
Exam:   You can make up some points:   
1. Choose 2 problems; blank exam is posted.
2. Work out the solutions from scratch on your own.
3. Turn in the problems by Thursday in class or Friday 

afternoon 3:30-4 PM; I will arrange be at my office or 
you can email if necessary. Not in my mailbox

4. You will get 60% of the made-up points back. 

Homework: Problem set 8 due Tomorrow.  I am looking for 
volunteers for problems 1 and 2 for Thursday presentation.

Reading:  This week we continue with chapter 16 (continuum 
systems densities of states; Debye model for vibrations). Next 
up, phase transformations (chapters 8-9).

Notes:
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Last time:  Z as a product for 
independent sub-systems, e.g.:



Equipartition theorem

𝐸 = 𝑐𝑞&

• Classical systems  (continuum not discrete energies)
• Works in cases having separable variables.
• Requires energy quadratic in position and/or momentum:

or:

Result:

(1/2)kT for each “degree of freedom” f.
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𝑍% systems of indistinguishable
particles, still non-interacting case.
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Vibrational term in product-form partition function, Z:
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N independent oscillators
(Einstein solid approximation, 
ideal gas molecules, etc.) all 
with same 𝜔 = 𝜅/𝑚 = “𝜔!”

• Classical systems  (continuum not discrete energies)
• Works in cases having separable variables.
• Requires energy quadratic in position and/or momentum (or 

other coordinate)
• Vibrations, rotations, translational states. Rotational case in 

text, won’t show here.

Equipartition theorem:
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effectively  f = 2

Harmonic oscillator systems (N independent 1D oscillators)
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Quantum version / general case:
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Harmonic oscillator systems (N independent 1D oscillators)

classical-limit solution



Harmonic oscillator systems (N independent 1D oscillators)

Quantum vibrational partition function
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𝑛 = Bose-Einstein occupation 
number (photon statistics) we 
saw before, derived using S & 
U to find T.

• Z shown with zero point motion 
term.

• Indistinguishable cases: we grouped 
1/𝑁! factor with Ztrans last time.

• Equivalent to “3N + q – 1” counting 
method for fixed-U case, large-N
limit.

• Here, easy to extend to a distribution 
of different oscillator frequencies.

zero point 
term no effect 
on entropy



Harmonic oscillator systems (N independent 1D oscillators)

Quantum version
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Einstein Ann Phys 1907  [for solids; 
3N identical oscillators. Specific 
heat of diamond fit to 𝜔 = 1310 K.]
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Harmonic oscillator systems (N independent 1D oscillators)

Quantum version
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Debye model:  T3 behavior at low 
T agrees well with data.

<< assumes a specific distribution of 
vibrational frequencies (normal modes).



Phonons:     quantized lattice vibrations in crystals.

• Liquids and non-crystal solids: have similar modes.

• Einstein:   independent 3D oscillators, same ωo.

• Debye:  Phonons are normal modes in a connected harmonic lattice.

• Debye-theory solutions identical to sound waves , 𝜔 = 𝑘𝑐 (exact in low-
frequency limit); also map onto blackbody-radiation photons.



Phonons:     quantized lattice vibrations in crystals.

• Liquids and non-crystal solids: have similar modes.

• Einstein:   independent 3D oscillators, same ωo.

• Debye:  Phonons are normal modes in a connected harmonic lattice.

• Debye-theory solutions identical to sound waves , 𝜔 = 𝑘𝑐 (exact in low-
frequency limit); also map onto blackbody-radiation photons.

• Except:  mode counting
requires finite number of phonon 
modes, and 3 polarizations, not 2.

Photons 
(blackbody 
radiation)



Photons vs. Phonons:

Photons:
• Cavity modes
• 2 polarizations
• 𝜔 = 𝑘𝑐.
• Extend to 𝜔 → ∞.
• 𝑒)%:;/⃗)9" free space solution
• Bose statistics (𝜇 = 0).
• Energies quantized, ℏ𝜔(𝑛 + =

&
).

• Speed of light:  c. 

Phonons:
• elastic (standing) waves
• 3 polarizations
• 𝝎 ≅ 𝒌𝒄, 𝐞𝐱𝐚𝐜𝐭 𝐟𝐨𝐫 𝐥𝐨𝐰 𝒌
• Bounded:  N values of k.
• 𝑒)%:;/⃗)9" [or sin 𝑘 \ 𝑟 sin(𝜔𝑡)]
• Bose statistics (𝜇 = 0).
• Energies quantized, ℏ𝜔(𝑛 + =

&
).

• Speed of sound:  c



Phonons & mode counting:

N k-vectors in 1D, leads to a 
cutoff for phonon wavenumber.

3N total phonon modes in 
general 3D crystal.

3) Wave-vector cutoff: 
maximum wavenumber ~ 
frequency in THz range1)  General elastic solid (isotropic case):  

wave equation

has wave solutions, 𝜔 = 𝑘𝑐.
(actually may have 2 or more frequencies)

2)  Quantization of energies:  won’t 
show this; result is analogous to familiar 
SHO solution in quantum mechanics, 

𝐸 = ℏ𝜔(𝑛 + (
)
).



State counting: I showed this slide before for photons.

• Start with cavity modes in a box with perfectly conducting 
sides, dimensions L.  

𝐸> ∝ 𝑐𝑜𝑠 𝑛>
?
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Δ𝑘 = ?
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'

Octant of sphere;
but with 8× state density.
(3D sphere radius will go to infinity)

Cavity mode
Counting: one 
TM + one TE 
per k-vector

E-field

Consider continuum limit (large cavity, very small ∆k)
Also recall 𝜔 = 𝑘c
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# modes in thin
shell, thickness 𝑑𝑘 = 𝑑𝜔/𝑐

One k-vector per volume element;
same as “Phase space volume” h3/8

Mode counting 
directly in k-space
(similar to number 
space for Einstein 
summation, ch. 15)
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Density of states: for summations involving only 𝜔 (or E).
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for complete sphere traveling-waves
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Example for energy sum:
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