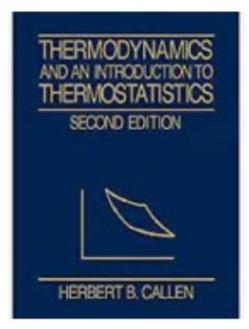
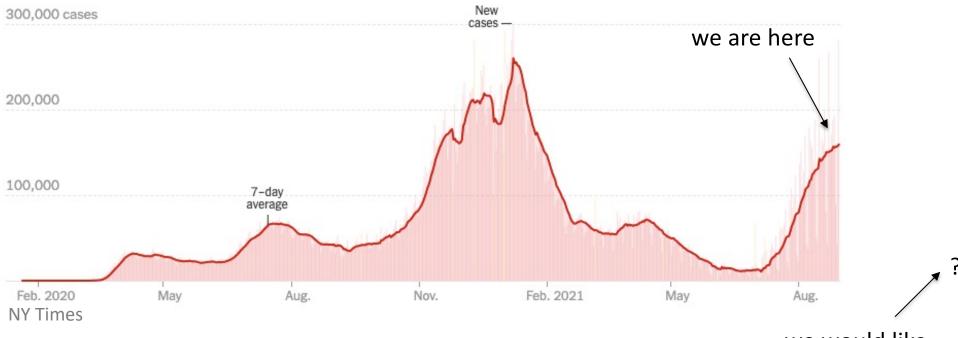
Phys 408: Thermodynamics / Statistical Mechanics

- Course web address: rossgroup.tamu.edu/408page.html Syllabus is now posted there, and I have a few printed copies here. (More information such as slides, HW will be posted on web as we go along.) or try http://people.tamu.edu/~jhross/
- Grading: 1 midterm + 1 final, also Homework. Homework presentations: about 3 each week, extra credit opportunity. I will ask for volunteers after I assign homework/choose problems. More information to come.
- \succ Reading: Ch. 1 this week, to be followed by ch. 15.
- Note about lectures/slides: I sometimes use powerpoint, sometimes just whiteboard. Slides I will post but you should take <u>notes</u>; I don't put everything on slides.
- I will also record lecture for those needing to quarantine or be absent.



<< Callen text

Covid safety:



we would like to make it here

Please do your part, this is a dangerous time for many people.

<u>Thermodynamics</u> : macroscopic thermal physics

First part of text: ch. 1 to read first

Statistical mechanics : microscopic, "atoms up"

properties.

Starting with ch. 15, coming next

>> Here we deal with with collections or "ensembles" of particles or objects.

<u>Thermodynamics</u> : macroscopic thermal physics

Entropy (S), $dS = \frac{\delta Q}{T}$, heat flow vs. temperature: Clausius, Carnot mid 1800's.

Statistical mechanics : microscopic, "atoms up"

properties, but applied in statistical way. Boltzmann: $S = k_B \ln \Omega$; $\Omega = countable number of states$ to be explored by particles in system.

>> Here we deal with with collections or "ensembles" of particles

or objects.

Some applications:

- Fermi & Bose gases: quantum behavior underlies everyday behavior of metals, nuclei & nuclear matter, neutron stars.
- Quantum information theory, connection to black hole entropy, Hawking radiation etc.
- "Quantum thermodynamics"; entanglement vs. random/statistical behavior of interacting systems.

Quantities and Variables:

Processes

Q = <u>Heat</u>; Spontaneous energy flow into system, not by changing external variables.

W = Work done <u>on system</u>; energy transfer to system via changing external variable.

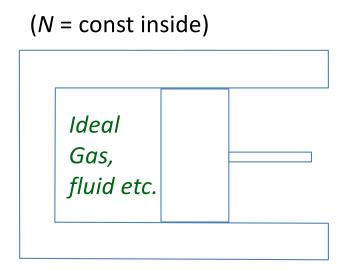
most obvious example: mechanical, e.g. by piston (W = -P dV.) work also includes all energy transfer processes other than heat flow.

Refer to specific processes (change along a <u>specific</u> <u>path</u>) Reversible *or* irreversible.

State function

- *U* = Total internal energy.
 - Total of all energy contained in system
 - Includes Potential + Kinetic energy of thermal motions, electronic or other internal excitations, etc.

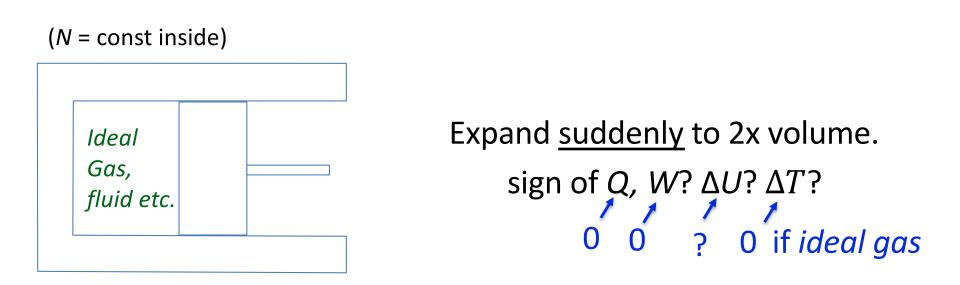
Example



Expand <u>suddenly</u> to 2x volume. sign of Q, W? ΔU ? ΔT ?

Perfectly Insulated cylinder ("<u>Adiabatic Process</u>") Q = 0

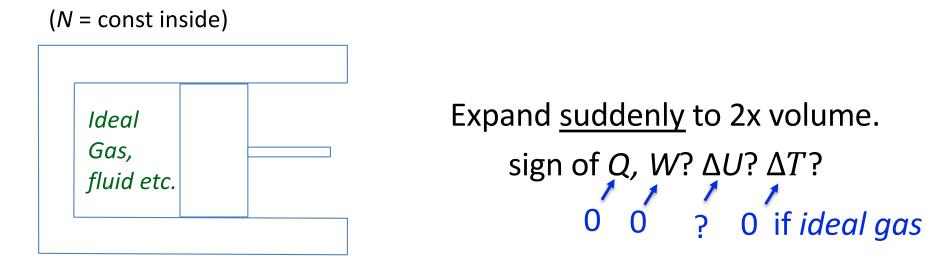
Example



Perfectly Insulated cylinder ("Adiabatic Process") Q = 0

W = Work done <u>on system</u>; energy transfer to system via changing external variable. *W* = – *P dV* only for a <u>controlled</u> <u>process</u>; path dependent energy transfer

$$\Delta U = Q + W$$



Perfectly Insulated cylinder ("Adiabatic Process") Q = 0

W = Work done <u>on system</u>; energy transfer to system via changing external variable. W = – P dV only for a <u>controlled</u> process; path dependent energy transfer

$$\Delta U = Q + W$$

(N = const inside)

Expand suddenly to 2x volume. sign of Q, W? ΔU ? ΔT ? 0 0 ? 0 if ideal gas

Further process: <u>slowly</u> return piston to original position. *Does system return to its original state?*

$$\Delta U = Q + W$$

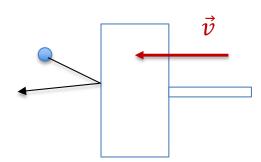
(N = const inside)

Expand suddenly to 2x volume. sign of Q, W? ΔU ? ΔT ? 0 0 ? 0 if ideal gas

Further process: <u>slowly</u> return piston to original position. *Does system return to its original state?*

Uncontrolled process: increases <u>entropy</u> of the system (and we find, *applied heat* does the same thing)

& note microscopic kinetic equivalent of mechanical work



Entropy (S):

- Incorporates the concept of "disorder", although in *energy* states as well as simply physical disorder: This is statistical mechanics physical basis for *S*.
- In thermodynamics, find that dS = dQ/T for a controlled process; heat flow always increases S. But *uncontrolled* processes also increase entropy in absence of heat flow.
- In our example, from these definitions can see that *S* increased, and there is no way to reverse the process!

$$\Delta U = Q + W$$

U = State function; $\Delta U \equiv U_2 - U_1$

• *More specific notation*:

 $dU = d\bar{Q} + d\bar{W}$ < Q & W processes don't act as independent variables

• Generalized work:

e.g. Mechanical work

For controlled process only, $W = -\int P dV$.

alternatives $-\mu_o VHdM$; $-P\Delta E$; ...

also <u>chemical work</u> by change of # particles to define soon. variables define <u>multi-dimensional space</u>

Thermodynamic Variables:

P, V : Pressure (intensive) and Volume (extensive)

Extensive: proportional to system size. e.g. depends on the *physical extent* of system.

Intensive: Independent of system size

- N, H, Mwe have seen.Note text notation: I = MV
total magnetic momentWhich are extensive/intensive?
Multi-component system: N_1, N_2, \dots e.g. $N_2 + O_2$ or nuclear matter
- T = Temperature. (Same as familiar quantity, formal definition to come)
- U = Internal energy.
- *S* = Entropy *Extensive quantity*

Thermodynamic Variables:

P, V : Pressure (intensive) and Volume (extensive)

Extensive: proportional to system size. e.g. depends on the *physical extent* of system.

Intensive: Independent of system size

N, H, Mwe have seen.Note text notation: I = MV
total magnetic momentWhich are extensive/intensive?
Multi-component system: N_1, N_2, \dots e.g. $N_2 + O_2$ or nuclear matter

T = Temperature. (Same as familiar quantity, formal definition to come)

- U = Internal energy.
- *S* = Entropy *Extensive quantity*

Note extensive/intensive pairs are intrinsically coupled:

 $dU = TdS - PdV + \mu dN$

1st law as later defined (ch. 2); maintains proper *size scaling*.

Chapter 1 & Postulates:

Assumptions for now:

• <u>"Very large" system size</u>: System variable assumed to have a specific value (fluctuations we consider later). Huge number of internal variables we can then neglect with regards to macroscopic measured quantities.

• <u>System in equilibrium</u>: Thermodynamic variables unchanging in time. Non-equilibrium thermodynamics beyond this course.

• <u>Quasistatic processes</u>: Idealization, assuming changes in state are sufficiently slow that system proceeds through a series of equilibrium states. Kinetic view: particles disturbed e.g. during piston motion relax completely to thermal average behavior before new particles engage the piston. (but note, adiabatic processes might proceed relatively quickly)

• Also general assumption is made of unbounded available set of *energy excitations*. (Excludes only special cases.) We will see, this means temperature is only a positive quantity.

Postulate 1:

System in equlibrium:

- Postulation that equilibrium state *exists*.
- Equilibrium state is characterized completely by quantities U, V, and the particle numbers N_1 , N_2 ,

Postulate 1:

System in equlibrium:

"ergodic system": will eventually and spontaneously explore all regions of phase space (or all quantum states) accessible to it. [Not true for truly isolated quantum system]

• Postulation that equilibrium state *exists*.

• Equilibrium state is characterized completely by quantities U, V, and the particle numbers N_1 , N_2 ,

3-dimensional variable space needed for 1component thermal system. (But a different set of 3 may also be chosen)

Entropy postulates:

- 2) Entropy (*S*) *exists* as extensive quantity; Among all other initial states reachable from equilibrium state (depending on *U*, *V*, *N*), equilibrium state has <u>Maximum Entropy</u>.
- 3) Entropy is additive for subsystems (separate adjoined regions, or e.g. different particle types), and increases as *U* increases.
- 4) Nernst theorem: S = 0 at T = 0.