
! Reading:  Ch. 3 and continuing to Ch. 4.

! Reminder about lecture recording, I can send a recording link 
if you have to miss.  

! Still looking for volunteer for problems 3 & 6  

Notes for today



van der Waals gas
where we left off last time:   

𝑃 +
𝑎𝑁!

𝑉! 𝑉 −𝑁𝑏 = 𝑁𝑘𝑇

per-particle

𝑃 +
𝑎
𝑣! =

𝑘𝑇
𝑣 − 𝑏

Can we find entropy?

𝑑𝑠 = "
#
(𝑢, 𝑣) 𝑑𝑢 + $

#
(𝑢, 𝑣) 𝑑𝑣

Alternative, assume: 𝑢 =
3
2𝑘𝑇 −

⁄𝑎 𝑣
Recall work done in 
expanding at const. T

1
𝑇
=

3
2 𝑘

𝑢 + 𝑎/𝑣
𝑃
𝑇
=

𝑘
𝑣 − 𝑏

−
3
2 𝑘

𝑎
𝑣!

𝑢 + 𝑎/𝑣

𝑆 = 𝑁𝑘 ln (𝑣 − 𝑏) 𝑢 + 𝑎/𝑣
!
" +𝑁𝑠𝑜Solution

Note this is one possible solution of vdW eqn, but 
assuming a constant CV specifies this result.

Or, 

!
"
⇒ 𝑐

general 
case (text)



van der Waals gas

𝑢 =
3
2𝑘𝑇 −

⁄𝑎 𝑣𝑆 = 𝑁𝑘 ln (𝑣 − 𝑏) 𝑢 + 𝑎/𝑣
!
" +𝑁𝑠𝑜

Specific heat:
𝐶' = ;𝑇

𝜕𝑆
𝜕𝑇 '(

=
3
2𝑁𝑘)

Independent of 
volume & T
(not generally 
valid: breaks 
down near 
liquid 
condensation 
temperature)

𝐶#



Differentials:

Useful general mathematical properties:

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 ≡
𝜕𝑈
𝜕𝑆

𝑑𝑆 +
𝜕𝑈
𝜕𝑉

𝑑𝑉 example of exact differential

𝜕"𝑓
𝜕𝑥𝜕𝑦

=
𝜕"𝑓
𝜕𝑦𝜕𝑥

e.g. 𝜕𝑇
𝜕𝑉 $

= −
𝜕𝑃
𝜕𝑆 #

= −1/
𝜕𝑆
𝜕𝑃 #

Sometimes can’t measure 
S directly, could measure 
adiabatic temperature 
change.

𝜕𝑥
𝜕𝑦 %

= 1/
𝜕𝑦
𝜕𝑥 %

reciprocal 

𝜕𝑥
𝜕𝑦 %

𝜕𝑦
𝜕𝑡 %

=
𝜕𝑥
𝜕𝑡 %

chain rule; same as:
𝜕𝑥
𝜕𝑦 %

=

𝜕𝑥
𝜕𝑡 %
𝜕𝑦
𝜕𝑡 %

𝜕𝑥
𝜕𝑦 %

𝜕𝑧
𝜕𝑥 &

𝜕𝑦
𝜕𝑧 '

= −1

order of differentiation

cyclical

𝜕𝑥
𝜕𝑦 %

=
𝜕𝑥
𝜕𝑡 &

𝜕𝑡
𝜕𝑦 %

+
𝜕𝑥
𝜕𝑦 (

converting partials

a Maxwell relation



van der Waals gas

𝑢 =
3
2𝑘𝑇 −

⁄𝑎 𝑣𝑆 = 𝑁𝑘 ln (𝑣 − 𝑏) 𝑢 + 𝑎/𝑣
!
" +𝑁𝑠𝑜

Specific heat:

𝐶$ = ;𝑇
𝜕𝑆
𝜕𝑇 $(

= ;𝑇
𝜕𝑆
𝜕𝑇 '(

+ ;𝑇
𝜕𝑆
𝜕𝑉 #(

;
𝜕𝑉
𝜕𝑇 $(

/
𝜕𝑆
𝜕𝑉 "#

=
𝑘

𝑣 − 𝑏
=='

=# $(
= (>
$? @# $"A @"#%

$!
𝐶'

3𝑇𝑉𝛼!
𝑁𝜅"

can show (Maxwell 
relations)
More general result.



van der Waals gas

𝑢 =
3
2𝑘𝑇 −

⁄𝑎 𝑣𝑆 = 𝑁𝑘 ln (𝑣 − 𝑏) 𝑢 + 𝑎/𝑣
!
" +𝑁𝑠𝑜

Specific heat:

𝐶$ = ;𝑇
𝜕𝑆
𝜕𝑇 $(

= ;𝑇
𝜕𝑆
𝜕𝑇 '(

+ ;𝑇
𝜕𝑆
𝜕𝑉 #(

;
𝜕𝑉
𝜕𝑇 $(

3𝑇𝑉𝛼!
𝑁𝜅"

can show (Maxwell 
relations)
More general result.

/
𝜕𝑆
𝜕𝑉 "#

=
𝑘

𝑣 − 𝑏
=='

=# $(
= (>
$? @# $"A @"#%

$!

a)  Ideal gas, 𝐶$ = 𝐶$ +𝑁𝑘) (Δ𝐶 = 𝑅 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒)

𝐶'

b)  Dilute Van der Waals gas, can see Δ𝐶 > 𝑅 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒
(difference is small)



Irreversible & Reversible processes:
• Fundamental condition:  spontaneous processes with 

change of entropy cannot occur in reverse;  entropy sets the 
“arrow of time”.   Any process in which number of accessible 
microstates (Ω) increases must be irreversible.

• Further consideration:  reversibility necessitates infinitely 
slow process, or one in which the system changes much more 
slowly than the internal relaxation times.   Notation:  Quasistatic 
processes.

Irreversible process: Δ𝑆 > 0
Reversible process:  Δ𝑆 = 0

Chapter 4



𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝐵𝑑𝐼

Heat flow, always 
changes entropy

All classified as work

mechanical
“chemical 
work” magnetic

Notes:
• “Quasistatic”: work done in controlled process, system relaxed to 
equilibrium at all points along the way.
•  Also no dissipation (e.g. absence of moving friction)

𝐼 = 𝑀𝑉 bulk 
magnetization

D𝑃) 𝑑𝑋)



𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝐵𝑑𝐼

Heat flow, always 
changes entropy

All classified as work

mechanical
“chemical 
work” magnetic

Notes:
• “Quasistatic”: work done in controlled process, system relaxed to 
equilibrium at all points along the way.
•  Also no dissipation (e.g. absence of moving friction)

•  Heat flow across Δ𝑇 ≠ 0: always generates entropy;  Isothermal 
process can be reversed.
•  However for quasistatic behavior, requires infinite time!

𝐼 = 𝑀𝑉 bulk 
magnetization

Adiabatic

D𝑃) 𝑑𝑋)



𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝐵𝑑𝐼

Heat flow, always 
changes entropy

All classified as work

mechanical
“chemical 
work” magnetic

• “Quasistatic”: work done in controlled process, 
system relaxed to equilibrium at all points along 
the way.

•  Heat flow across Δ𝑇 ≠ 0.

•  Can we combine both and still be reversible?

𝐼 = 𝑀𝑉 bulk 
magnetization

Adiabatic

Isothermal

D𝑃) 𝑑𝑋)



𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝐵𝑑𝐼

Heat flow, always 
changes entropy

All classified as work

mechanical
“chemical 
work” magnetic

• “Quasistatic”: work done in controlled process, 
system relaxed to equilibrium at all points along 
the way.

•  Heat flow across Δ𝑇 ≠ 0.

•  Can we combine both and still be reversible?   
Yes generally, but requires a series of thermal 
reservoirs.

D𝑃) 𝑑𝑋)

𝐼 = 𝑀𝑉 bulk 
magnetization

Adiabatic

Isothermal



Cycles:

𝑇

𝑆

This process:  
! Individual processes involved?
! Net entropy change for one cycle?
! Q and W per one time around cycle?



Heat and Work processes:

𝑇

𝑆

Carnot cycle – does not need to 
be ideal gas.

•  Reversible; ΔS = 0 heat engine or 
refrigerator.
•  P-V diagram depends on working 

gas or fluid.
•  Carnot cycle most efficient

for same TH & TC

𝑄*

𝑄+



Heat and Work processes:

𝑇

𝑆

Carnot cycle – does not need to 
be ideal gas.

•  Reversible; ΔS = 0 heat engine or 
refrigerator.
•  P-V diagram depends on working 

gas or fluid.
•  Carnot cycle most efficient

for same TH & TC

𝑄*

𝑄+

Work = T-S area inside
Done by the gas.

! Heat flow:  From & into “heat baths”:
external reservoir (power plant heat exchanger); 
combustion of fuel; source of thermal photons, etc.
! Carnot limit: not 100% efficient (can’t have Qc = 0).
! Carnot-cycle power output is essentially zero!

𝑒 = 1 −
𝑇$
𝑇%

𝑄%
𝑇%

=
𝑄$
𝑇$


