) / k T}
$$

Sum over allowed individual states i, also over all possible number N of particles in system

$$
V /_{N \lambda_{t h}^{3}} \lesssim 1
$$

- Valid in classical or quantum ("Degenerate") limits.
- Note, $Z_{g}=\sum_{N} Z\left[e^{\beta \mu}\right]^{N} ; \quad e^{\beta \mu}=$ "fugacity"
- Can show, same limiting properties as canonical \& microcanonical, in thermodynamic limit.

Grand Canonical Ensemble:

Probability of state i in equilibrium

$$
\begin{gathered}
P_{i}=\frac{1}{Z_{g}} e^{\left(-E_{i}+\mu N\right) / k T} \\
Z_{g}=\sum_{i, N} e^{\left(-E_{i}+\mu N\right) / k T}
\end{gathered}
$$

$$
Z_{g}=\sum_{i, N} e^{\left(-E_{i}+\mu_{1} N_{1}+\mu_{2} N_{2}+\cdots\right) / k T}
$$

Particle number:

$$
\begin{aligned}
& Z_{g}=\sum_{i, N} e^{\left(-E_{i}+\mu N\right) / k T} \Rightarrow\langle N\rangle=k T \frac{\partial}{\partial \mu} \ln \left(Z_{g}\right) \\
& \langle U\rangle=-\frac{\partial}{\partial \beta} \ln \left(Z_{g}\right)+\mu_{1}\left\langle N_{1}\right\rangle+\mu_{2}\left\langle N_{2}\right\rangle+\ldots
\end{aligned}
$$

Can show,
distribution is narrow
spike in thermo. limit

Fermions:

$$
Z_{g}=\prod_{i}\left(1+e^{-\left(E_{i}-\mu\right) / k T}\right)
$$

Fermi-Dirac product of singleparticle states; easy to see, includes all possible occupation of each eigenstate (either 1 or 0).

Fermions:

$$
Z_{g}=\prod_{i}\left(1+e^{-\left(E_{i}-\mu\right) / k T}\right) \quad \begin{aligned}
& \text { Fermi-Dirac product of single- } \\
& \text { particle states }
\end{aligned}
$$

$$
n=\frac{1}{\left(1+e^{(E-\mu) / k T}\right)}
$$

Fermi-Dirac distribution $=$ $\langle N\rangle$ for a single eigenstate.

Same as "Fermi function"; $f(E)$

- Valid for non-interacting particles (similar to our product-state partition function analysis for canonical ensemble).
- Some methods exist to treat interacting cases; this is a central issue in many-body physics.

Fermions:

$$
n=\frac{1}{\left(1+e^{(E-\mu) / k T}\right)}
$$

Fermi-Dirac distribution $=$ $\langle N\rangle$ for a single eigenstate.

Same as "Fermi function"; $f(E)$

Works in continuum or discrete limit.
4 particles, 6 states where is μ ?

Bosons:

$$
\begin{aligned}
Z_{g} & =\prod_{i} \sum_{N} e^{-\left(N E_{i}-N \mu\right) / k T} & \begin{array}{l}
\text { Bose-Einstein product of } \\
\text { single-particle states; } \\
\text { Converges to lower form if }
\end{array} \\
& \approx \prod_{i} 1 /\left(1-e^{-\left(E_{i}-\mu\right) / k T}\right) & \begin{array}{l}
E_{i}>\mu(\text { no condensation) }
\end{array} \\
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} & &
\end{aligned}
$$

Bosons:

$$
\begin{array}{rlrl}
Z_{g} & =\prod_{i} \sum_{N} e^{-\left(N E_{i}-N \mu\right) / k T} & \begin{array}{l}
\text { Bose-Einstein product of } \\
\text { single-particle states; }
\end{array} \\
& \approx \prod_{i} 1 /\left(1-e^{-\left(E_{i}-\mu\right) / k T}\right) & & \text { Converges to lower form if } \\
E_{i}>\mu(\text { no condensation })
\end{array}
$$

$$
n=\frac{1}{\left(e^{(E-\mu) / k T}-1\right)}
$$

Bose-Einstein distribution $=$ $\langle N\rangle$ for a single eigenstate.

