Notes for today

- Continuing Ch. 4.
- Reminder about lecture recording, I can send a recording link if you have to miss.

Carnot cycles recall:

Work done = T-S area inside Done \underline{by} the gas.

Carnot cycle – does <u>not</u> need to be ideal gas.

- Reversible; $\Delta S = 0$ heat engine or refrigerator.
- P-V diagram depends on working gas or fluid.
- Carnot cycle most efficient for same T_H & T_C

 $\frac{Q_H}{T_H} = \frac{Q_C}{T_C}$

$$\varepsilon_e = 1 - \frac{T_C}{T_H}$$

 Heat flow: From & into "heat baths": external reservoir (power plant heat exchanger; combustion of fuel; source of thermal photons, etc.)

- Carnot limit: <u>not</u> 100% efficient (can't have $Q_C = 0$).
- Carnot-cycle power output is essentially zero!

$$\varepsilon_e = \frac{W_{ext}}{Q_H}$$
Notation: ε_e now
same as text, W_{ext}
done by the gas
 (W_{RWS}) . $Q_H \& Q_C > 0$

Carnot cycle :

- Reversible; $\Delta S = 0$ heat engine or refrigerator.
- P-V diagram depends on working gas or fluid.
- Carnot cycle most efficient for same $T_H \& T_C$
- Note heat flow across $\Delta T = 0$ needed for $\Delta S = 0$.

Work = T-S area inside

Non-ideal cycle:

General cycle run as heat engine:

(1) Non-ideal heat flow: T_H reservoir must <u>exceed</u> working temperature for Q_H flow, Similarly T_C <u>lower</u> than working temperature. (Reversed for refrigerator.)

Is $\Delta S = 0$ in this case if these are quasistatic, "infinitely slow" processes?

Non-ideal cycle:

refrigerator

General cycle

(1) Non-ideal heat flow: T_H reservoir must <u>exceed</u> working temperature for Q_H flow, Similarly T_C <u>lower</u> than working temperature. (Reversed for refrigerator.)

 \Rightarrow total $\Delta S \neq 0$

(2) sudden or dissipative processes also increase overall entropy without turning heat into work; maximum work theorem will see later.

Carnot cycle maximum engine efficiency:

- Carnot refrigerator; can engine have <u>greater</u> efficiency?
- Assume same amount of work per cycle, can show 2nd law is violated (heat flows from cold to hot with no external input)
- Carnot cycle results $\varepsilon_e = 1 \frac{T_C}{T_H}; \frac{Q_H}{T_H} = \frac{Q_C}{T_C}$
- Note "endoreversible" maximizes power not efficiency (simple heat-flow cases) I won't show, $\varepsilon_e = 1 \sqrt{\frac{T_C}{T_H}}$

Efficiencies:

• Steam turbine (electric power plant) $\varepsilon_e \approx 45\%$. $T_H \leq 540^{\circ}C$. 60% achieved with "combined cycle" $e = \frac{780}{1090} = 72\%$

 $e = \frac{520}{810} = 64\%$

- Gasoline engine (car) $\varepsilon_e \approx 30\%$ (to 50%). $T_H \approx 800^o C$ fuel burning.
- Hydroelectric plant 95% (electric motors/ regenerative breaking)
- Solar power: <u>photovolatic</u> cell based on conversion of photons, ultimately a heat engine ($e_{max} = 95\%$ Carnot limit)

Solar cell (equivalent to a heat engine)

Real cycles:

Otto Cycle

Gasoline engine

Real cycles:

Real cycles:

- Heat involved is <u>Latent heat</u> (vaporization)
- Traditional refrigerator or heat pump: cycle a bit different, also has latent heat process ≈ isotherm.

Temperature scales:

- Carnot result $\frac{Q_H}{T_H} = \frac{Q_C}{T_C}$ formal means to define temperature scale independent of working substance.
- Basis for SI temperature scale up to 2019
- Newest SI definition: Uses Boltzmann factor $e^{-\Delta E/kT}$ to define temperature scale (no fixed points in new definition).