Plan for chapters 5, 6:

Chapter 5:

- | will cover just 5.1 for now.

- You should also look through section 5.3 and see the tables of
relations for thermodynamic potentials.

Chapter 6:

- | will cover 6.1 through 6.4.

6.2: Helmholtz potential (Helmholtz free energy) and TV,N
situations. (Statistical mechanics: this is Canonical ensemble).
6.3: Enthalpy and U,P.N situations. Also | will cover throttling
from this section.

6.4: Gibbs Potential (Gibbs Free energy) and TP N situations.
Section title includes Chemical Reactions but my examples will
be more focused on other problems addressed by Gibbs free
energy.




Entropy maximization / energy minimization:

* Consider a composite system: self-contained but has 2+
parts joined by piston(s), or it 1s segregated into liquid/gas
phases, etc.

* Entropy must look like the diagram shown (for normal
systems with 7> 0, C > 0). (hypersurface in the space of all
extensive variables)

» For a given U, S maximized

when internal variables reach

equilibrium.
“microcanonical’)

* S keeps increasing as U

increases; negative curvature.




Entropy maximization / energy minimization:

* Consider a composite system: self-contained but has 2+
parts joined by piston(s), or it 1s segregated into liquid/gas
phases, etc.

* Entropy must look like the diagram shown (for normal
systems with 7> 0, C > 0). (hypersurface in the space of all
extensive variables)

* For constant S (horizontal
slice), we can see that for
equilibrium conditions U is
minimized at constant S.




Free Energy:

Helmbholtz free energy defined: F = U —TS.
(or Helmholtz potential)

~— " dF = —SdT — PdV + udN

1) state variables:  F(T,V,N)

Note not all are extensive variables, but /' is extensive
So,1s F = —ST — PV + uN correct (Euler equation)?

2) Equilibrium: F minimization:
= Fis minimumized for constant 7, V, N conditions
= Important result: e.g. helps to understand phase
changes, constant volume conditions
» (Canonical ensemble 1 have defined before is the
statistical formalism for this case.
3) Note that F'is an energy state of a system, but U remains
the energy contained inside a system. F' can be
considered the available work at constant T.




Maximum work theorem:

* Applies for one-reservoir problems

* Consider that system can perform work on external
“reversible work system”, W,,.;. [Reversible means no
friction; otherwise this 1s ordinary work as we have seen,
idealized work we have been considering is reversible. ]

* Question, what 1s maximum W,,.; possible if a system goes

frpm state 1 to state 27 “qvailable work

%nd: Weort < —AU + TresAS } at constant 77’
aximum 1s reversible path from 1 to 2.




Free Energy:

Heat bath:
So large its temperature
can’t change

1., = constant

= F minimum for constant 7, V, N conditions

F=U=TS=—PV +uN

N~
=
=

Composite
system

* We already know equilibrium
temperatures equal (maximizing total
entropy)

» Here considering further changes
happen in composite system (Piston can
move, phase change, crystals form...)



Free Energies: * F minimum for constant 7, ¥, N conditions

(system: no

subscripts)
Q
AS;,; = AS — —— >0 &lobal
res entropy
Same as:

TAS — AU >0 Equilibrium: equal

T _ temperatures
1., = constant




Free Energies: * F minimum for constant 7, ¥, N conditions

(system: no
subscripts)

AStOt=AS_£ZO

res

Minimized once
TAS — AU equilibrium is reached

=0

maximized

1., = constant




Free Energies:

Canonical Ensemble:

closed system in contact with
heat bath. ”"NVT ensemble”

1., = constant

F minimum for constant 7, ¥, N conditions

(system: no
subscripts)

AStOt=AS_£ZO

res

Minimized once
TAS — AU equilibrium is reached

=0

maximized

N~
~

F = Free energy

minimized by internal
processes at constant 7.




Examples:

—

B Paramagnet in B field at

$@$$¢¢$$ constant 7.

W F=U—-TS
Material with liquid-
. solid transformation at
liquid S
fixed 7' nigid
container (constant-})
solid




Thermodynamic potentials:

Helmholtz free energy: F = U —TS. dF = —-S8dT — PdV + udN

Gibbs free energy: G=U-TS+PV, dG=-SdT +VdP + udN
(=H-—-TS).

Enthalpy: H=U-+PV dH = TdS + VdP + udN

Equilibrium conditions: minimization:
* F minimum for constant 7, ¥, N conditions F(T,V,N)
* G minimum for constant 7, P, N conditions G(T,P,N)
*  H minimum for constant S, P, N conditions H(S,P,N)



Thermodynamic potentials/ensembles:

Internal energy (or Entropy):

dU = TdS — PdV + udN U(S,V,N)
SV.N Closed system, well-defined energy (or e.g. U£A):
“Microcanonical ensemble” S — kinQ maximized
Enthalpy: H = U + PV. Dp/Eph Gibbs
H(S,P,N) dH =TdS+VdP + udN introduced
~1902
=] — ¥
Helmholtz free energy: F = U —TS. TV.N Canomical
F(T,V,N) | dF = —SdT — PdV + pdN ensemble
Gibbs free energy: G=U-TS+ PV.
T,P,N isobaric
G(T,P,N) dG = —SdT + VdP + udN ensemble

or ),; 4;dN; as before



Free Energies: T, P, N conditions:

AStot:AS_i>O g@

Tros entropy
Same as:
—Q0 (1% law).
. Q( )
TAS — AU — A(PV)
T - =0
res — constant T

Reservoir Pext=P
supplies

heat O ' TEN —)
- Reservoir

supplies

Piston free WOrk
to move




Free Energies: T, P, N conditions:

Gibbs free energy 0

(G1ibbs potential) AS;or = AS — —— > global

minimized fres oy
TAS — AU — A(PV)

1., = constant T =0
Reservoir Pext=P AG =0
;UPJF[)“es 0 S G minimized, at
heat » -Res e'rv oir equilibrium

supplies
Piston free WOrk
to move




Enthalpy minimization: S, PN conditions:

dU + PdV =dQ <TdS —— dU < TdS — PdV

Const. S, V: this is
energy minimization
principle

Pressure reservoir

Piston free supplies work,
to move adiabatic conditions




Enthalpy minimization: S, PN conditions:

dU + PdV =dQ <TdS —— dU < TdS — PdV
Const. S, V: this is
energy minimization
principle

dH < TdS —VdP

Pext=P

S, PN dH <0, forS, P N
held constant

Piston free
to move



