Notes:

Homework:

- I will take volunteers for #3, 4, 5 for <u>Thursday</u>.

Chapters 5, 6:

Chapter 5:

- I will cover just 5.1 for now.
- You should also look through section 5.3 and see the tables of relations for thermodynamic potentials.

Chapter 6: - I will cover 6.1 through 6.4.

6.2: <u>Helmholtz potential</u> (Helmholtz free energy) and *T,V,N* situations. (Statistical mechanics: this is Canonical ensemble).
6.3: Enthalpy and *U,P,N* situations. Also I will cover throttling

from this section.

6.4: <u>Gibbs Potential</u> (Gibbs Free energy) and *T,P,N* situations.

Recall, thermodynamic potentials:

Helmholtz free energy: F = U - TSGibbs free energy: G = U - TS + PV (= H - TS) $dF = -SdT - PdV + \mu dN$

Enthalpy: H = U + PV $dH = TdS + VdP + \mu dN$

Equilibrium conditions: minimization for *composite systems*

- F minimum for constant T, V, N conditions F(T, V, N)
- *G* minimum for constant *T*, *P*, *N* conditions G(T, P, N)
- *H* minimum for constant *S*, *P*, *N* conditions H(S, P, N)

Helmholtz free energy defined: F = U - TS. (or, Helmholtz *potential*)

> Alternative form $F = -PV + \mu N$ (from Euler relation)

Differential: $dF = -SdT - PdV + \mu dN$

- F is minimized for constant T, V, N conditions
- ΔF is the *available work at constant T*.

(recall, showed maximum work theorem similarity)

Summary:

or $\sum_i \mu_i dN_i$ as before

Internal energy (or Entropy):

S, V, N

 $dU = TdS - PdV + \mu dN \qquad U(S, V, N)$ Closed system, well-defined energy (or e.g. $U \pm \Delta$):

 $S = k ln \Omega$ maximized

Enthalpy: $H = U + PV$. $H(S, P, N)$ $dH = TdS + VdP + \mu dN$	S, P, N	
Helmholtz free energy: $F = U - TS$. $F(T, V, N)$ $dF = -SdT - PdV + \mu dN$	T, V, N	Canonical ensemble
Gibbs free energy: $G = U - TS + PV$. $G(T, P, N)$ $dG = -SdT + VdP + \mu dN$	T, P, N	isobaric ensemble
Grand Potential: $\Phi = U - TS - \mu N.$ $\Phi(T, V, \mu)$ Grand canonical ensemble: useful for Bose or Fermi statistics	Τ, V, μ	(see section 5.3)

"Microcanonical ensemble"

ΔF is the *available work at constant T*:

Adiabatic,
$$W_{ext} = -\Delta U$$

Contacting thermal bath, $W_{ext} = -\Delta F$

Example: Calculate work for ideal gas case?

Enthalpy: H = U + PV.

Alternative form $H = TS + \mu N$ (from Euler relation)

Differential: $dH = TdS + VdP + \mu dN$

- *H* is minimized for constant *S*, *P*, *N* conditions (showed last time)
- △*H* is the *available heat at constant P & N*, for a given change of conditions.

Example: *Enthalpy of formation* tables, for substances relative to constituent elements (see last section, ch. 6)

Enthalpy: H = U + PV.

Alternative form $H = TS + \mu N$ (from Euler relation)

Differential: $dH = TdS + VdP + \mu dN$

- *H* is minimized for constant *S*, *P*, *N* conditions (showed last time)
- ΔH is the *available heat at constant P & N*, for a given change of conditions. $C_P = \left(\frac{\partial H}{\partial T}\right)_P$

Example: *Enthalpy of formation* tables, for substances relative to constituent elements (see last section, ch. 6)

Gibbs Free energy: G = U - TS + PV.

Alternative form $G = \mu N$ (from Euler relation)

Differential: $dG = SdT + VdP + \mu dN$

• *G* is minimized for constant *T*, *P*, *N* conditions (showed last time)

Gibbs Free energy: G = U - TS + PV.

Alternative form $G = \mu N$ (from Euler relation)

Differential: $dG = SdT + VdP + \mu dN$

• G is minimized for constant T, P, N conditions

Gibbs Free energy: G = U - TS + PV.

Alternative form $G = \mu N$ (from Euler relation)

Differential: $dG = SdT + VdP + \mu dN$

G is minimized for constant T, P, N conditions

Gibbs Free energy vs. Chemical potential: $\mu = G$ per atom.

Multicomponent system: $G = \mu_1 N_1 + \mu_2 N_2 + \cdots$ Enthalpy: H = U + PV. \longrightarrow $C_P = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$ General result

- H simplifies <u>constant-pressure processes</u>
- useful for chemical reactions

Also solved by enthalpy method: Joule-Thomson expansion can show, <u>constant-enthalpy</u> process.

Joule-Thomson process:

Joule-Thomson process:

 $\mu_{JT} = \left(\frac{\partial T}{\partial P}\right)_{H}$ Joule-Thomson coefficient: Temperature change in constant-enthalpy process. $\begin{pmatrix} \frac{\partial T}{\partial P} \end{pmatrix}_{H} \begin{pmatrix} \frac{\partial H}{\partial T} \end{pmatrix}_{P} \begin{pmatrix} \frac{\partial P}{\partial H} \end{pmatrix}_{T} = -1$ $C_{P} \qquad V + T \begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix}_{T} = V - TV\alpha$ h = constant $\mu_{JT} = \frac{V(T\alpha - 1)}{C_P}$ Cooling with P decrease Inversion line 0

P