Notes:

Exam: - Friday Oct. 29, 6 PM, Room 205 MPHY.

- Coverage through section 6.4. You can make one page formula sheet. 8.5*11 inch, both sides.
Canvas grades \& lecture links: sample exams on Canvas now have solutions.
Tomorrow I intend to review; I will accept requests for previous questions from HW etc. to address.

Recall, Canonical

 Ensemble (ch. 16):System at constant \boldsymbol{T}, in equilibrium with reservoir

$$
P_{i}=\frac{1}{Z} e^{-E_{i} / k T}
$$

Probability of finding system in state i in equilibrium (one microstate)

At equilibrium, 2 sides can exchange small amounts of energy.
Consider 2 specific microstates in system 2:

$$
\frac{P_{A}}{P_{B}}=e^{\left[S_{R}(A)-S_{R}(B)\right] / k_{B}}=e^{-\Delta E / k_{B}}
$$

$$
Z=\sum_{\text {states } i} \operatorname{Exp}\left[-E_{i} / k T\right]
$$

Partition function

Example: spin-1/2 non-interacting paramagnet

(revisit in canonical ensemble):

$$
\mathrm{E}= \pm \mu B \text { per atom }->E=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right)
$$

$$
\begin{aligned}
& Z_{i}=e^{+}{ }^{\mu B} / k T+e^{-\mu B} / k T \\
&=2 \cosh ^{\mu B} / k T=2 \cosh \beta \mu B
\end{aligned}
$$

$$
\frac{N^{-}}{N^{+}}=e^{-2 \mu B} / k T
$$

- We derived this in thermodynamic limit (I displayed same formula before; microcanonical case).
- For constant- T situation this is replaced by probabilities.

This is Z for system = one atom contacting the rest of the paramagnetic spins at temperature T.

Also showed:

$$
\beta=\frac{1}{k T}
$$

- Energy averaging

$$
E_{i} \rightarrow\langle E\rangle=" U "=-\frac{\partial}{\partial \beta} \ln Z=k T^{2} \frac{\partial}{\partial T} \ln Z
$$

- average E equivalent to internal energy U in thermodynamic limit
- can show, energy fluctuations vanish in thermodynamic limit.
\triangleright Works for small or large system; contact with infinitely large reservoir maintains the temperature.
\triangleright Results for canonical ensemble approach those for microcanonical in large- N limit.
\triangleright However internal energy itself is not a conserved quantity.

spin-1/2 non-interacting paramagnet

(revisit in canonical ensemble):

$$
\mathrm{E}= \pm \mu B \text { per atom }->E=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right)
$$

$$
\begin{aligned}
Z_{i}= & e^{+^{\mu B} / k T+e^{-\mu B} / k T} \\
& =2 \cosh ^{\mu B} / k T=2 \cosh \beta \mu B
\end{aligned}
$$

$Z=\prod_{i} Z_{i} ;$ includes all cross terms.
system of distinguishable particles, non-interacting.

spin-1/2 non-interacting paramagnet

$$
\mathrm{E}= \pm \mu B \text { per atom }->E=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right)
$$

$$
\begin{aligned}
& Z_{i}=e^{+^{\mu B} / k T+e^{-\mu B} / k T} \\
& =2 \cosh ^{\mu B} / k T=2 \cosh \beta \mu B
\end{aligned}
$$

$Z=\prod_{i} Z_{i} ;$ includes all cross terms.
solving:

$$
\begin{aligned}
& \langle E\rangle=-\mu B N \tanh (\mu B / k T) \\
& C=\frac{\partial\langle E\rangle}{\partial T}=N k_{B} \frac{(2 \mu B / k T)^{2}}{\left(e^{\mu B / k T}+e^{-\mu B / k T}\right)^{2}}
\end{aligned}
$$

average values for the entire system (not fixed as in microcanonical ensemble).

spin-1/2 non-interacting paramagnet

$$
\begin{aligned}
& \mathrm{E}= \pm \mu B \text { per atom }->U=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right)
\end{aligned}
$$

$$
\begin{aligned}
& S=k_{B} \ln \left(\frac{(N)!}{\left(N^{+}\right)!\left(N^{-}\right)!}\right) \underline{\text { Microcanonical }} \\
& \frac{P^{-}}{P^{+}}=e^{-{ }^{2 \mu B} / k T} \quad \text { Boltzmann distribution } \\
& \text { solving: } \\
& \langle E\rangle=-\mu B N \tanh (\mu B / k T) \\
& C=\frac{\partial\langle E\rangle}{\partial T}=N k_{B} \frac{(2 \mu B / k T)^{2}}{\left(e^{\mu B / k T}+e^{-\mu B / k T}\right)^{2}}
\end{aligned}
$$

Canonical ensemble defined quantities:

$$
F \equiv-k_{B} T \ln Z
$$

- Free energy can treat as defined quantity.
- F is a conserved quantity, doesn't fluctuate.
- Equivalent to thermodynamic F, we will see.

Then other quantities follow as before: $\quad(d F=-S d T-P d V+\mu N)$

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \quad \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}
$$

Canonical ensemble defined quantities:

$$
F \equiv-k_{B} T \ln Z
$$

- Free energy can treat as defined quantity.
- F is a conserved quantity, doesn't fluctuate.
- Equivalent to thermodynamic F, we will see.

Then other quantities follow as before: $\quad(d F=-S d T-P d V+\mu N)$

$$
\begin{gathered}
S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \quad \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V} \\
\longrightarrow S=k_{B} \ln Z+k_{B} T \frac{\partial}{\partial T} \ln Z \\
P=k_{B} T \frac{\partial}{\partial V} \ln Z \quad \begin{array}{c}
Z=Z(T, V, N)
\end{array}
\end{gathered}
$$

$$
\mu=\cdots
$$

Canonical ensemble defined quantities:

$$
F \equiv-k_{B} T \ln Z
$$

- Free energy can treat as defined quantity.
- F is a conserved quantity, doesn't fluctuate.
- Equivalent to thermodynamic F, we will see.

Then other quantities follow as before: $\quad(d F=-S d T-P d V+\mu N)$

$$
\begin{gathered}
S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \quad \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V} \\
S=k_{B} \ln Z+k_{B} T \frac{\partial}{\partial T} \ln Z \\
\longleftrightarrow \\
\longleftrightarrow F+T S=k_{B} T^{2} \frac{\partial}{\partial T} \ln Z=\langle E\rangle
\end{gathered}
$$

spin-1/2 non-interacting paramagnet

$$
\begin{aligned}
& \mathrm{E}= \pm \mu B \text { per atom }->E=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right) \\
& \phi \Phi \hat{\Phi} \hat{\Phi} \Phi \phi \hat{\Phi} \\
& Z_{i}=e^{+{ }^{\mu B} / k T+e^{-\mu B} / k T}=2 \cosh \beta \mu B \\
& \frac{N^{-}}{N^{+}}=e^{-2 \mu B} / k T \\
& Z=\prod_{i} Z_{i} ; \underline{\text { includes all cross terms. }}
\end{aligned}
$$

solving:

$$
\begin{aligned}
& \langle E\rangle=-\mu B N \tanh (\mu B / k T) \\
& F=-N k T \ln (2 \cosh \beta \mu B) \\
& \quad S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad \mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}
\end{aligned}
$$

spin-1/2 non-interacting paramagnet

$$
\begin{aligned}
& \mathrm{E}= \pm \mu B \text { per atom } \rightarrow E=\mu B\left(N^{-}-N^{+}\right)=\mu B\left(2 N^{-}-N\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z_{i}=e^{+\mu B / k T+e^{-\mu B} / k T}=2 \cosh \beta \mu B \\
& \frac{N^{-}}{N^{+}}=e^{-2 \mu B} / k T \\
& Z=\prod_{i} Z_{i} ; \text { includes all cross terms. } \\
& \text { Plot [Log [2 * Cosh [1/x]] - Tanh [1/x]/x, \{x, 0, 10\}, PlotRange -> All] }
\end{aligned}
$$

Alternate derivation:

Before, 2 specific microstates in system 2. (microstates have $S=0$)

$$
\frac{P_{A}}{P_{B}}=e^{\left[S_{R}(A)-S_{R}(B)\right] / k_{B}}=e^{-\Delta E / k_{B}}
$$

Alternative: system 2 in macrostate j with energy E_{j} (or perhaps $E_{j} \pm \Delta E$). Probability of j :

$$
f_{j}=\frac{\Omega_{\text {res }}\left(\text { subsystem has } E_{j}\right)}{\Omega(\text { all possible })}=\frac{\exp \left(\left\{T S_{\text {res }}\left(U_{\text {sys }}\right)-\left(E_{j}-U_{s y s}\right)\right\} / k T\right)}{\exp \left(\left\{T S_{\text {res }}\left(U_{s y s}\right)+T S\left(U_{s y s}\right)\right\} / k T\right)}
$$

True in thermo. limit

Alternate derivation:

Before, 2 specific microstates in
system 2. (microstates have $S=0$)

$$
\frac{P_{A}}{P_{B}}=e^{\left[S_{R}(A)-S_{R}(B)\right] / k_{B}}=e^{-\Delta E / k_{B}}
$$

Alternative: system 2 in macrostate j with energy E_{j} (or perhaps $E_{j} \pm \Delta E$). Probability of j :

$$
\begin{gathered}
f_{j}=\frac{\Omega_{r e s}\left(\text { subsystem has } E_{j}\right)}{\Omega(\text { all possible })}=\frac{\exp \left(\left\{T S_{\text {res }}\left(U_{s y s}\right)-\left(E_{j}-U_{s y s}\right)\right\} / k T\right)}{\exp \left(\left\{T S_{r e s}\left(U_{s y s}\right)+T S\left(U_{s y s}\right)\right\} / k T\right)} \\
\longrightarrow f_{j}=e^{\beta F} e^{-\beta E_{j} \quad \text { True in thermo. limit }}
\end{gathered}
$$

Same as our definition, with $F=U-T S$
Probabilities consistent with single-state result.

More on entropy:

$$
F \equiv-k_{B} T \ln Z \quad \bullet F \text { is a conserved quantity, doesn't fluctuate. }
$$

- Free energy can treat as defined quantity.
- Equivalent to thermodynamic F, we will see.

Then: $\quad S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad(d F=-S d T-P d V+\mu N)$

$$
S=k_{B} \ln Z+k_{B} T \frac{\partial}{\partial T} \ln Z
$$

From here can show:

$$
S=-k_{B} \sum_{j} P_{j} \ln \left(P_{j}\right)
$$

Gibbs version of entropy, vs. Boltzmann version appropriate for Microcanonical:

$$
S=k_{B} \ln (\Omega)
$$

