Notes:

Exam:

- Average was 46.
- You can make up some points:

1. Choose 2 problems. I will post the blank exam.
2. Work out the solutions from scratch on your own.
3. Turn in the problems by Thursday in class or Friday afternoon (Tentatively 3 PM, I will arrange to be at my office). Not in my mailbox. Full details to come.
4. You will get 60% of the made-up points back.
5. You can look for a few minutes at the exam now but not take it with you.

Homework: Note problem set due Thursday.

Canonical ensemble Recall:

$\underset{\text { function }}{\text { Partition }} Z=\sum_{\text {states } i} \operatorname{Exp}\left[-E_{i} / k T\right] \quad F \equiv-k_{B} T \ln Z$

$$
\begin{aligned}
& d F=-S d T-P d V+\mu N \\
& S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \quad \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V} \\
& S=k_{B} \ln Z+k_{B} T \frac{\partial}{\partial T} \ln Z \\
& \langle E\rangle=k_{B} T^{2} \frac{\partial}{\partial T} \ln Z
\end{aligned}
$$

More on entropy:

$$
F \equiv-k_{B} T \ln Z
$$

- Free energy can treat as defined quantity.
$F \equiv-k_{B} T \ln Z \quad \bullet F$ is a conserved quantity, doesn't fluctuate.
- Equivalent to thermodynamic F, we will see.

Then: $\quad S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad(d F=-S d T-P d V+\mu N)$

From here can show:

$$
S=-k_{B} \sum_{j} P_{j} \ln \left(P_{j}\right)
$$

Gibbs version of entropy, vs. Boltzmann version appropriate for Microcanonical: $S=k_{B} \ln (\Omega)$
Note this form of entropy is in chapter 17. Figures prominently in information theory.

spin-1/2 non-interacting paramagnet

$$
\mathrm{E}= \pm \mu B \text { per atom }->E=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right)
$$

N distinguishable atoms
$\frac{P^{-}}{P^{+}}=e^{-{ }^{2 \mu B} / k T}$

Also from last time:
Z as product of individual components.
Advantageous solution method.

$$
\begin{gathered}
Z_{i}=e^{+{ }^{\mu B} / k T+e^{-\mu B} / k T} \quad \begin{array}{c}
\text { (paramagnet } \\
\\
=2 \cosh ^{\mu B} / k T=2 \cosh \beta \mu B \\
Z=\prod_{i} Z_{i} ; \underline{\text { includes all cross terms } .}
\end{array} .
\end{gathered}
$$

Works in general if:

- Energies add (classical separation of variables; quantum states as simple product wavefunction);
- Occupation probabilities independent of each other.

Equipartition theorem

- Classical systems (continuum not discrete energies)
- Works in cases having separable variables.
- Requires energy quadratic in position and/or momentum:

$$
\left.E=c q^{2} \quad \text { Text notation (means variables } q \text { and } p\right)
$$

Result: for any energy of this general form, easy to show,

$$
U=\frac{f}{2} k T
$$

from canonical partition function, (1/2) kT obtained for each "degree of freedom" f.
$Z=\frac{1}{h^{3 N}} \iiint d^{3 N} r d^{3 N} p e^{-\beta E}, \quad Z=\prod_{i} Z_{i} ;$ includes all cross terms.
Classical partition function systems of distinguishable particles, non-interacting.

Equipartition theorem

- Classical systems (continuum not discrete energies)
- Works in cases having separable variables.
- Requires energy quadratic in position and/or momentum: $E=c q^{2}$

$$
\text { Result: } \quad U=\frac{f}{2} k T
$$

$(1 / 2) k T$ for each "degree of freedom" f.
$Z=\frac{1}{h^{3 N}} \iiint d^{3 N} r d^{3 N} p e^{-\beta E}, \quad Z=\prod_{i} Z_{i} ; \underline{\text { includes all cross terms }}$.
Classical partition function
systems of distinguishable particles, non-interacting.

Equipartition theorem

- Classical systems (continuum not discrete energies)
- Works in cases having separable variables.
- Requires energy quadratic in position and/or momentum: $E=c q^{2}$

$$
\text { Result: } \quad U=\frac{f}{2} k T
$$

$(1 / 2) k T$ for each "degree of freedom" f.
$Z=\frac{1}{h^{3 N}} \iiint d^{3 N} r d^{3 N} p e^{-\beta E}, \quad Z=\prod_{i} Z_{i} ; \underline{\text { includes all cross terms }}$.
Classical partition function systems of distinguishable particles, non-interacting.

$$
Z=\frac{1}{N!} \prod_{i} Z_{i} \quad \begin{aligned}
& \text { systems of indistinguishable } \\
& \text { particles, still non-interacting case }
\end{aligned}
$$

Harmonic oscillator systems

- Classical systems:

$$
U_{i}=\frac{{\overrightarrow{p_{u}}}^{2}}{2 m}+\frac{\kappa \vec{u}^{2}}{2} \quad \text { or } \quad U_{i}=\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2} \quad \begin{align*}
& \text { c.m. coordinates } \tag{or}\\
& \text { \& reduced mass }
\end{align*}
$$

Classical partition function

$$
\begin{aligned}
& Z=\underbrace{\frac{1}{N!h^{3 N}} \iiint d^{3 N} r d^{3 N} p e^{-\beta E_{\text {trans }}}}(\underbrace{\left.\frac{1}{h} \iint d p d u e^{-\beta\left(\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2}\right)}\right)})^{N} \\
& \langle E\rangle=\frac{3}{2} N k T \\
& \text { translational } \\
& \text { Internal degrees of freedom } \\
& \text { (rotational more important } \\
& \text { for e.g. } \mathrm{N}_{2} \text { at room temperature } \\
& \text { as we have seen) }
\end{aligned}
$$

Harmonic oscillator systems

- Classical systems:

$$
U_{i}=\frac{{\overrightarrow{p_{u}}}^{2}}{2 m}+\frac{\kappa \vec{u}^{2}}{2} \quad \text { or } \quad U_{i}=\frac{p^{2}}{2 m}+\frac{\kappa u^{2}}{2} \quad \begin{aligned}
& \text { c.m. coordinates } \\
& \text { \& reduced mass }
\end{aligned}
$$

Classical partition function - harmonic-potential terms only:

Equipartition theorem:

- Classical systems (continuum not discrete energies)
- Works in cases having separable variables.
- Requires energy quadratic in position and/or momentum (or other coordinate)
- Vibrations, rotations, translational states. Rotational case in text, won't show here.

