Notes for today

- Reading: Ch. 3 and continuing to Ch. 4.
- Reminder about lecture recording, I can send a recording link if you have to miss.
- Still looking for volunteer for problems 3 & 6

van der Waals gas where we left off last time:

$$\left(P + \frac{aN^2}{V^2}\right)(V - Nb) = NkT \quad \text{Or,} \quad P + \frac{a}{v^2} = \frac{kT}{v - b}$$

ner-narticle

(text)

Can we find entropy?

$$ds = \left[\frac{1}{T}(u,v)\right] du + \left[\frac{P}{T}(u,v)\right] dv$$
Alternative, assume: $u = \frac{3}{2}kT - \frac{a}{v}$ Recall work done in expanding at const. T

$$\frac{1}{T} = \frac{\frac{3}{2}k}{u+a/v} \qquad \frac{P}{T} = \frac{k}{v-b} - \frac{\frac{3}{2}k\frac{a}{v^2}}{u+a/v}$$
Solution $S = Nk \ln\left[(v-b)(u+a/v)^{\frac{3}{2}}\right] + Nso$

Note this is *one possible* solution of vdW eqn, but assuming a constant C_V specifies this result.

van der Waals gas

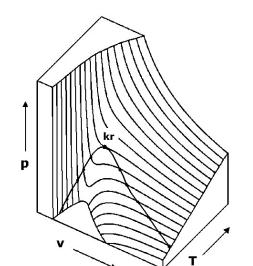
$$S = Nk \ln \left[(v - b)(u + a/v)^{\frac{3}{2}} \right] + Nso \qquad u = \frac{3}{2}kT - \frac{a}{v}$$

Specific heat:

	∂S	3
$C_V = 7$	$\frac{1}{\partial T}$	$=\frac{1}{2}Nk_B$
	$\partial T]_{VN}$	

Gas	a (Pa-m ⁶)	$b(10^{-6}m^3)$	с
He	0.00346	23.7	1.5
Ne	0.0215	17.1	1.5
H,	0.0248	26.6	2.5
A	0.132	30.2	1.5
N ₂	0.136	38.5	2.5
02	0.138	32.6	2.5
cò	0.151	39.9	2.5
CO,	0.401	42.7	3.5
N ₂ O	0.384	44.2	3.5
H ₂ O	0.544	30.5	3.1
Cĺ,	0.659	56.3	2.8
SO ₂	0.680	56.4	3.5

^a Adapted from Paul S. Epstein, Textbook of Thermodynamics, Wiley, New York, 1937.



Independent of volume & T (not generally valid: breaks down near liquid condensation temperature)

3.1. The constants a and b are obtained by empirical curve fitting to the van der Waals isotherms in the vicinity of 273 K; they represent more distant isotherms less satisfactorily. The values of c are based on the molar heat capacities at room temperatures.

 C_V

Differentials:

$$dU = TdS - PdV \equiv \frac{\partial U}{\partial S}dS + \frac{\partial U}{\partial V}dV$$

example of exact differential

Sometimes can't measure

Useful general mathematical properties:

S directly, could measure $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ order of differentiation adiabatic temperature e.g. $\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V} = -1/\left(\frac{\partial S}{\partial P}\right)_{V}$ $\left(\frac{\partial x}{\partial y}\right) = 1/\left(\frac{\partial y}{\partial x}\right)_z$ reciprocal $\left(\frac{\partial x}{\partial y}\right)_{z} \left(\frac{\partial y}{\partial t}\right)_{z} = \left(\frac{\partial x}{\partial t}\right)_{z} \quad \text{chain rule; same as:} \quad \left(\frac{\partial x}{\partial y}\right)_{z} = \frac{\left(\frac{\partial x}{\partial t}\right)_{z}}{\left(\frac{\partial y}{\partial t}\right)}$ $\left(\frac{\partial x}{\partial y}\right)_{z} \left(\frac{\partial z}{\partial x}\right)_{y} \left(\frac{\partial y}{\partial z}\right)_{x} = -1$ cyclical $\left(\frac{\partial x}{\partial v}\right) = \left(\frac{\partial x}{\partial t}\right)_{v} \left(\frac{\partial t}{\partial v}\right)_{-} + \left(\frac{\partial x}{\partial v}\right)_{+}$ converting partials

van der Waals gas

$$S = Nk \ln \left[(v - b)(u + a/v)^{\frac{3}{2}} \right] + Nso \qquad u = \frac{3}{2}kT - \frac{a}{v}$$

Specific heat:
$$C_P = T \frac{\partial S}{\partial T} \Big|_{PN} = T \frac{\partial S}{\partial T} \Big|_{VN} + \left[T \frac{\partial S}{\partial V} \right]_{TN} \frac{\partial V}{\partial T} \Big|_{PN}$$

$$C_V \qquad \left[\frac{\partial S}{\partial V} \right]_{TN} = \frac{k}{v - b} \qquad \frac{\partial V}{\partial T} \Big|_{PN} = \frac{Nk}{P - \frac{a}{v^2 + \frac{2ab}{v^3}}}$$

van der Waals gas

$$S = Nk \ln \left[(v - b)(u + a/v)^{\frac{3}{2}} \right] + Nso \qquad u = \frac{3}{2}kT - \frac{a}{v}$$

Specific heat:
$$C_P = T \frac{\partial S}{\partial T} \Big|_{PN} = T \frac{\partial S}{\partial T} \Big|_{VN} + \left[T \frac{\partial S}{\partial V} \right]_{TN} \frac{\partial V}{\partial T} \Big|_{PN}$$

$$C_V \qquad \left[\frac{\partial S}{\partial V} \right]_{TN} = \frac{k}{v - b} \qquad \frac{\partial V}{\partial T} \Big|_{PN} = \frac{Nk}{P - \frac{a}{v^2} + \frac{2ab}{v^3}}$$

a) Ideal gas, $C_P = C_P + Nk_B$ ($\Delta C = R \ per \ mole$)

b) Dilute Van der Waals gas, can see $\Delta C > R$ per mole (difference is small)

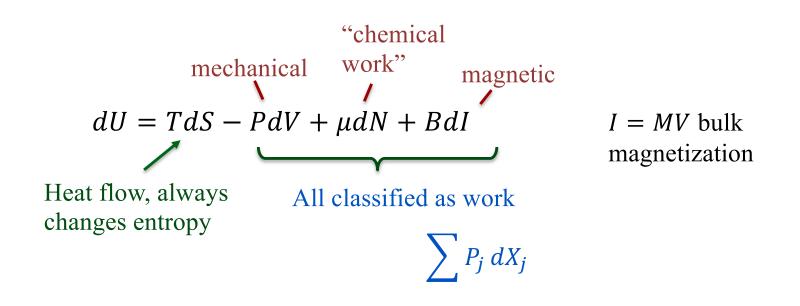
Irreversible & Reversible processes:

Chapter 4

• Fundamental condition: spontaneous processes with change of entropy cannot occur in reverse; entropy sets the "arrow of time". Any process in which number of accessible microstates (Ω) increases must be irreversible.

Irreversible process: $\Delta S > 0$ Reversible process: $\Delta S = 0$

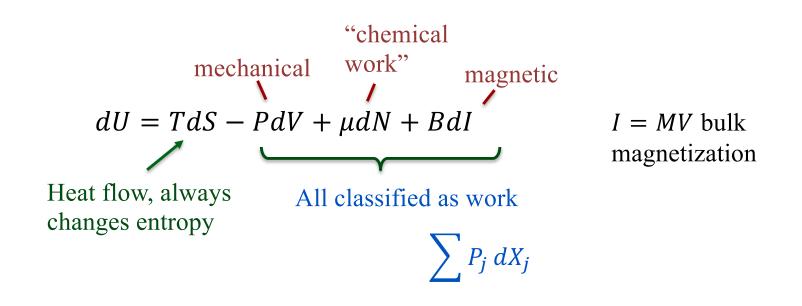
• Further consideration: reversibility necessitates infinitely slow process, or one in which the system changes much more slowly than the internal relaxation times. Notation: Quasistatic processes.



Notes:

• "Quasistatic": work done in <u>controlled</u> process, system relaxed to equilibrium at all points along the way.

• Also no dissipation (e.g. absence of moving friction)



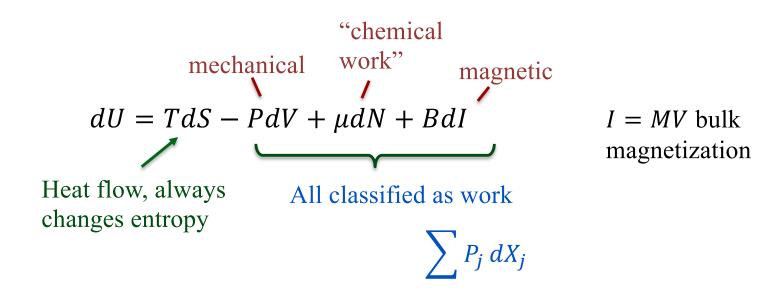
Notes:

• "Quasistatic": work done in <u>controlled</u> process, system relaxed to equilibrium at all points along the way.

• Also no dissipation (e.g. absence of moving friction)

Adiabatic

- Heat flow across $\Delta T \neq 0$: always generates entropy; <u>Isothermal</u> process can be reversed.
- However for quasistatic behavior, requires infinite time!

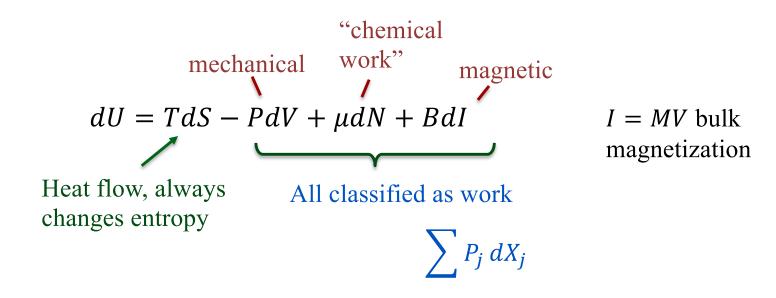


Isothermal

- "Quasistatic": work done in <u>controlled</u> process, system relaxed to equilibrium at all points along the way.
- Heat flow across $\Delta T \neq 0$.

• Can we combine both and still be reversible?

Adiabatic

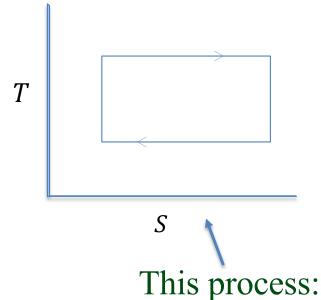


- "Quasistatic": work done in <u>controlled</u> process, system relaxed to equilibrium at all points along the way.
- Heat flow across $\Delta T \neq 0$.

Isothermal

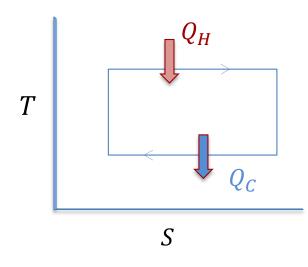
• Can we combine both and still be reversible? Yes generally, but requires a series of thermal reservoirs.

Cycles:



- Individual processes involved?
- Net entropy change for one cycle?
- Q and W per one time around cycle?

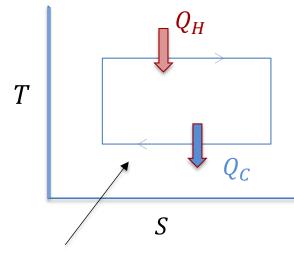
Heat and Work processes:



Carnot cycle - does <u>not</u> need to be ideal gas.

- Reversible; $\Delta S = 0$ heat engine or refrigerator.
- P-V diagram depends on working gas or fluid.
- Carnot cycle most efficient for same T_H & T_C

Heat and Work processes:



Work = T-S area inside Done by the gas.

Carnot cycle - does <u>not</u> need to be ideal gas.

- Reversible; $\Delta S = 0$ heat engine or refrigerator.
- P-V diagram depends on working gas or fluid.
- Carnot cycle most efficient for same T_H & T_C

$$\frac{Q_H}{T_H} = \frac{Q_C}{T_C}$$

$$e = 1 - \frac{T_C}{T_H}$$

 Heat flow: From & into "heat baths": external reservoir (power plant heat exchanger); combustion of fuel; source of thermal photons, etc.

- Carnot limit: <u>not</u> 100% efficient (can't have $Q_c = 0$).
- Carnot-cycle power output is essentially zero!