
Homework : Set #9 due Thursday. Looking for volunteers, for 
problems 2, 4, 6.  (note, now extended to next Tuesday.)

Next week : I have a Wednesday jury duty call. It is likely I 
won’t get picked to serve, but watch for an announcement 
before class just in case.

Also I have an unidentified HW8 paper. If you think it is yours let 
me know.

Notes:
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Formal structure of the thermodynamics relationships: 

𝑼(𝑺, 𝑽,𝑵𝟏, 𝑵𝟐…)
•  r distinct particle types makes r+2 parameters.
•  We can change coordinates if desired; e.g. T, P, N also 
serves to specify 1-component system in large-N limit.
•  We also obtain r+2 eqns. of state (intensive 
quantities.):

•  Having all r+2 eqns. of state completely determines 
the function 𝑈(𝑆, 𝑉,𝑁1, 𝑁2…)    [or 𝑆(𝑈, 𝑉,𝑁1, 𝑁2…) ]; 
this will always work.
•  However one more relation among the intensive 
parameters (Gibbs-Duhem) means actually r+1 degrees 
of freedom to determine fundamental equation.

Showed before



Formal structure of the thermodynamics relationships: 

Gibbs-Duhem relation𝑆𝑑𝑇 − 𝑉𝑑𝑃 +2𝑁& 𝑑𝜇& = 0

•  Can integrate to find e.g. 𝜇 in terms of other parameters. 
Thus 2 (or r+1) equations of state are sufficient.

•  Nice trick when r = 1 :  per-atom (or molar) relations.

𝑢 ≡ !
"
= 𝑈(𝑠, 𝑣) 𝑑𝑢 = 𝑇𝑑𝑠 − 𝑃𝑑𝑣

similar result for dS

Showed before



Phonons:      Note about high-T limit
continuum limit
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Debye Temperature 

high T :   can solve integral numerically.
Generally good agreement, Debye theory 
commonly used to model thermal behavior of 
solids.  And reproduces expected C = 3NkB.

Classical limit
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Debye approximation: Commonly used as measure of phonon 
behavior (even when “real” behavior of crystal can be obtained)

from “The Specific Heat of Matter at Low 
Temperatures” [Tari, 2003].

X Zheng et al. Phys. 
Rev. B 85, 214304 
(2012) [my lab]:

Specific heat of 
thermoelectric crystal.
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Photons vs. Phonons:

Photons:
• Cavity modes
• 2 polarizations
• 𝜔 = 𝑘𝑐.
• Extend to 𝜔 → ∞.
• 𝑒6(78:⃗6+; free space solution
• Bose statistics (𝜇 = 0).
• Energies quantized, ℏ𝜔(𝑛 + 1

.
).

• Speed of light:  c. 

Phonons:
• elastic (standing) waves
• 3 polarizations
• 𝝎 ≅ 𝒌𝒄, 𝐞𝐱𝐚𝐜𝐭 𝐟𝐨𝐫 𝐥𝐨𝐰 𝒌
• Bounded:  N values of k.
• 𝑒6(78:⃗6+; [or sin 𝑘 P 𝑟 sin(𝜔𝑡)]
• Bose statistics (𝜇 = 0).
• Energies quantized, ℏ𝜔(𝑛 + 1

.
).

• Speed of sound:  c
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exact in vacuum



Photons;  summations and state variables:
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𝑍( , but for modes not atoms or particles.
Similar for other oscillatory excitations.

can be solved using 𝐷 𝜔
integration, as long as cavity 
large enough/T not too small.
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𝑆 = −
𝜕𝐹
𝜕𝑇 0,B

Differentiate F to obtain Entropy, pressure, etc.  (HW)
All state variables can be obtained based on a sum over modes.

𝑃 =
𝜕𝐹
𝜕𝑉 4,B

𝑈 = 𝐹 + 𝑇𝑆



Photons;  summations and state variables:
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𝑍( , but for modes not atoms or particles.
Similar for other oscillatory excitations.

can be solved using 𝐷 𝜔
integration, as long as cavity 
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Photon result, F = const. × 𝑇/

(updated: what I 
originally displayed in 
class was mis-written.)



• State equations:
𝑈 = 𝑏𝑉𝑇>
𝑃 = 𝑈/(3𝑉)

• Then can easily solve for 𝑆 = >
?
𝑏:/>𝑈?/>𝑉:/>,		

using methods we have seen.
• Also note, 𝑆 = >"

?6
simpler form.

• Note N is formally zero (or can treat N as 
number of photons; µ = 0 since U independent 
of N).

𝐼 = 𝜎𝑇' Stefan-Boltzmann	

𝑆 ≅ 3.6 𝑁 𝑘3

Interesting result, 
𝑃𝑉 ≈ 𝑁𝑘𝑇

From before

P was previously quoted from experiment; now know that 
we can obtain it from Free energy.



1st order phase transitions (chapter 9, also read ch. 8).

First order (discontinuous) phase transitions:
G continuous, other quantities not.
Jump in measured quantities
Hysteresis effects + Latent heat

Second order (continuous) phase transition:
G first derivative continuous
Continuous change in some measured quantities
Critical fluctuations.

1st order 

𝜇
𝑇

Tc

T/Tc



1st order 

Superconductor, 
classic 2nd order 
for H = 0 

3He, 2nd order with 
critical fluctuations 
near Tc:

𝐶 ∝ 𝑇 − 𝑇( )*
Miliyanchuk et al. 2011

1st order phase transitions (chapter 9, also read ch. 8).

First order (discontinuous) phase transitions:
G continuous, other quantities not.
Jump in measured quantities
Hysteresis effects + Latent heat

Second order (continuous) phase transition:
G first derivative continuous
Continuous change in some measured quantities
Critical fluctuations.



1st order Transformations:

1st order

• Consider P and T to be fixed, then find 
equilibrium.

• Gibbs free energy minimized.
• Phase transformation due to instability in G vs 

external parameters.

P

T

P

T


