
Chapter 5:  
- I will cover just 5.1 for now.
- You should also look through section 5.3 and see the tables of 
relations for thermodynamic potentials.
Chapter 6:   - I will cover 6.1 through 6.4.
6.2:  Helmholtz potential (Helmholtz free energy) and T,V,N
situations. (Statistical mechanics:  this is Canonical ensemble).
6.3:  Enthalpy and U,P,N situations. Also I will cover throttling 
from this section.
6.4:  Gibbs Potential (Gibbs Free energy) and T,P,N situations. 

Chapters 5, 6:

Notes:

Homework:  
- I will take volunteers for  #3, 4, 5 for Thursday.



Recall, thermodynamic potentials:

Helmholtz free energy:  𝐹 = 𝑈 − 𝑇𝑆

Gibbs free energy: 𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉
(= 𝐻 − 𝑇𝑆)

Enthalpy: 𝐻 = 𝑈 + 𝑃𝑉

Equilibrium conditions:  minimization for composite systems

! F minimum for constant T, V, N conditions

! G minimum for constant T, P, N conditions

! H minimum for constant S, P, N conditions

𝐹(𝑇, 𝑉, 𝑁)

𝐺(𝑇, 𝑃, 𝑁)

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝐻(𝑆, 𝑃, 𝑁)



Helmholtz free energy defined:  𝐹 = 𝑈 − 𝑇𝑆.

Differential:  𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

! F is minimized for constant T, V, N conditions
! ∆F is the available work at constant T.

(or, Helmholtz potential)

Alternative form 𝐹 = −𝑃𝑉 + 𝜇𝑁
(from Euler relation)

(recall, showed maximum work theorem similarity)



Internal energy (or Entropy):

Enthalpy: 𝐻 = 𝑈 + 𝑃𝑉.

Helmholtz free energy:  𝐹 = 𝑈 − 𝑇𝑆.

Gibbs free energy: 𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉.

Grand Potential:              Φ = 𝑈 − 𝑇𝑆 − 𝜇𝑁.

𝐻(𝑆, 𝑃, 𝑁)

𝐹(𝑇, 𝑉, 𝑁)

𝐺(𝑇, 𝑃, 𝑁)

𝑈(𝑆, 𝑉, 𝑁)𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑆, 𝑉, 𝑁 Closed system, well-defined energy (or e.g. U±∆):
“Microcanonical ensemble” 𝑆 = 𝑘𝑙𝑛Ω maximized

𝑆, 𝑃, 𝑁

𝑇, 𝑉, 𝑁 Canonical 
ensemble

𝑇, 𝑃, 𝑁 isobaric 
ensemble

Summary: or ∑! 𝜇!𝑑𝑁! as before

𝑇, 𝑉, 𝜇
Φ(𝑇, 𝑉, 𝜇) Grand canonical ensemble: useful 

for Bose or Fermi statistics

(see section 
5.3)



∆F is the available work at constant T:

Adiabatic,   Wext = –∆U
𝑃𝑜, 𝑉𝑜, 𝑇𝑜

Δℓ

𝐴 area

𝑃𝑜, 𝑉𝑜, 𝑇𝑜
Δℓ

𝐴 area

Contacting thermal 
bath,   Wext = –∆F

Example:  Calculate work for ideal gas case?



Enthalpy:  𝐻 = 𝑈 + 𝑃𝑉.

Differential:  𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

! H is minimized for constant S, P, N conditions

! ∆H is the available heat at constant P & N, for a 

given change of conditions.

Alternative form 𝐻 = 𝑇𝑆 + 𝜇𝑁
(from Euler relation)

(showed last time)

Example:  Enthalpy of formation tables, for substances 
relative to constituent elements (see last section, ch. 6)



Enthalpy:  𝐻 = 𝑈 + 𝑃𝑉.

Differential:  𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

! H is minimized for constant S, P, N conditions

! ∆H is the available heat at constant P & N, for a 

given change of conditions.

Alternative form 𝐻 = 𝑇𝑆 + 𝜇𝑁
(from Euler relation)

(showed last time)

Example:  Enthalpy of formation tables, for substances 
relative to constituent elements (see last section, ch. 6)

𝐶! =
𝜕𝐻
𝜕𝑇 !



Gibbs Free energy:  𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉.

Differential:  𝑑𝐺 = 𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

Alternative form 𝐺 = 𝜇𝑁
(from Euler relation)

! G is minimized for constant T, P, N conditions
(showed last time)



Gibbs Free energy:  𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉.

Differential:  𝑑𝐺 = 𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

Alternative form 𝐺 = 𝜇𝑁
(from Euler relation)

! G is minimized for constant T, P, N conditions

𝐺

𝑇

Typical material 
(e.g. water), constant-P

Phase changes:
High T favors high-
entropy states

Typical experimental 
conditions



Gibbs Free energy:

! G is minimized for constant T, P, N conditions

𝐺

𝑇

Typical material 
(e.g. water), constant-P

Phase changes:
High T favors high-
entropy states



Gibbs Free energy:  𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉.

Differential:  𝑑𝐺 = 𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

Alternative form 𝐺 = 𝜇𝑁
(from Euler relation)

! G is minimized for constant T, P, N conditions

Gibbs Free energy vs. Chemical potential:  
𝝁 = 𝑮 per atom.

Multicomponent system:  
𝐺 = 𝜇9𝑁9 + 𝜇:𝑁: +⋯.



Enthalpy:  H = U + PV.  

• H simplifies constant-pressure processes
• useful for chemical reactions

Also solved by enthalpy method:  Joule-Thomson expansion
can show, constant-enthalpy process.

Temperature change 
expected for ideal gas?

𝐶! =
𝜕𝑄
𝜕𝑇 !

=
𝜕𝐻
𝜕𝑇 !

General 
result



Joule-Thomson process:

𝜇"# =
𝜕𝑇
𝜕𝑃 $

Joule-Thomson coefficient:

Temperature change in constant-enthalpy process.

𝜕𝑇
𝜕𝑃 $

𝜕𝐻
𝜕𝑇 %

𝜕𝑃
𝜕𝐻 #

= −1

𝐶% 𝜕𝑥
𝜕𝑦 "

=
𝜕𝑥
𝜕𝑡 #

𝜕𝑡
𝜕𝑦 "

+
𝜕𝑥
𝜕𝑦 $

use



Joule-Thomson process:

𝜇"# =
𝜕𝑇
𝜕𝑃 $

Joule-Thomson coefficient:

Temperature change in constant-enthalpy process.

𝜕𝑇
𝜕𝑃 $

𝜕𝐻
𝜕𝑇 %

𝜕𝑃
𝜕𝐻 #

= −1

𝐶% 𝑉 + 𝑇
𝜕𝑆
𝜕𝑃 %

= 𝑉 − 𝑇𝑉𝛼

𝜇"# =
𝑉 𝑇𝛼 − 1

𝐶% Cooling with 
P decrease


