Notes:

Exam: You can make up some points:

1. Choose 2 problems; blank exam is posted.
2. Work out the solutions from scratch on your own.
3. Turn in the problems by Thursday in class or Friday afternoon 3:30-4 PM; I will arrange be at my office or you can email if necessary. Not in my mailbox
4. You will get 60% of the made-up points back.

Homework: Problem set 8 due Tomorrow. I am looking for volunteers for problems 1 and 2 for Thursday presentation.

Reading: This week we continue with chapter 16 (continuum systems densities of states; Debye model for vibrations). Next up, phase transformations (chapters 8-9).

Canonical ensemble Recall:

$\underset{\text { Punction }}{\text { Partition }} \quad Z=\sum_{\text {states } i} \operatorname{Exp}\left[-E_{i} / k T\right]$

$$
\begin{aligned}
& F \equiv-k_{B} T \ln Z \\
& S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \\
& \langle E\rangle=k_{B} T^{2} \frac{\partial}{\partial T} \ln Z
\end{aligned}
$$

Etc

Last time: Z as a product for independent sub-systems, e.g.:

$$
Z=\frac{1}{N!} \prod_{i} Z_{i}
$$

Equipartition theorem

- Classical systems (continuum not discrete energies)
- Works in cases having separable variables.
- Requires energy quadratic in position and/or momentum: $E=c q^{2}$
$Z=\frac{1}{h^{3 N}} \iiint d^{3 N} r d^{3 N} p e^{-\beta E}, \quad Z=\prod_{i} Z_{i} ; \underline{\text { includes all cross terms }}$.
Classical partition function systems of distinguishable particles, non-interacting.
or:

$$
Z=\frac{1}{N!} \prod_{i} Z_{i} \quad \begin{aligned}
& \text { systems of indistinguishable } \\
& \text { particles, still non-interacting case }
\end{aligned}
$$

Result: $\quad U=\frac{f}{2} k T$
$(1 / 2) k T$ for each "degree of freedom" f.

Harmonic oscillator systems (N independent 1D oscillators)

$$
U_{i}=\frac{{\overrightarrow{p_{u}}}^{2}}{2 m}+\frac{\kappa \vec{u}^{2}}{2} \quad \text { or } \quad U_{i}=\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2} \quad \begin{aligned}
& \text { c.m. coordinates } \\
& \text { \& reduced mass }
\end{aligned}
$$

Vibrational term in product-form partition function, Z :

$$
\begin{gathered}
Z_{v i b r}=\left(\frac{1}{h} \iint d p d u e^{-\beta\left(\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2}\right)}\right)^{N} \\
\qquad \begin{array}{c}
Z_{v i b r}=\left(\frac{k T}{\hbar \omega}\right)^{N} \quad\langle E\rangle=N k T \\
\text { effectively } f=2
\end{array}
\end{gathered}
$$

N independent oscillators
(Einstein solid approximation, ideal gas molecules, etc.) all with same $\omega=\sqrt{\kappa / m}={ }^{\prime} \omega_{0}$ "

Equipartition theorem:

- Classical systems (continuum not discrete energies)
- Works in cases having separable variables.
- Requires energy quadratic in position and/or momentum (or other coordinate)
- Vibrations, rotations, translational states. Rotational case in text, won't show here.

Harmonic oscillator systems (N independent 1D oscillators)

$$
U_{i}=\frac{{\overrightarrow{p_{u}}}^{2}}{2 m}+\frac{\kappa \vec{u}^{2}}{2} \quad \text { or } \quad U_{i}=\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2}
$$

Vibrational term in product-form partition function, Z :

$$
\begin{array}{r}
Z_{v i b r}=\left(\frac{1}{h} \iint d p d u e^{-\beta\left(\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2}\right)}\right)^{N} \\
\longleftrightarrow Z_{v i b r}=\left(\frac{k T}{\hbar \omega}\right)^{N} \quad\langle E\rangle=N k T \\
\text { classical-limit solution }
\end{array}
$$

Quantum version / general case:

$$
Z_{v i b r}=\prod_{i} Z_{i}=\left(\sum_{n=0}^{\infty} e^{-\beta n \hbar \omega}\right)^{N}
$$

Harmonic oscillator systems (N independent 1D oscillators)

Quantum vibrational partition function

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

$$
\begin{aligned}
& \quad Z_{v i b r}=\prod_{i} Z_{i}=\left(e^{-\frac{\beta \hbar \omega}{2}} \sum_{n=0}^{\infty} e^{-\beta n \hbar \omega}\right)^{N}=e^{-\frac{\beta \hbar \omega N}{2}}\left[\frac{1}{1-e^{-\beta \hbar \omega}}\right]^{N} \\
& \langle E\rangle=\frac{\hbar \omega N}{2}+N \frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \\
& \begin{array}{l}
\text { zero point } \\
\text { term no effect } \\
\text { on entropy }
\end{array}
\end{aligned}
$$ term.

- Indistinguishable cases: we grouped $1 / N$! factor with $Z_{\text {trans }}$ last time.
- Equivalent to " $3 N+q-1$ " counting method for fixed $-U$ case, large- N limit.
- Here, easy to extend to a distribution of different oscillator frequencies.

$$
\frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \equiv \hbar \omega\langle\langle n\rangle
$$

$\langle n\rangle=$ Bose-Einstein occupation number (photon statistics) we saw before, derived using S \& U to find T.

Harmonic oscillator systems (N independent 1D oscillators)

Quantum version

$$
Z_{v i b r}=\prod_{i} Z_{i}=\left(e^{-\frac{\beta \hbar \omega}{2}} \sum_{n=0}^{\infty} e^{-\beta n \hbar \omega}\right)^{N}=e^{-\frac{\beta \hbar \omega N}{2}}\left[\frac{1}{1-e^{-\beta \hbar \omega}}\right]^{N}
$$

$$
\langle E\rangle=\frac{\hbar \omega N}{2}+N \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

$$
\frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \equiv \hbar \omega\langle n\rangle
$$

Einstein Ann Phys 1907 [for solids; $3 N$ identical oscillators. Specific heat of diamond fit to $\omega=1310 \mathrm{~K}$.]

Harmonic oscillator systems (N independent 1D oscillators)

Quantum version

$$
Z_{v i b r}=\prod_{i} Z_{i}=\left(e^{-\frac{\beta \hbar \omega}{2}} \sum_{n=0}^{\infty} e^{-\beta n \hbar \omega}\right)^{N}=e^{-\frac{\beta \hbar \omega N}{2}}\left[\frac{1}{1-e^{-\beta \hbar \omega}}\right]^{N}
$$

Debye model: T^{3} behavior at low T agrees well with data.

$$
\begin{aligned}
& \langle E\rangle=\frac{\hbar \omega N}{2}+N \frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \\
& \frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \equiv \hbar \omega\langle n\rangle
\end{aligned}
$$

\ll assumes a specific distribution of vibrational frequencies (normal modes).

Phonons: quantized lattice vibrations in crystals.

- Liquids and non-crystal solids: have similar modes.
- Einstein: independent 3D oscillators, same ω_{0}.
- Debye: Phonons are normal modes in a connected harmonic lattice.
- Debye-theory solutions identical to sound waves, $\omega=k c$ (exact in lowfrequency limit); also map onto blackbody-radiation photons.

Phonons: quantized lattice vibrations in crystals.

- Liquids and non-crystal solids: have similar modes.
- Einstein: independent 3D oscillators, same ω_{0}.
- Debye: Phonons are normal modes in a connected harmonic lattice.
- Debye-theory solutions identical to sound waves, $\omega=k c$ (exact in lowfrequency limit); also map onto blackbody-radiation photons.
- Except: mode counting
requires finite number of phonon
modes, and 3 polarizations, not 2 modes, and 3 polarizations, not 2 .

Photons vs. Phonons:

Photons:

- Cavity modes
- 2 polarizations
- $\omega=k c$.
- Extend to $\omega \rightarrow \infty$.
- $e^{-i \vec{k} \cdot \vec{r}-\omega t}$ free space solution
- Bose statistics $(\mu=0)$.
- Energies quantized, $\hbar \omega\left(n+\frac{1}{2}\right)$.
- Speed of light: c.

Phonons:

- elastic (standing) waves
- 3 polarizations
- $\omega \cong k c$, exact for low k
- Bounded: \boldsymbol{N} values of \boldsymbol{k}.
- $e^{-i \vec{k} \cdot \vec{r}-\omega t}[\operatorname{or} \sin (\vec{k} \cdot \vec{r}) \sin (\omega t)]$
- Bose statistics $(\mu=0)$.
- Energies quantized, $\hbar \omega\left(n+\frac{1}{2}\right)$.
- Speed of sound: c

Phonons \& mode counting:

1) General elastic solid (isotropic case):
wave equation

$$
\ddot{\mathbf{u}}=\underbrace{\alpha^{2} \nabla(\nabla \cdot \mathbf{u})}_{P \text { wave }}-\underbrace{\beta^{2} \nabla \times(\nabla \times \mathbf{u})}_{S \text { wave }}
$$

has wave solutions, $\omega=k c$. (actually may have 2 or more frequencies)
2) Quantization of energies: won't show this; result is analogous to familiar SHO solution in quantum mechanics,

$$
E=\hbar \omega\left(n+\frac{1}{2}\right)
$$

3) Wave-vector cutoff: maximum wavenumber ~ frequency in THz range

$N k$-vectors in 1D, leads to a cutoff for phonon wavenumber.
$3 N$ total phonon modes in general 3D crystal.

State counting: I showed this slide before for photons.

- Start with cavity modes in a box with perfectly conducting sides, dimensions L.

Octant of sphere; $E_{x} \propto \cos \left(n_{x} \frac{\pi}{L} x\right) \sin \left(n_{y} \frac{\pi}{L} y\right) \sin \left(n_{z} \frac{\pi}{L} z\right)$ etc. but with $8 \times$ state density. (3D sphere radius will go to infinity) One k-vector per volume element; same as "Phase space volume" $h^{3} / 8$

Consider continuum limit (large cavity, very small Δk) Also recall $\omega=k c$

$$
\Delta k=\frac{\pi}{L}->V_{k}=\left(\frac{\pi}{L}\right)^{3}
$$

$$
U=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\beta \hbar \omega_{i}}-1\right)} \Rightarrow 2 \int_{0}^{\swarrow} \frac{p^{p h o t o n s}}{\frac{\pi}{2}} \underbrace{\left(e^{\beta \hbar k c}-1\right)}_{\begin{array}{c}
\# \text { modes in thin } \\
\text { shell, thickness } d k=d \omega \\
\pi^{3}
\end{array}} \quad \begin{array}{l}
\hbar k c
\end{array} \begin{array}{l}
\text { (similar to number } \\
\text { space for Einstein } \\
\text { summation, ch. 15) }
\end{array})
$$

Density of states: for summations involving only ω (or E).

Example for energy sum:

$$
U=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\beta \hbar \omega_{i}}-1\right)} \Rightarrow 2 \int_{0}^{\infty} \underbrace{\frac{\pi}{2} \frac{V k^{2} d k}{\pi^{3}}}_{\begin{array}{c}
\text { \# modes in thin } \\
\text { shell, thickness } d k=d \omega / c
\end{array}} \frac{\hbar k c}{\left(e^{\beta \hbar k c}-1\right)}
$$

$$
\begin{gathered}
U=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\left.\beta \hbar \omega_{i}-1\right)} \Rightarrow 2\right.} \int_{0}^{\infty} d \omega \times\binom{\text { \#hotons }}{\text { in }(\omega, \omega+d \omega)} \times \frac{\hbar \omega}{\left(e^{\beta \hbar \omega}-1\right)} \\
\equiv \int_{0}^{\infty} \frac{\hbar \omega D(\omega) d \omega}{\left(e^{\beta \hbar \omega}-1\right)}
\end{gathered}
$$

$\Delta k=\frac{\pi}{L}->V_{k}=\left(\frac{\pi}{L}\right)^{3}$ for octant;
$=\left(\frac{2 \pi}{L}\right)^{3}$ for complete sphere traveling-waves

