Notes:

Exam: You can make up some points:

1. Choose 2 problems; blank exam is posted.

2. Work out the solutions from scratch on your own.

3. Turnin the problems by Thursday in class or Friday
afternoon 3:30-4 PM; | will arrange be at my office or
you can email if necessary. Not in my mailbox

4. You will get 60% of the made-up points back.

Homework: Problem set 8 due Tomorrow. | am looking for
volunteers for problems 1 and 2 for Thursday presentation.

Reading: This week we continue with chapter 16 (continuum
systems densities of states; Debye model for vibrations). Next
up, phase transformations (chapters 8-9).




Canonical ensemble Recall:
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Last time: Z as a product for

independent sub-systems, e.g.:
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Equipartition theorem

e C(lassical systems (continuum not discrete energies)
* Works in cases having separable variables.
* Requires energy quadratic in position and/or momentum: E = ¢q?

1
7 = fﬁ’_"’ﬂ d3Nrd3Npe~PE <« 7 =T];Z;; includes all cross terms.

systems of distinguishable

Classical partition function ) : :
particles, non-interacting.

. 1
o Z = NI 1—[ Z; systems of indistinguishable
T particles, still non-interacting case.
Result: U = ]2: kT

(1/2)kT for each “degree of freedom” f.



Harmonic oscillator systems (N independent 1D oscillators)

—2 — 2 2
__ Pu KU* or U — p N KU c¢.m. coordinates
U; = om + T I — m 2 & reduced mass

Vibrational term in product-form partition function, Z:
N
1 - '3(ﬁ+ @) N independent oscillators
Lyibr = h j j dpdue ~\2m 2 (Einstein solid approximation,

ideal gas molecules, etc.) all
with same w = /k/m = “w,”

kT

N
Zyibr = (%) (E) = NKT

effectively f =2

Equipartition theorem:

* C(lassical systems (continuum not discrete energies)

*  Works in cases having separable variables.

* Requires energy quadratic in position and/or momentum (or
other coordinate)

* Vibrations, rotations, translational states. Rotational case in
text, won’t show here.




Harmonic oscillator systems (N independent 1D oscillators)

—2 — 2 2
__ Pu KU* or U — p N KU c¢.m. coordinates
U; = om 2 I — m 2 & reduced mass

Vibrational term in product-form partition function, Z:

2

1 p? ku N
Lyibr = (E U dpdue_'g(erT))
- Zyipr = (kT)N (E) = NKT

hw

classical-limit solution

Quantum version / general case:

oo N
Lyibr = Zi = (Z e‘ﬁnh“’>
n=0




Harmonic oscillator systems (N independent 1D oscillators)

Quantum vibrational partition function

0 N
_Bhw P _BhwN 1 N
Zvibr — l_IZl =le 2 ze pn = e 2 ll_e—ﬁfl(l)]
l n=0

Z shown with zero point motion
term.

Indistinguishable cases: we grouped
1/N! factor with Z,,,, . last time.
Equivalent to “3N + g — 1” counting
method for fixed-U case, large-N
limit.

Here, easy to extend to a distribution
of different oscillator frequencies.

\

(E) hwN N hw
2 efho — 1
zero point
term no effect
on entropy

hw
efhw — 1~ hu@

(n) = Bose-Einstein occupation
number (photon statistics) we

saw before, derived using S &
Uto find 7.



Harmonic oscillator systems (N independent 1D oscillators)

Quantum version
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Einstein Ann Phys 1907 [for solids;

3N identical oscillators. Specific
heat of diamond fit to w = 1310 K.]
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Harmonic oscillator systems (N independent 1D oscillators)

Quantum version

0 N
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l n=0
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kT/hv with hv/k = 1310K

Debye model: 7° behavior at low
T agrees well with data.

E_ha)N N hw
)=t N e 4
hw -
eﬁhw—lz Cl)(Tl)

<< assumes a specific distribution of
vibrational frequencies (normal modes).




Phonons: quantized lattice vibrations in crystals.

Liquids and non-crystal solids: have similar modes.

Einstein: 1ndependent 3D oscillators, same w,,.

Debyve: Phonons are normal modes in a connected harmonic lattice.

Debye-theory solutions identical to sound waves , w = kc (exact in low-
frequency limit); also map onto blackbody-radiation photons.
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Phonons:

quantized lattice vibrations in crystals.

Liquids and non-crystal solids: have similar modes.

Einstein: 1ndependent 3D oscillators, same w,,.

Debyve: Phonons are normal modes in a connected harmonic lattice.

Debye-theory solutions identical to sound waves , w = kc (exact in low-
frequency limit); also map onto blackbody-radiation photons.

Except: mode counting
requires finite number of phonon
modes, and 3 polarizations, not 2.
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Photons vs. Phonons:

Electric field 1

Magnetic field

Photons:

Cavity modes

2 polarizations

w = kc.

Extend to w — oo.

e~ iKT-Wt free space solution
Bose statistics (u = 0).
Energies quantized, Aiw(n + %).
Speed of light: c.

Phonons:

elastic (standing) waves

3 polarizations

w = kc,exact forlow k
Bounded: N values of k.

g ik-F-wt [or sin(ltz> - 7) sin(wt)]
Bose statistics (u = 0).
Energies quantized, hw(n + ;).

Speed of sound: ¢



Phonons & mode counting:

o @
(ll.‘l)(’l?fi)
(ll“l)(‘l’ff)

1) General elastic solid (isotropic case):
wave equation

ﬁ=£x2V(V-u)l—EZV x (V xu)

P wave S wave
has wave solutions, w = kc.

(actually may have 2 or more frequencies)

2) Quantization of energies: won’t
show this; result is analogous to familiar
SHO solution in quantum mechanics,

E = ho(n+:).

e T e

kmax = /0

3) Wave-vector cutoft:
maximum wavenumber ~
frequency in THz range

I

N k-vectors in 1D, leads to a
cutoff for phonon wavenumber.

3N total phonon modes in
general 3D crystal.



State counting: | showed this slide before for photons.

» Start with cavity modes in a box with perfectly conducting

sides, dimensions L. ,
Cavity mode

E, x cos (nx 7lx) sin (ny Ey) sin (nz T z) etc. Counting: one
L L L TM + one TE

E field
per k-vector

3
Ak :E ->Vk == (E)
Octant of sphere; L L
but with 8X state density. One k-vector per volume element;

same as “Phase space volume” /3/8

(3D sphere radius will go to infinity)

Consider continuum limit (large cavity, very small Ak) Mode counting
Also recall w = kc directly in k-space
photons (similar to number
_ /o0 2 space for Einstein
U = Z ho, — zf EVk dk hike summation, ch. 15)
(efhwi — 1) o 2 w3 (ePhkc —1)
all modes e

# modes in thin
shell, thickness dk = dw/c



Density of states: for summations involving only w (or E).

Example for energy sum:

J_ Z hw, \ ijndzdk hkc
B (eProi— 1) “ ), 2 w3 (eBhke —1)
H_I

all modes

# modes in thin
shell, thickness dk = dw/c

photons
hw; /e #states hw
T all;des (ePhwi — 1) - 2]0 dx (in (w, @ + d“))) ) (efro —1)
(P hwD(w)dw
B 0 (e,[?ha) - 1)

T

3
Ak = > V., = (%) for octant;

2m\3 .
= (T) for complete sphere traveling-waves




