Notes:

Exam: - Friday Oct. 29, 6 PM, Room 205 MPHY.

<u>Coverage</u> through section 6.4. You can make one page formula sheet. 8.5*11 inch, both sides.

Canvas grades & lecture links: sample exams on Canvas now have solutions.

Tomorrow I intend to review; I will accept requests for previous questions from HW etc. to address.

Problem 4 I didn't finish:

So
$$F = U - TS = U_A + C(T - T_A) - CT \ln(T/T_A), T > T_H$$

 $= U_K, T < T_A$
For plotting, note that:
 $F = U_A + C[x - 1 - x \ln x]$
 $d_x = C(1 - \ln x - 1)$
 $G = C(1 - \ln x - 1)$
 $U_A + C(2T_A - T_A) - C(2T_B) \ln 2 = U_B$
 $S = U_B = C_A T_A (2 \ln 2 - 1)$
(d) Normally for transformations at constant P,
the enthalpy is $(\Omega u - Wak) = \Omega Q$ but
here with $V = constant$, ΔH is just ΔU .
 $f = U_B + C(2T_B - T_A) - U_B = U_B$
 $f = C_A T_A (2 \ln 2 - 1)$

a)
$$S = \left(\frac{R^2}{v_0\theta}\right)^{1/3} (NVU)^{1/3}$$

b)
$$S = \left(\frac{R}{\theta^2}\right)^{1/3} \left(\frac{NU}{V}\right)^{2/3}$$

c)
$$S = \left(\frac{R}{\theta}\right)^{1/2} \left(NU + \frac{R\theta V^2}{v_0^2}\right)^{1/2}$$

d)
$$S = \left(\frac{R^2\theta}{v_0^3}\right) V^3/NU$$

e)
$$S = \left(\frac{R^3}{v_0\theta^2}\right)^{1/5} [N^2VU^2]^{1/5}$$

Which of these is not physically reasonable? (Callen chapter 1)

Find equations of state?

Find Cv?

P vs V for isostatic isotherm?

 ΔS for free expansion?

Problem set 4 note how the equations of state derived:

Given by the equation:

$$S = \sum_J N_J s_{J0} + (\sum_J N_J c_J) R ln rac{T}{T_0} + \sum_J N_J R ln \left(rac{V}{N_J v_0}
ight)$$
 $U = (\sum_J N_J c_J) R T$

Because the mixture is a two-component mixture of simple ideal gases. the four equation of state is :

3) Given a system that exhibits the equations of state $P = A s^3/v^2$, and $T = 3A s^2/v$,

a) Determine α , c_V , c_P , κ_T , and κ_S .

b) Show that
$$c_P = c_V + \frac{T \nu \alpha^2}{\kappa_T}$$

c) Show that $\kappa_T = \kappa_S + \frac{T \nu \alpha^2}{c_P}$.

Find fundamental equation? Does F increase or decrease vs T? Einstein oscillator problem:

binomial with q quanta, 3Noscillators:

$$\Omega = \frac{(3N+q-1)!}{(q)!(3N-1)!}$$

N atoms

Find,
$$S = k_B \left[3N \ln \left(1 + \frac{q}{3N} \right) + q \ln \left(1 + \frac{3N}{q} \right) \right]$$

 $U/\hbar\omega_o$

$$\frac{1}{T} = \frac{k_B}{\hbar\omega_o} \ln\left(1 + \frac{3N}{q}\right)$$

$$U = \frac{3N\hbar\omega_o}{e^{\hbar\omega_o/k_BT} - 1}$$

• Sketch S vs U?

• Place two isolated equal-*N* solids with different ω_o in thermal contact; one has U = 0. What is final situation in low-*T* and high-*T* limit?

Results:

$$U = \sum_{all \ modes} \frac{\hbar\omega_i}{(e^{\beta\hbar\omega_i} - 1)} \Longrightarrow 2 \int_0^\infty \frac{\pi}{2} \frac{Vk^2 dk}{\pi^3} \frac{\hbar kc}{(e^{\beta\hbar kc} - 1)}$$

Continuum limit in cavity,

$$U = \frac{V\pi^2 (kT)^4}{15(\hbar c)^3}$$

 $\leftarrow \frac{v}{v}$ independent of cavity details, recovers thermodynamic result showed last time.

Infinite number of "oscillators" but finite result due to exponential. result closely related to Stefan-Boltzmann intensity law.

Identify # photons in a given mode above?
Can we find pressure and entropy from what is given above?
If P_s is total power from sun to earth, what is *rate of entropy increase* due to radiation in/out of earth? Blackbody radiation, thermodynamic solution

- Experimental quantities: $U = bVT^4$ P = U/(3V) $I = \sigma T^4$ Stefan-Boltzmann intensity relation
- Then can easily solve for $S = \frac{4}{3}b^{1/4}U^{3/4}V^{1/4}$, using methods we have seen. $S \cong 3.6\langle N \rangle k_B$
- Also note, $S = \frac{4U}{3T}$ simpler form.
- Note *N* is formally zero (or can treat *N* as number of photons; $\mu = 0$ since *U* independent of *N*).

also note, $PV \approx NkT$

"independent of T"

- For this cycle, if the work per cycle equals the heat expelled per cycle, what is the efficiency?
- Could this cycle be run as a reversible cycle? How?
- Suppose an ideal gas is the working fluid. How would a cycle be configured (in a P-V plot) to have the same work output per cycle, but maximum efficiency?

• For the ideal gas case, identify the parts of the path with heat flow into the gas, and out of the gas. (Think of constructing adiabatic PV curves for comparison.)

- 1 and 2 are two different states occurring for the same material, and g is the per-mole Gibbs free energy. Under what external conditions will the crossing point correspond to a phase transition?
- Which phase has the larger entropy per mole?
- Why are the shapes of the two curves shown (they are straight lines) not reasonable?

