
Chapter 5:
- I will cover just 5.1 for now.
- You should also look through section 5.3 and see the tables of 
relations for thermodynamic potentials.

Chapter 6: 
- I will cover 6.1 through 6.4.
6.2:  Helmholtz potential (Helmholtz free energy) and T,V,N
situations. (Statistical mechanics:  this is Canonical ensemble).
6.3:  Enthalpy and U,P,N situations. Also I will cover throttling 
from this section.
6.4:  Gibbs Potential (Gibbs Free energy) and T,P,N situations. 
Section title includes Chemical Reactions but my examples will 
be more focused on other problems addressed by Gibbs free 
energy.  

Plan for chapters 5, 6:



Entropy maximization / energy minimization:

• Consider a composite system:  self-contained but has 2+ 
parts joined by piston(s), or it is segregated into liquid/gas 
phases, etc.

• Entropy must look like the diagram shown (for normal 
systems with T > 0, C > 0). (hypersurface in the space of all 
extensive variables)

S

U

V1 V2

V1
• For a given U, S maximized
when internal variables reach 
equilibrium. 
(“microcanonical”)
• S keeps increasing as U
increases; negative curvature.



Entropy maximization / energy minimization:

• Consider a composite system:  self-contained but has 2+ 
parts joined by piston(s), or it is segregated into liquid/gas 
phases, etc.

• Entropy must look like the diagram shown (for normal 
systems with T > 0, C > 0). (hypersurface in the space of all 
extensive variables)

S

U
V1

• For constant S (horizontal 
slice), we can see that for 
equilibrium conditions U is 
minimized at constant S.



Free Energy:
Helmholtz free energy defined:  𝐹 = 𝑈 − 𝑇𝑆.

1) state variables: 𝐹(𝑇, 𝑉, 𝑁)

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

2) Equilibrium:  F minimization:
! F is minimumized for constant T, V, N conditions
! Important result: e.g. helps to understand phase 

changes, constant volume conditions
! Canonical ensemble I have defined before is the 

statistical formalism for this case.
3) Note that F is an energy state of a system, but U remains 

the energy contained inside a system. F can be 
considered the available work at constant T.

Note not all are extensive variables, but F is extensive
So, is   𝐹 = −𝑆𝑇 − 𝑃𝑉 + 𝜇𝑁 correct  (Euler equation)?

(or Helmholtz potential)



Maximum work theorem:

• Applies for one-reservoir problems
• Consider that system can perform work on external 

“reversible work system”, 𝑊./0. [Reversible means no 
friction; otherwise this is ordinary work as we have seen, 
idealized work we have been considering is reversible.]

• Question, what is maximum 𝑊./0 possible if a system goes 
from state 1 to state 2?

• Find: 𝑊./0 ≤ −Δ𝑈 + 𝑇1.2Δ𝑆
• Maximum is reversible path from 1 to 2.

“available work 
at constant T”



Free Energy: ! F minimum for constant T, V, N conditions

•  We already know equilibrium 
temperatures equal (maximizing total 
entropy)
•  Here considering further changes 
happen in composite system (Piston can 
move, phase change, crystals form…)

Heat bath:  
So large its temperature 
can’t change

Composite 
system

𝐹 = 𝑈 − 𝑇𝑆 = −𝑃𝑉 + 𝜇𝑁

T, V, N

Tres = constant



Free Energies:

T, V, N

Tres = constant

Q

Δ𝑆!"! = Δ𝑆 −
𝑄
𝑇#$%

≥ 0

Same as:

𝑇Δ𝑆 − Δ𝑈
𝑇

≥ 0 Equilibrium: equal 
temperatures

global 
entropy

! F minimum for constant T, V, N conditions
(system:  no 
subscripts) 



Free Energies:

T, V, N

Tres = constant

Q

Δ𝑆!"! = Δ𝑆 −
𝑄
𝑇#$%

≥ 0

𝑇Δ𝑆 − Δ𝑈
𝑇

≥ 0

! F minimum for constant T, V, N conditions
(system:  no 
subscripts) 

−Δ𝐹
𝑇

≥ 0

maximized
Minimized once 
equilibrium is reached



Free Energies:

T, V, N

Tres = constant

Q

Δ𝑆!"! = Δ𝑆 −
𝑄
𝑇#$%

≥ 0

𝑇Δ𝑆 − Δ𝑈
𝑇

≥ 0

𝐹 = Free energy 
minimized by internal 
processes at constant T.

! F minimum for constant T, V, N conditions
(system:  no 
subscripts) 

−Δ𝐹
𝑇

≥ 0

maximized
Minimized once 
equilibrium is reached

Canonical Ensemble:
closed system in contact with 
heat bath.  ”NVT ensemble”



Examples:

Paramagnet in B field at 
constant T.

Material with liquid-
solid transformation at 
fixed T in rigid 
container (constant-V)

𝐵

𝐹 = 𝑈 − 𝑇𝑆

𝑇

solid

liquid



Thermodynamic potentials:

Helmholtz free energy:  𝐹 = 𝑈 − 𝑇𝑆.

Gibbs free energy: 𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉,
(= 𝐻 − 𝑇𝑆).

Enthalpy: 𝐻 = 𝑈 + 𝑃𝑉

Equilibrium conditions:  minimization:
! F minimum for constant T, V, N conditions
! G minimum for constant T, P, N conditions
! H minimum for constant S, P, N conditions

𝐹(𝑇, 𝑉, 𝑁)
𝐺(𝑇, 𝑃, 𝑁)

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝐻(𝑆, 𝑃, 𝑁)



Internal energy (or Entropy):

Enthalpy: 𝐻 = 𝑈 + 𝑃𝑉.

Helmholtz free energy:  𝐹 = 𝑈 − 𝑇𝑆.

Gibbs free energy: 𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉.

𝐻(𝑆, 𝑃, 𝑁)

𝐹(𝑇, 𝑉, 𝑁)

𝐺(𝑇, 𝑃, 𝑁)

𝑈(𝑆, 𝑉, 𝑁)𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑆, 𝑉, 𝑁 Closed system, well-defined energy (or e.g. U±∆):
“Microcanonical ensemble” 𝑆 = 𝑘𝑙𝑛Ω maximized

𝑆, 𝑃, 𝑁

𝑇, 𝑉, 𝑁 Canonical 
ensemble

𝑇, 𝑃, 𝑁 isobaric 
ensemble

Thermodynamic potentials/ensembles:

Gibbs 
introduced 
~1902

or ∑& 𝜇&𝑑𝑁& as before



Free Energies:

T, P, N

Tres = constant

Q

Δ𝑆!"! = Δ𝑆 −
𝑄
𝑇#$%

≥ 0

Same as:

𝑇Δ𝑆 − Δ𝑈 − Δ(𝑃𝑉)
𝑇

≥ 0

Pext=P

T, P, N conditions:

Piston free 
to move

global 
entropy

–Q (1st law).

Reservoir 
supplies 
heat

Reservoir 
supplies 
work



Free Energies:

T, P, N

Tres = constant

Q

Δ𝑆!"! = Δ𝑆 −
𝑄
𝑇#$%

≥ 0

𝑇Δ𝑆 − Δ𝑈 − Δ(𝑃𝑉)
𝑇

≥ 0

Pext=P

T, P, N conditions:

Piston free 
to move

global 
entropy

Reservoir 
supplies 
heat

Reservoir 
supplies 
work

Δ𝐺 ≤ 0

G minimized, at 
equilibrium

Gibbs free energy 
(Gibbs potential) 
minimized



Enthalpy minimization:

S, P, N

𝑑𝑈 + 𝑃𝑑𝑉 = 𝑑𝑄 ≤ 𝑇𝑑𝑆

Pext=P

S, P, N conditions:

Piston free 
to move

Pressure reservoir 
supplies work, 
adiabatic conditions

Const. S, V:  this is 
energy minimization 
principle

𝑑𝑈 ≤ 𝑇𝑑𝑆 − 𝑃𝑑𝑉



Enthalpy minimization:

S, P, N

𝑑𝑈 + 𝑃𝑑𝑉 = 𝑑𝑄 ≤ 𝑇𝑑𝑆

Pext=P

S, P, N conditions:

Piston free 
to move

Const. S, V:  this is 
energy minimization 
principle

𝑑𝑈 ≤ 𝑇𝑑𝑆 − 𝑃𝑑𝑉

𝑑𝐻 ≤ 𝑇𝑑𝑆 − 𝑉𝑑𝑃

𝑑𝐻 ≤ 0, for S, P, N 
held constant


