
! Reading:  Today starting Ch. 3.

! Note no exam next week. (Originally 3 midterm exams in 
Howdy schedule). 

! We have a midterm Oct. 29. More details on this later in the 
term. 

Notes for today
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Formal structure of the thermodynamics relationships: 

𝑼(𝑺, 𝑽,𝑵𝟏, 𝑵𝟐…)
•  r distinct particle types makes r+2 parameters.
•  We can change coordinates if desired; e.g. T, P, N also 
serves to specify 1-component system in large-N limit.
•  We also obtain r+2 eqns. of state (intensive 
quantities.):

•  Having all r+2 eqns. of state completely determines 
the function 𝑈(𝑆, 𝑉,𝑁1, 𝑁2…)    [or 𝑆(𝑈, 𝑉,𝑁1, 𝑁2…) ]; 
this will always work.
•  However one more relation among the intensive 
parameters (Gibbs-Duhem) means actually r+1 degrees 
of freedom to determine fundamental equation.
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𝑈 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁

Euler equation, distinct from first law; general 
property comes from extensivity behavior.
• From this result, establish that r+2 equations 

completely determine thermal properties.
• Similar 𝑆 𝑈, 𝑉,𝑁1, 𝑁2… relation, see text. 



Formal structure of the thermodynamics relationships: 

𝑈 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁

Example from HW1:  

𝑆 = 𝛼𝑉&/(𝑈)/( (Blackbody radiation)
Find 𝑇 & 𝑃 relationships?
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𝑆𝑑𝑇 − 𝑉𝑑𝑃 + 𝑁𝑑𝜇 = 0

Gibbs-Duhem relation
r+1 degrees of freedom can see 

or 𝑆𝑑𝑇 − 𝑉𝑑𝑃 + ∑𝑁! 𝑑𝜇! = 0



Formal structure of the thermodynamics relationships: 

Gibbs-Duhem relation𝑆𝑑𝑇 − 𝑉𝑑𝑃 +5𝑁* 𝑑𝜇* = 0

•  Can integrate to find e.g. 𝜇 in terms of other parameters. 
Thus 2 (or r+1) equations of state are sufficient.

•  Nice trick when r = 1 :  per-atom (or molar) relations.
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𝑈 = 𝑈(𝑆, 𝑉,𝑁) 

𝑢 ≡ $
&
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Formal structure of the thermodynamics relationships: 

Gibbs-Duhem relation𝑆𝑑𝑇 − 𝑉𝑑𝑃 +5𝑁* 𝑑𝜇* = 0

•  Can integrate to find e.g. 𝜇 in terms of other parameters. 
Thus 2 (or r+1) equations of state are sufficient.

•  Nice trick when r = 1 :  per-atom (or molar) relations.

𝑢 ≡ $
&
= 𝑈(𝑠, 𝑣) 𝑑𝑢 = 𝑇𝑑𝑠 − 𝑃𝑑𝑣

similar result for dS

𝑃𝑉 = 𝑁𝑘+𝑇, 𝑈 = )
,
𝑁𝑘+𝑇;  find 𝑠? 



Blackbody Radiation

• Cavity with perfect emissivity 
walls

• Measure output through tiny 
non-perturbing aperture.

≈

• Cavity mode, perfect 
conducting walls

• Each normal mode 
equivalent to “simple 
harmonic oscillator”



Blackbody radiation, thermodynamic solution

• Experimental quantities:
𝑈 = 𝑏𝑉𝑇(
𝑃 = 𝑈/(3𝑉)

• Then can easily solve for 𝑆 = (
)
𝑏&/(𝑈)/(𝑉&/(,		

using methods we have seen.
• Also note, 𝑆 = ("

)-
simpler form.

• Note N is formally zero (or can treat N as 
number of photons; µ = 0 since U independent 
of N).

𝐼 = 𝜎𝑇! Stefan-Boltzmann	
intensity	relation



• Cavity mode, perfect conducting 
walls, electric field solutions

• 3 pre-factors must solve Maxwell equations; 2 solutions for 
each n, m, l = TE and TM standing waves.

• Possible modes fill up one octant in “wave-number space”  
(except some modes not allowed:  100, etc.)

See E&M book

Absorbers& emitters in walls 
maintain thermal equilibrium
EM standing waves equivalent to 
set of harmonic oscillators:



Counting photon states:  recall harmonic oscillator result
(3N independent 1D oscillators)
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Counting photon states:  recall harmonic oscillator result
(3N independent 1D oscillators)

𝑈 = 𝑁
ℏ𝜔
2
+ 𝑁

ℏ𝜔
𝑒"ℏ$ − 1

ℏ𝜔
𝑒"ℏ$ − 1

≡ ℏ𝜔 𝑛
Same as Bose-Einstein 
occupation number 
(photon statistics)



Photons:  Quantized cavity modes.

𝑛 = 7
%&& '()*+

1
𝑒",! − 1

𝜀! ≡ ℏ𝜔! = ℏ𝑘!c
“energy per photon”

Bose distribution with photon statistics
• 2 polarizations,
for each cavity mode
N goes to infinity

𝑈 = 7
%&& '()*+

ℏ𝜔!
𝑒"ℏ$! − 1

• Throwing away infinite
amount of zero-point 
energy!



State counting:

• Start with cavity modes in a box with perfectly conducting 
sides, dimensions L.  

𝐸- ∝ 𝑐𝑜𝑠 𝑛-
.
/
𝑥 𝑠𝑖𝑛 𝑛0

.
/
𝑦 𝑠𝑖𝑛 𝑛1

.
/
𝑧 etc.

Δ𝑘 = .
/

-> 𝑉2 =
.
/

3

“Phase space volume” h3/8Octant of sphere;
but with 8× state density.
(3D sphere radius will go to infinity)

Cavity mode
Counting: one 
TM + one TE 
per k-vectorE-field


