Notes for today

- Problem set for tomorrow, looking for volunteers for #3, 4, 5.
- Today finishing Ch. 4. <u>Then:</u> section 5.1 followed by chapter 6 (Free energies).
- Exam coming in 3 weeks: It will include the first part of chapter 6, precisely how far still to be determined. You can prepare a formula sheet (e.g. one regular-size page, both sides).

Cycles recall:

cycle run as heat engine:

$$W_{ext} = -W_{system} > 0$$

"W"

General case

- $\varepsilon_e \le 1 \frac{T_C}{T_H}$ \Box Maximum case = Carnot result
- Heat: Q_H & Q_C > 0 my notation used here (the <u>magnitudes</u>) e.g. problem 5.
- Entropy: $\Delta S = 0$ (means the *system*). But $\Delta S_{universe} \ge 0$ no matter what direction the cycle operates.

Cycles recall:

refrigerator

cycle run as refrigerator (or heat pump):

$$W_{ext} = -W_{system} < 0$$
"

$$Q_H \& Q_C > 0$$
:
So $W_{ext} = -Q_H + Q_C$ 1st law

$$\varepsilon_R = \frac{Q_C}{-W_{ext}}$$

 \approx Refrigerator COP
 $\varepsilon_R \leq \frac{T_C}{T_H - T_C}$
 \approx Maximum case
 $=$ Carnot result

= Carnot result

Cycles recall:

refrigerator

cycle run as refrigerator (or heat pump):

 $\varepsilon_R = \frac{Q_C}{-W_{ext}}$ \Box Refrigerator COP

Interesting results:

- COP can be >1
- Most efficient with ΔT small not large.
- Careful about arrows! Heat flows from hot to cold.

- Applies for *one-reservoir* problems
- Consider that system can perform work on external "reversible work system", W_{ext}. [Reversible means no friction; otherwise this is ordinary work as we have seen, idealized work we have been considering is reversible.]
- Question, what is maximum W_{ext} possible if a system goes from state 1 to state 2?
- Find: $W_{ext} \leq -\Delta U + T_{res}\Delta S$
- Maximum is <u>reversible</u> path from 1 to 2.

- Applies for *one-reservoir* problems
- Consider that system can perform work on external "reversible work system", W_{ext}. [Reversible means no friction; otherwise this is ordinary work as we have seen, idealized work we have been considering is reversible.]
- Question, what is maximum W_{ext} possible if a system goes from state 1 to state 2?
- Find: $W_{ext} \leq -\Delta U + T_{res}\Delta S$

$$\Delta U = U_2 - U_1$$

system
$$\Delta S = S_2 - S_1$$

reversible path means
universe, not system.

• Applies for *one-reservoir* problems [consider first cold reservoir, $Q_{res} > 0$ "heat into reservoir"; $\Delta S < 0$.]

Ideal gas example:

• Isothermal, $Q_{res} = -W_{ext}$. $\Delta S \& \Delta S_{res}$ differ if non-equivalent *T*.

• Adiabatic,
$$\Delta U = -W_{ext}$$

$$\Delta U = U_2 - U_1$$

system
$$\Delta S = S_2 - S_1$$

reversible path means
universe, not system.

• Applies for *one-reservoir* problems [consider first cold reservoir, $Q_{res} > 0$ "heat into reservoir"; $\Delta S < 0$.]

Ideal gas example:

- Isothermal, $Q_{res} = -W_{ext}$. $\Delta S \& \Delta S_{res}$ differ if non-equivalent *T*.
- Adiabatic, $\Delta U = -W_{ext}$
- Can combine these, easy to see $W_{ext} = -\Delta U + T_{res}\Delta S$

$$\Delta U = U_2 - U_1$$

system
$$\Delta S = S_2 - S_1$$

reversible path means
universe, not system.

General proof: combine 1st law and 2nd law.

$$dU + dQ_{res} + dW_{res} = 0$$

I omitted bars on $dQ_{res} + dW_{res}$, they belong there

$$dS_{tot} = dS + dQ_{res}/T_{res} \ge 0$$

$$\Delta U = U_2 - U_1$$
system
$$\Delta S = S_2 - S_1$$

General proof: combine 1st law and 2nd law.

$$dU + dQ_{res} + dW_{ext} = 0$$

I omitted bars on $dQ_{res} + dW_{res}$, they belong there

$$dS_{tot} = dS + dQ_{res}/T_{res} \ge 0$$

 $\Rightarrow dW_{ext} \leq -dU + T_{res}dS$ or $W_{ext} \leq -\Delta U + T_{res}\Delta S$

Result is <u>very general</u>; applies for reservoir of either sign (e.g. hot or cold, not both) 2nd term is "second law penalty", means all internal energy not necessarily available.

$$\Rightarrow dW_{ext} \leq -dU + T_{res}dS$$

or
$$W_{ext} \leq -\Delta U + T_{res}\Delta S$$

Result is <u>very general</u>; applies for reservoir of either sign (e.g. hot or cold, not both) 2nd term is "second law penalty", means all internal energy not necessarily available.

Examples: Efficiency to generate electrical energy by cooling a fluid or a gas? Convert electrical to mechanical energy?