Notes:

Homework : Set #9 due <u>Thursday</u> not Wednesday. Also note, more on the density of states is included in today's lecture.

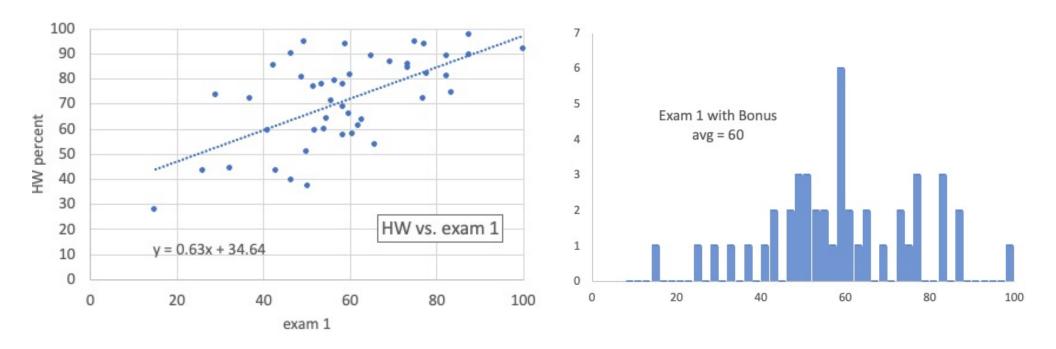
Exam: Results with bonus points, new average = 60.

- I will post solutions later today
- Also I will post adjusted grades on Canvas. (Updated problems are stapled in your exam but I didn't write the adjusted score there, I have the results in a spreadsheet with my bonus algorithm.)

- I had points reversed, sorry, the point totals were 5, 21, 24, 26, 24. I also gave a few more bonus points: 67% of the extra points not 60%).

Notes:

Exam: Results with bonus points, new average = 60.



Homework: Current average is 72. You can also help your cause by volunteering to present one of the HW problems.

<u>Density of states</u>: for summations involving only ω (or *E*).

$$U = \sum_{all \ modes} \frac{\hbar\omega_i}{(e^{\beta\hbar\omega_i} - 1)} \Longrightarrow 3 \int_0^\infty \left(\frac{\#k \ states}{in \ (\omega, \omega + d\omega)}\right) \times \frac{\hbar\omega}{(e^{\beta\hbar\omega} - 1)}$$
$$\equiv \int_0^\infty \frac{\hbar\omega D(\omega)d\omega}{(e^{\beta\hbar\omega} - 1)}$$

- Find # states inside a sphere (octant) in k space: N(k).
 This includes polarizations.
 - Anisotropic situations: replace sphere by constant- ω surface
- 2) Convert to ω units: $N(\omega)$.
- 3) $D(\omega)$ is the derivative, $D(\omega)d\omega = \frac{dN(\omega)}{d\omega}d\omega$, equal to total # modes in $(\omega, \omega + d\omega)$.

$$\Delta k = \frac{\pi}{L} \rightarrow V_k = \left(\frac{\pi}{L}\right)^3 \text{ for octant;}$$
$$= \left(\frac{2\pi}{L}\right)^3 \text{ for complete sphere}$$
traveling-waves

This defines density of states (similar procedure for D(E)).

Result for phonons: $D(\omega) = \frac{3\omega^2 V}{2\pi^2 c^3}$

Phonons:

$$Z = \prod_{\substack{all \ modes}} Z_i = \prod_{\substack{all \ modes}} \sum_{\substack{n=0}}^{\infty} e^{-\beta n\hbar\omega_i} = \prod_{\substack{all \ modes}} \frac{1}{1 - e^{-\beta\hbar\omega_i}}$$
(not same as all
atoms; factor
of 3 here)

$$\langle U \rangle = \frac{\partial}{\partial \beta} \ln(Z) = \sum_{all \ modes} \frac{\hbar \omega_i}{(e^{\beta \hbar \omega_i} - 1)}$$

$$D(\omega) = \frac{3\omega^2 V}{2\pi^2 c^3}$$
 use here for sum over ω .

Phonons:

continuum limit

$$\langle U \rangle = \sum_{all \ modes} \frac{\hbar \omega_i}{(e^{\beta \hbar \omega_i} - 1)} \Longrightarrow \int_0^{\omega_{max}} \frac{\hbar \omega D(\omega) d\omega}{(e^{\beta \hbar \omega} - 1)} = \int_0^{\omega_D} \frac{3V \hbar \omega^3 d\omega}{2\pi^2 c^3 (e^{\beta \hbar \omega} - 1)}$$

Phonons: $D(\omega) = \frac{3\omega^2 V}{2\pi^2 c^3}$

$$\langle U \rangle = \sum_{all \ modes} \frac{\hbar \omega_i}{(e^{\beta \hbar \omega_i} - 1)} \Longrightarrow \int_0^{\omega_{max}} \frac{\hbar \omega D(\omega) d\omega}{(e^{\beta \hbar \omega} - 1)} = \int_0^{\omega_D} \frac{3V \hbar \omega^3 d\omega}{2\pi^2 c^3 (e^{\beta \hbar \omega} - 1)}$$

$$\langle U \rangle = \frac{V \pi^2 (kT)^4}{10(\hbar c)^3}$$
 low *T* only
and note, $c = \underline{\text{speed of sound}}$ (not light)

Debye Theory:

- Modes cut off uniformly in all directions: maximum $k = k_D$ on <u>sphere</u>.
- Assume uniform speed of sound, doesn't change at high frequencies.
- Disregard anisotropy, e.g. for layered crystals, etc.

Phonons:

$$\langle U \rangle = \sum_{all \ modes} \frac{\hbar \omega_i}{(e^{\beta \hbar \omega_i} - 1)} \Longrightarrow \int_0^{\omega_{max}} \frac{\hbar \omega D(\omega) d\omega}{(e^{\beta \hbar \omega} - 1)} = \int_0^{\omega_D} \frac{3V \hbar \omega^3 d\omega}{2\pi^2 c^3 (e^{\beta \hbar \omega} - 1)}$$

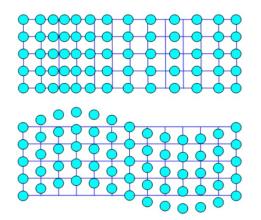
$$\langle U \rangle = \frac{V \pi^2 (kT)^4}{10(\hbar c)^3}$$
 low *T* only
and note, $c = \underline{\text{speed of sound}}$ (not light)

Debye Theory:

- Modes cut off uniformly in all directions: maximum $k = k_D$ on <u>sphere</u>.
- Assume uniform speed of sound, doesn't change at high frequencies.
- Disregard anisotropy, e.g. for layered crystals, etc.

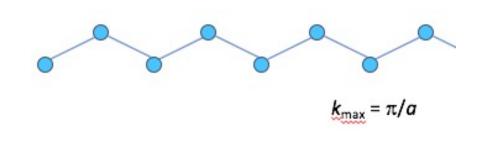
Result:
$$\omega_D = c \left(6\pi^2 \frac{N}{v}\right)^{1/3}$$
 need this for solutions at general T

Phonons mode counting:



 k_D

zA



Debye Theory ("Debye approximation"):

- Modes cut off uniformly in all directions: maximum $k = k_D$ on <u>sphere</u>.
- Assume constant speed of sound, doesn't change at high frequencies.
- Disregard anisotropy, e.g. for layered crystals, etc.
- Even in simple crystal geometries (cubic), cutoff is really a polyhedron in k space (this is the "Brillouin zone"; Debye approximation neglects this.

 $\omega_D \equiv k_D c$ Debye frequency

 $\Theta_D \equiv \hbar \omega_D / k_B$ Debye temperature

Polyhedron with 3*N* modes; Sphere <u>same volume</u>, also 3*N* modes.

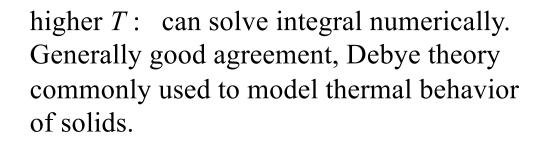
Result:

$$\omega_D = c \left(6\pi^2 \frac{N}{V} \right)^{1/3}$$

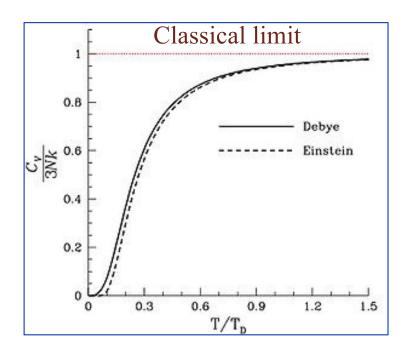
Phonons: combining,

$$\langle E \rangle = \sum_{all \ modes} \frac{\hbar \omega_i}{(e^{\beta \hbar \omega_i} - 1)} \Longrightarrow \int_0^{\omega_D} \frac{3V \hbar \omega^3 d\omega}{2\pi^2 c^3 (e^{\beta \hbar \omega} - 1)}$$

Debye Temperature



Copper $\Theta_D = 315 \text{ K}$ Lead $\Theta_D = 88 \text{ K}$ Diamond $\Theta_D = 1860 \text{ K}$



Debye approximation: Commonly used as measure of phonon behavior (even when "real" behavior can be obtained)

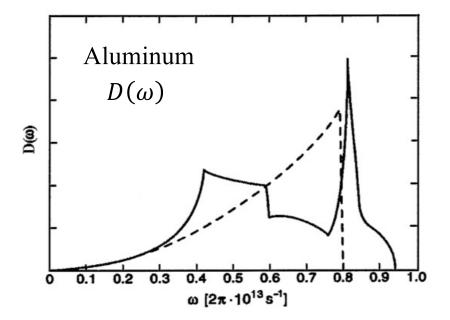
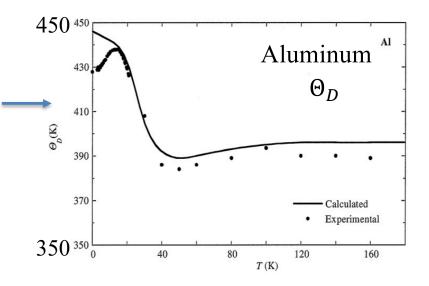
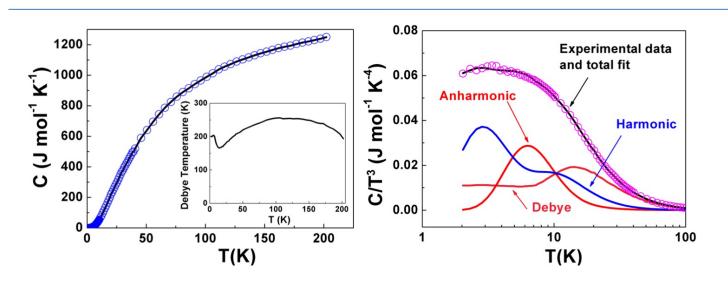


Figure 2.9. The density of frequency modes for Al at 300K (solid line) obtained by Walker [30] and that for the Debye model (dashed lines)



from "The Specific Heat of Matter at Low Temperatures" [Tari, 2003].



X Zheng et al. Phys. Rev. B 85, 214304 (2012) [my lab]:

Specific heat of thermoelectric crystal.

Density of states:

 $3 \times \begin{pmatrix} \#k \text{ states} \\ in (\omega, \omega + d\omega) \end{pmatrix} \equiv D(\omega)$ recall for phonons:

- Find # states inside a sphere (octant) in k space: N(k).
 include 3 polarizations.
- 2) Convert to ω units: $N(\omega)$.
- 3) $D(\omega)$ is the derivative, $D(\omega)d\omega = \frac{dN(\omega)}{d\omega}d\omega$, equal to total # modes in $(\omega, \omega + d\omega)$.

other systems: Ideal gas of

electrons

- Find # states inside a sphere (octant) in k space: N(k). (same)
 <u>include 2 spins</u>.
 Convert to ε units: N(ε). κ (ε = ^{ħ²k²}/_{2m})
- 3) $D(\varepsilon)$ is the derivative, $D(\varepsilon)d\varepsilon = \frac{dN(\varepsilon)}{d\varepsilon}d\varepsilon$, equal to total # modes in $(\varepsilon, \varepsilon + d\varepsilon)$.

 $\Delta k = \frac{\pi}{L} \rightarrow V_k = \left(\frac{\pi}{L}\right)^3 \text{ for } \underline{\text{ octant}};$ $= \left(\frac{2\pi}{L}\right)^3 \text{ for } \underline{\text{ complete sphere traveling-waves}}$

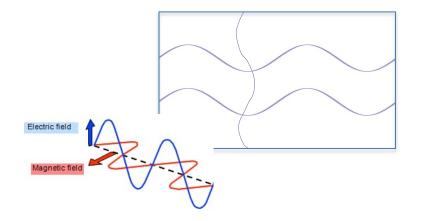
Ideal gas of electrons

- 1) Find # states inside a sphere (octant) in k space: N(k). (same)
 include 2 spins
- <u>include 2 spins</u>. 2) Convert to ε units: $N(\varepsilon)$. $\checkmark (\varepsilon = \frac{\hbar^2 k^2}{2m})$
- 3) $D(\varepsilon)$ is the derivative, $D(\varepsilon)d\varepsilon = \frac{dN(\varepsilon)}{d\varepsilon}d\varepsilon$, equal to total # modes in $(\varepsilon, \varepsilon + d\varepsilon)$.

Result:
$$D(\varepsilon) = \frac{2V}{(4\pi^2)} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{\varepsilon}$$

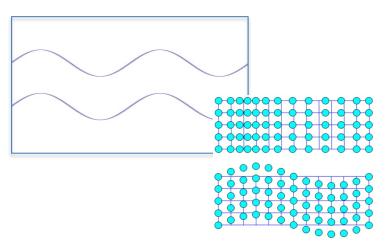
- Similar procedure for relativistic gas (HW)
- For the ionization HW problem 6, previously I didn't include *spin* in the multiplicity of states. Using the result above you should arrive within a *factor of 2* vs. the prior result.
- Classical <u>partition function</u> can be calculated this way. Last week we did so with momentum integration, this is easier.
- Ch. does not give D(ε) with energy units, this appears later chapter 18.

Photons vs. Phonons recall:



Photons:

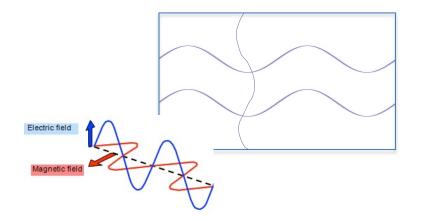
- Cavity modes
- 2 polarizations
- $\omega = kc$.
- Extend to $\omega \to \infty$.
- $e^{-i\vec{k}\cdot\vec{r}-\omega t}$ free space solution
- Bose statistics ($\mu = 0$).
- Energies quantized, $\hbar\omega(n+\frac{1}{2})$.
- Speed of <u>light</u>: c.



Phonons:

- elastic (standing) waves
- 3 polarizations
- $\omega \cong kc$, exact for low k
- Bounded: N values of k.
- $e^{-i\vec{k}\cdot\vec{r}-\omega t}$ [or $\sin(\vec{k}\cdot\vec{r})\sin(\omega t)$]
- Bose statistics ($\mu = 0$).
- Energies quantized, $\hbar\omega(n+\frac{1}{2})$.
- Speed of <u>sound</u>: c

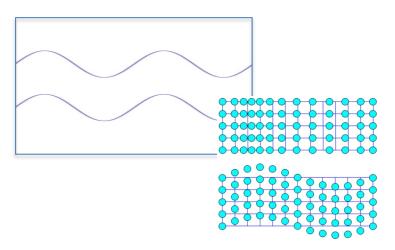
Photons vs. Phonons recall:



Photons:

- Cavity modes
- 2 polarizations
- $\omega = kc$.
- Extend to $\omega \to \infty$.
- $e^{-i\vec{k}\cdot\vec{r}-\omega t}$ free space solution
- Bose statistics ($\mu = 0$).
- Energies quantized, $\hbar\omega(n+\frac{1}{2})$.
- Speed of <u>light</u>: c.

$$D(\omega) = \frac{2}{3} \times \frac{3\omega^2 V}{2\pi^2 c^3} = \frac{\omega^2 V}{\pi^2 c^3}$$



Phonons:

- elastic (standing) waves
- 3 polarizations
- $\omega \cong kc$, exact for low k
- Bounded: N values of k.
- $e^{-i\vec{k}\cdot\vec{r}-\omega t}$ [or $\sin(\vec{k}\cdot\vec{r})\sin(\omega t)$]
- Bose statistics ($\mu = 0$).
- Energies quantized, $\hbar\omega(n+\frac{1}{2})$.
- Speed of <u>sound</u>: c

 $D(\omega) = \frac{3\omega^2 V}{2\pi^2 c^3}$

Phonons vs Photons we also saw before:

- Liquids and non-crystal solids: have similar modes.
- **<u>Einstein</u>**: independent 3D oscillators, same ω_0 .
- **<u>Debye</u>**: Phonons are <u>normal modes</u> in a *connected* harmonic lattice.
- Debye-theory solutions identical to <u>sound waves</u>, $\omega = kc$ (exact in low-frequency limit); also map onto <u>blackbody-radiation photons</u>.
- Except: <u>mode counting</u> requires <u>finite</u> number of phonon modes, and <u>3 polarizations</u>, not 2.

