Notes for today

- Reminder, web address: rossgroup.tamu.edu/408page.html Has syllabus posted there. More information such as slides, HW will be posted on web as we go along.
- Reading: Ch. 1 this week, <u>plus added section 2.1 of chapter 2</u>, followed by ch. 15.
- Lecture recordings etc.: I will record lecture for those needing to quarantine or be absent. <u>Update:</u> we are now also allowed to have <u>concurrent</u> zoom during lecture, but only for those with documented Covid quarantine (or other University excuse).

Postulate 1:

System in equlibrium:

"ergodic system": will eventually and spontaneously explore all regions of phase space (or all quantum states) accessible to it. [Not true for truly isolated quantum system]

• Postulation that equilibrium state exists.

• Equilibrium state is characterized completely by quantities U, V, and the particle numbers N_1 , N_2 ,

3-dimensional variable space needed for 1component thermal system. (But a different set of 3 may also be chosen)

Also note, I used N for particle number, whereas text uses N for number of moles, vs \tilde{N} for particle number. I decided not to change my notation; N I will use for number of particles or atoms, etc.

Entropy postulates:

- 2) Entropy (S) exists as extensive quantity; Among all other initial states reachable from equilibrium state (depending on U, V, N), equilibrium state has <u>Maximum Entropy</u>.
- 3) Entropy is additive for subsystems (e.g. separate adjoined regions), and increases as U increases.
- 4) S = 0 at T = 0. (Also Nernst theorem, $\Delta S \rightarrow 0$)

Entropy postulates:

2) Entropy (S) exists as extensive quantity; Among all other initial states reachable from equilibrium state (depending on U, V, N), equilibrium state has Maximum Entropy.
Known as

Second Law of Thermodynamics

- 3) Entropy is additive for subsystems (e.g. separate adjoined regions), and increases as U increases.
- 4) S = 0 at T = 0. (Also Nernst theorem, $\Delta S \rightarrow 0$)

Known as <u>Third Law</u>

Laws of Thermodynamics

- <u>First law</u> $\Delta U = Q + W$
- Second law $\Delta S \ge 0$ (& many alternative versions)
- **<u>Third law</u>** $S \to 0$ as $T \to 0$ (or in general $S \to S_o$)

"Magnetic frustration"

Entropy as extensive quantity & function of U, V, N:

means

S = S(U, V, N) (or in general $N_1, N_2, ...$)

 $\lambda S = S(\lambda U, \lambda V, \lambda N) \neq \lambda^2 S, \lambda^3 S$ etc.

Also doubling volume ≠ doubling S necessarily, means also scaling all contents

(Previous slide about extensivity)

P, V : Pressure (intensive) and Volume (extensive)

Extensive: proportional to system size. e.g. depends on the *physical extent* of system.

Intensive: Independent of system size

N, H, Mwe have seen.Note text notation: I = MV
total magnetic momentWhich are extensive/intensive?
Multi-component system: N_1, N_2, \dots e.g. $N_2 + O_2$ or nuclear matter

T = Temperature. (Same as familiar quantity, formal definition to come)

- U = Internal energy.
- *S* = Entropy *Extensive quantity*

Note extensive/intensive pairs are intrinsically coupled:

 $dU = TdS - PdV + \mu dN$

1st law as later defined (ch. 2); maintains proper *size scaling*.

First law & differential form for U: (section 2.1)

recall, $dS = \frac{dQ}{T}$ defines entropy change for a controlled process.

Also recall, dU = dQ + dW with mechanical work = -PdV, also for controlled process. (And specifically, work with no heat flow has dS = 0)

t law in terms of em variables
1

dU = TdS -	$-PdV + \mu dN$	More general defined in
1	1	a 3-dimensional
Defines T	Defines chemical potential μ	parameter space

- T, P, μ we can also define in terms of S, V, N
- *S*, *V*, *N* as state functions, hence perfect differentials

First law & differential form for U: (section 2.1)

Thus: heat generalized work $dU = TdS - PdV + \mu dN$

Form for
$$S = S(U, V, N)$$
 $dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN$
parameter choice:

- Can identify coefficients with *partial derivatives*.
- Examples, do S = (UVN) or $S = (UVN)^{1/3}$ obey extensivity requirement?

Specific example: Ideal gas (monatomic, e.g. helium)

$$U = \frac{3}{2}Nk_BT$$
. Energy, can show (independent of volume)

 $PV = Nk_BT$. Equation of state showed last time.

• <u>Heating with no work</u> (& const. N): can show from first law, $\Delta S = \frac{3}{2} N k_B \ln \left(\frac{U_2}{U_1}\right) = \frac{3}{2} N k_B \ln \left(\frac{T_2}{T_1}\right)$

Specific example: Ideal gas (monatomic, e.g. helium)

$$U = \frac{3}{2}Nk_BT$$
. Energy, can show (independent of volume)

 $PV = Nk_BT$. Equation of state showed last time.

- <u>Heating with no work</u> (& const. N): can show from first law, $\Delta S = \frac{3}{2} N k_B \ln \left(\frac{U_2}{U_1}\right) = \frac{3}{2} N k_B \ln \left(\frac{T_2}{T_1}\right)$
- <u>Adiabatic case</u> from first law & $U = \frac{3}{2}PV$: $P_2 = P_1 \left(\frac{V_2}{V_1}\right)^{-5/3}$

Recall example from before

(*N* = const inside)

Expand suddenly to 2x volume. sign of Q, W? ΔU ? ΔT ? 0 0 ? 0 if ideal gas

Perfectly Insulated cylinder ("Adiabatic Process") Q = 0

This increases entropy.

& Note pressure decreases 2x in uncontrolled process

Expand suddenly to 2x volume. sign of Q, W? ΔU ? ΔT ?

Further process: <u>slowly</u> return piston to original position. *>>>Now can calculate this.*

• Find, work done:
$$W = \frac{3}{2}P_1V_1(2^{2/3} - 1)$$

• Entropy change? For this process & entire process?