Notes:

Exam: You can make up some points:

1. Choose 2 problems; blank exam is posted.
2. Work out the solutions from scratch on your own.
3. Turn in the problems by Thursday in class or Friday afternoon 3:30-4 PM; I will arrange be at my office or you can email if necessary. Not in my mailbox
4. You will get 60% of the made-up points back.

Reading: This week we continue with chapter 16 (continuum systems densities of states; Debye model for vibrations). Next up, phase transformations (chapters 8-9).

Density of states: for summations involving only ω (or E).

phonons

$$
\begin{gathered}
U=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\beta \hbar \omega_{i}}-1\right)} \Rightarrow 3 \int_{0}^{\infty}\binom{\# k \text { states }}{\text { in }(\omega, \omega+d \omega)} \times \frac{\hbar \omega}{\left(e^{\beta \hbar \omega}-1\right)} \\
\equiv \int_{0}^{\infty} \frac{\hbar \omega D(\omega) d \omega}{\left(e^{\beta \hbar \omega}-1\right)}
\end{gathered}
$$

1) Find \# states inside a sphere (octant) in k space: $N(k)$.

- This includes polarizations.
- Anisotropic situations: replace sphere by constant- ω surface

2) Convert to ω units: $N(\omega)$.
3) $D(\omega)$ is the derivative, $D(\omega)=d N(\omega) / \mathrm{d} \omega$, equal to total \# modes in $(\omega, \omega+d \omega)$. \quad Density of states definition (similar procedure for $D(E)$).

$$
\begin{aligned}
\Delta k & =\frac{\pi}{L}->V_{k}=\left(\frac{\pi}{L}\right)^{3} \text { for octant; } \\
& =\left(\frac{2 \pi}{L}\right)^{3} \text { for complete sphere traveling-waves }
\end{aligned}
$$

State counting:

cavity modes in a cubic box, dimensions L :

Octant of sphere;
but with $8 \times$ state density of traveling-wave momentum space.

One k-vector per volume element; same as "Phase space volume" $h^{3} / 8$

Text: abstract space has integer dimensions. Similar counting procedure in chapter 15, hyperspace consideration of multiplicities. My wavevector-space notation: same n_{x}, n_{y}, n_{z}, multiplied by $\frac{\pi}{L}$ (or $\frac{2 \pi}{L}$), otherwise the counting is the same.

Density of states: for summations involving only ω (or E).

phonons

$$
\begin{gathered}
U=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\beta \hbar \omega_{i}}-1\right)} \Rightarrow 3 \int_{0}^{\infty}\binom{\# k \text { states }}{\text { in }(\omega, \omega+d \omega)} \times \frac{\hbar \omega}{\left(e^{\beta \hbar \omega}-1\right)} \\
\equiv \int_{0}^{\infty} \frac{\hbar \omega D(\omega) d \omega}{\left(e^{\beta \hbar \omega}-1\right)}
\end{gathered}
$$

1) Find \# states inside a sphere (octant) in k space: $N(k)$.

- This includes polarizations.
- Anisotropic situations: replace sphere by constant- ω surface

2) Convert to ω units: $N(\omega)$.
3) $D(\omega)$ is the derivative, $D(\omega)=d N(\omega) / \mathrm{d} \omega$, equal to total \# modes in $(\omega, \omega+d \omega)$.

Result for phonons in isotropic solid:

$$
\begin{aligned}
\Delta k & =\frac{\pi}{L}->V_{k}=\left(\frac{\pi}{L}\right)^{3} \text { for octant; } \\
& =\left(\frac{2 \pi}{L}\right)^{3} \text { for complete sphere traveling-waves }
\end{aligned}
$$

$$
D(\omega)=\frac{3 \omega^{2} V}{2 \pi^{2} c^{3}}
$$

Phonons:

$$
Z=\prod_{\begin{array}{c}
\text { all modes } \\
\text { (not same as all } \\
\text { atoms; } \text { factor } \\
\text { of } 3 \text { here })
\end{array}} Z_{i}=\prod_{\text {all modes }} \sum_{n=0}^{\infty} e^{-\beta n \hbar \omega_{i}}=\prod_{\text {all modes }} \frac{1}{1-e^{-\beta \hbar \omega_{i}}} \begin{array}{r}
\begin{array}{r}
\left(Z_{i}\right. \text { we saw } \\
\text { last time })
\end{array}
\end{array}
$$

$$
\langle U\rangle=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\beta \hbar \omega_{i}}-1\right)}
$$

Phonons:

continuum limit

$$
\langle U\rangle=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\left.\beta \hbar \omega_{i-1}\right)}\right.} \Longrightarrow \int_{0}^{\omega_{\max }} \frac{\hbar \omega D(\omega) d \omega}{\left(e^{\beta \hbar \omega}-1\right)}=\int_{0}^{\omega_{D}} \frac{3 V \hbar \omega^{3} d \omega}{2 \pi^{2} c^{3}\left(e^{\beta \hbar \omega}-1\right)}
$$

