
Exam:  - Friday Oct. 29, 6 PM, Room 205 MPHY.
- Coverage through section 6.4. You can make one page 

formula sheet.  8.5*11 inch, both sides.
Canvas grades & lecture links: sample exams on Canvas now 
have solutions.
Tomorrow I intend to review; I will accept requests for previous 
questions from HW etc. to address. 

Notes:



Recall, Canonical 
Ensemble (ch. 16):

T2, V2, N2

T1 = constant

Q= −𝚫𝑼

𝑃!
𝑃"

= 𝑒 #!(!)&#!(") /(" = 𝑒&)*/("

System at constant T, in equilibrium with 
reservoir

At equilibrium, 2 sides can exchange 
small amounts of energy.
Consider 2 specific microstates in 
system 2:

𝑃+ =
1
𝑍
𝑒&*#/(,

Probability of finding system in state i
in equilibrium (one microstate)

𝑍 = #
!"#"$! %

𝐸𝑥𝑝 −𝐸%/𝑘𝑇

Partition function

Ratio of 
multiplicities



E = ±𝜇B per atom ->  𝐸 = 𝜇𝐵 𝑁& − 𝑁- = 𝜇𝐵 2𝑁& − 𝑁

Example:  spin-1/2 non-interacting paramagnet
(revisit in canonical ensemble):

𝑁&

𝑁- = 𝑒& ./0"
(,

𝑍+ = 𝑒- .$"
%&+𝑒& .$"

%&

= 2 cosh 2𝜇𝐵
𝑘𝑇 = 2 cosh 𝛽𝜇𝐵

This is Z for system = one 
atom contacting the rest of 
the paramagnetic spins at 
temperature T.

•  We derived this in 
thermodynamic limit (I 
displayed same formula 
before; microcanonical 
case).
•  For constant-T situation 
this is replaced by 
probabilities.



Also showed:

•  Energy averaging

• can show, energy fluctuations vanish in thermodynamic limit.

𝐸+ → 𝐸 = “𝑈” = −
𝜕
𝜕𝛽

𝑙𝑛𝑍

• average E equivalent to internal energy U in thermodynamic limit

▻ Works for small or large system; contact with infinitely large 
reservoir maintains the temperature.

▻ Results for canonical ensemble approach those for 
microcanonical in large-N limit.

▻ However internal energy itself is not a conserved quantity.

𝛽 =
1
𝑘𝑇

= 𝑘𝑇&
𝜕
𝜕𝑇

𝑙𝑛𝑍



E = ±𝜇B per atom ->  𝐸 = 𝜇𝐵 𝑁& − 𝑁- = 𝜇𝐵 2𝑁& − 𝑁

spin-1/2 non-interacting paramagnet
(revisit in canonical ensemble):

𝑃&

𝑃-
= 𝑒& ./0"

(,

𝑍+ = 𝑒- .$"
%&+𝑒& .$"

%&

= 2 cosh 2𝜇𝐵
𝑘𝑇 = 2 cosh 𝛽𝜇𝐵

𝑍 = ∏+ 𝑍+;  includes all cross terms.

system of distinguishable particles, 
non-interacting.



E = ±𝜇B per atom ->  𝐸 = 𝜇𝐵 𝑁& − 𝑁- = 𝜇𝐵 2𝑁& − 𝑁

spin-1/2 non-interacting paramagnet

𝐸 = −𝜇𝐵𝑁𝑡𝑎𝑛ℎ(𝜇𝐵/𝑘𝑇)

𝐶 =
𝜕 𝐸
𝜕𝑇

= 𝑁𝑘"
2𝜇𝐵/𝑘𝑇 /

𝑒0"/(, + 𝑒&0"/(, /

solving:
C

E

𝑍+ = 𝑒- .$"
%&+𝑒& .$"

%&

= 2 cosh 2𝜇𝐵
𝑘𝑇 = 2 cosh 𝛽𝜇𝐵

𝑍 = ∏+ 𝑍+;  includes all cross terms.

average values for the entire system (not 
fixed as in microcanonical ensemble).

𝑃&

𝑃-
= 𝑒& ./0"

(,



E = ±𝜇B per atom ->  𝑈 = 𝜇𝐵 𝑁& − 𝑁- = 𝜇𝐵 2𝑁& − 𝑁

spin-1/2 non-interacting paramagnet

𝑆 = 𝑘'𝑙𝑛
𝑁 !

𝑁( ! 𝑁) !

S/k

T

Boltzmann distribution

solving: C

E

𝑃&

𝑃-
= 𝑒& ./0"

(,

Microcanonical 
version

𝐸 = −𝜇𝐵𝑁𝑡𝑎𝑛ℎ(𝜇𝐵/𝑘𝑇)

𝐶 =
𝜕 𝐸
𝜕𝑇

= 𝑁𝑘"
2𝜇𝐵/𝑘𝑇 /

𝑒0"/(, + 𝑒&0"/(, /



Canonical ensemble defined quantities:

• Free energy can treat as defined quantity.
• F is a conserved quantity, doesn’t fluctuate.
• Equivalent to thermodynamic F, we will see.

𝐹 ≡ −𝑘3𝑇𝑙𝑛𝑍

Then other quantities follow as before:

𝑆 = −
𝜕𝐹
𝜕𝑇 *,,

(𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑁)

𝑃 = −
𝜕𝐹
𝜕𝑉 -,,

𝜇 =
𝜕𝐹
𝜕𝑁 -,*



Canonical ensemble defined quantities:

𝐹 ≡ −𝑘3𝑇𝑙𝑛𝑍

Then other quantities follow as before:

𝑆 = −
𝜕𝐹
𝜕𝑇 *,,

(𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑁)

𝑃 = −
𝜕𝐹
𝜕𝑉 -,,

𝜇 =
𝜕𝐹
𝜕𝑁 -,*

𝑆 = 𝑘3𝑙𝑛𝑍 + 𝑘3𝑇
𝜕
𝜕𝑇 𝑙𝑛𝑍

𝑃 = 𝑘3𝑇
𝜕
𝜕𝑉 𝑙𝑛𝑍

𝜇 = ⋯
𝑍 = 𝑍(𝑇, 𝑉, 𝑁)

• Free energy can treat as defined quantity.
• F is a conserved quantity, doesn’t fluctuate.
• Equivalent to thermodynamic F, we will see.



Canonical ensemble defined quantities:

𝐹 ≡ −𝑘3𝑇𝑙𝑛𝑍

Then other quantities follow as before:

𝑆 = −
𝜕𝐹
𝜕𝑇 *,,

(𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑁)

𝑃 = −
𝜕𝐹
𝜕𝑉 -,,

𝜇 =
𝜕𝐹
𝜕𝑁 -,*

𝑆 = 𝑘3𝑙𝑛𝑍 + 𝑘3𝑇
𝜕
𝜕𝑇 𝑙𝑛𝑍

𝐹 + 𝑇𝑆 = 𝑘3𝑇:
;
;<
𝑙𝑛𝑍 = 𝐸

• Free energy can treat as defined quantity.
• F is a conserved quantity, doesn’t fluctuate.
• Equivalent to thermodynamic F, we will see.



E = ±𝜇B per atom ->  𝐸 = 𝜇𝐵 𝑁& − 𝑁- = 𝜇𝐵 2𝑁& − 𝑁

spin-1/2 non-interacting paramagnet

𝑁&

𝑁- = 𝑒& ./0"
(,

𝐸 = −𝜇𝐵𝑁𝑡𝑎𝑛ℎ(𝜇𝐵/𝑘𝑇)
solving:

𝑍+ = 𝑒- .$"
%&+𝑒& .$"

%& = 2 cosh 𝛽𝜇𝐵

𝑍 = ∏+ 𝑍+;  includes all cross terms.

𝐹 = −𝑁𝑘𝑇𝑙𝑛(2 cosh 𝛽𝜇𝐵)

𝑆 = −
𝜕𝐹
𝜕𝑇 *,,

𝜇 =
𝜕𝐹
𝜕𝑁 -,*



E = ±𝜇B per atom ->  𝐸 = 𝜇𝐵 𝑁& − 𝑁- = 𝜇𝐵 2𝑁& − 𝑁

spin-1/2 non-interacting paramagnet

𝑁&

𝑁- = 𝑒& ./0"
(,

𝐸 = −𝜇𝐵𝑁𝑡𝑎𝑛ℎ(𝜇𝐵/𝑘𝑇)
solving:

𝑍+ = 𝑒- .$"
%&+𝑒& .$"

%& = 2 cosh 𝛽𝜇𝐵

𝑍 = ∏+ 𝑍+;  includes all cross terms.

𝐹 = −𝑁𝑘𝑇𝑙𝑛(2 cosh 𝛽𝜇𝐵)

𝑆 = −
𝜕𝐹
𝜕𝑇 *,,

𝜇 =
𝜕𝐹
𝜕𝑁 -,*

Entropy (S/NkB)



T2, V2, N2

Q= −𝚫𝑼

𝑃!
𝑃"

= 𝑒 #!(!)&#!(") /(" = 𝑒&)*/("

Alternate derivation:

Before, 2 specific microstates in 
system 2. (microstates have S = 0)

𝑓1 =
Ω234 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 ℎ𝑎𝑠 Ej

Ω 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
=
𝑒𝑥𝑝 {𝑇𝑆234(𝑈454 − Ej −𝑈454 }/𝑘𝑇)
𝑒𝑥𝑝 {𝑇𝑆234(𝑈454 + 𝑇𝑆 𝑈454 }/𝑘𝑇)

Alternative:  system 2 in macrostate j with energy Ej
(or perhaps Ej ± ∆E). Probability of j:

True in thermo. limit



T2, V2, N2

Q= −𝚫𝑼

𝑃!
𝑃"

= 𝑒 #!(!)&#!(") /(" = 𝑒&)*/("

Alternate derivation:

Before, 2 specific microstates in 
system 2. (microstates have S = 0)

𝑓1 =
Ω234 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 ℎ𝑎𝑠 Ej

Ω 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
=
𝑒𝑥𝑝 {𝑇𝑆234(𝑈454 − Ej −𝑈454 }/𝑘𝑇)
𝑒𝑥𝑝 {𝑇𝑆234(𝑈454 + 𝑇𝑆 𝑈454 }/𝑘𝑇)

Alternative:  system 2 in macrostate j with energy Ej
(or perhaps Ej ± ∆E). Probability of j:

True in thermo. limit
𝑓= = 𝑒>?𝑒@>Ej

𝐹 = −𝑘3𝑇𝑙𝑛𝑍 ⟺ 𝑍 = 𝑒@>?
Same as our definition, 
with F = U – TS
Probabilities consistent 
with single-state result.



More on entropy:

𝐹 ≡ −𝑘3𝑇𝑙𝑛𝑍

Then: 𝑆 = −
𝜕𝐹
𝜕𝑇 *,,

(𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑁)

𝑆 = 𝑘3𝑙𝑛𝑍 + 𝑘3𝑇
𝜕
𝜕𝑇 𝑙𝑛𝑍

• Free energy can treat as defined quantity.
• F is a conserved quantity, doesn’t fluctuate.
• Equivalent to thermodynamic F, we will see.

From here can show:
𝑆 = −𝑘36

=

𝑃=ln(𝑃=)

Gibbs version of entropy, vs. Boltzmann
version appropriate for Microcanonical: 𝑆 = 𝑘3ln(Ω)


