
Exam:   You can make up some points:   
1. Choose 2 problems; blank exam is posted.
2. Work out the solutions from scratch on your own.
3. Turn in the problems by Thursday in class or Friday 

afternoon 3:30-4 PM; I will arrange be at my office or 
you can email if necessary. Not in my mailbox

4. You will get 60% of the made-up points back. 

Reading:  This week we continue with chapter 16 (continuum 
systems densities of states; Debye model for vibrations). Next 
up, phase transformations (chapters 8-9). 

Notes:



Density of states: for summations involving only 𝜔 (or E).
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1) Find # states inside a sphere (octant) in k space:  𝑁 𝑘 . 
• This includes polarizations.  
• Anisotropic situations: replace sphere by constant-𝜔 surface

2) Convert to 𝜔 units: 𝑁 𝜔 .
3) 𝐷 𝜔 is the derivative, 𝐷 𝜔 = 𝑑𝑁 𝜔 /d𝜔, equal to 

total # modes in (𝜔, 𝜔 + 𝑑𝜔). Density of states definition  
(similar procedure for 𝐷 𝐸 ).



State counting:

cavity modes in a cubic box, dimensions L:  
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𝑧 etc.
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Octant of sphere;
but with 8× state density of 
traveling-wave momentum space.

E-field

One k-vector per volume element;
same as “Phase space volume” h3/8

Text: abstract space has integer dimensions. 
Similar counting procedure in chapter 15, 
hyperspace consideration of multiplicities. 
My wavevector-space notation: same 𝑛!, 𝑛", 
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Density of states: for summations involving only 𝜔 (or E).
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1) Find # states inside a sphere (octant) in k space:  𝑁 𝑘 . 
• This includes polarizations.  
• Anisotropic situations: replace sphere by constant-𝜔 surface

2) Convert to 𝜔 units: 𝑁 𝜔 .
3) 𝐷 𝜔 is the derivative, 𝐷 𝜔 = 𝑑𝑁 𝜔 /d𝜔, equal to 

total # modes in (𝜔, 𝜔 + 𝑑𝜔). Result for phonons in isotropic solid:
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Phonons:
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Phonons:

continuum limit
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