Notes for today

- Reading: Today starting Ch. 3.
- Note no exam next week. (Originally 3 midterm exams in Howdy schedule).
- We have a midterm Oct. 29. More details on this later in the term.

Formal structure of the thermodynamics relationships:

$$
U\left(S, V, N_{1}, N_{2} \ldots\right)
$$

- r distinct particle types makes $r+2$ parameters.
- We can change coordinates if desired; e.g. T, P, N also serves to specify 1-component system in large-N limit.
- We also obtain $r+2$ eqns. of state (intensive quantities.):

$$
T=\left(\frac{\partial U}{\partial S}\right)_{V N},-P=\left(\frac{\partial U}{\partial V}\right)_{S N}, \mu=\left(\frac{\partial U}{\partial N}\right)_{S V}
$$

- Having all $r+2$ eqns. of state completely determines the function $U\left(S, V, N_{1}, N_{2} \ldots\right) \quad\left[\operatorname{or} S\left(U, V, N_{1}, N_{2} \ldots\right)\right]$; this will always work.
- However one more relation among the intensive parameters (Gibbs-Duhem) means actually $r+1$ degrees of freedom to determine fundamental equation.

Formal structure of the thermodynamics relationships:

$$
\begin{gathered}
U\left(S, V, N_{1}, N_{2} \ldots\right) \text { vs } d U=T d S-P d V+\mu d N: \\
\lambda U\left(S, V, N_{1}, N_{2} \ldots\right)=U\left(\lambda S, \lambda V, \lambda N_{1}, \lambda N_{2} \ldots\right)
\end{gathered}
$$

$$
\text { also } U=\frac{\partial(\lambda U)}{\partial \lambda}
$$

Formal structure of the thermodynamics relationships:

$$
U\left(S, V, N_{1}, N_{2} \ldots\right) \text { vs } d U=T d S-P d V+\mu d N:
$$

$\lambda U\left(S, V, N_{1}, N_{2} \ldots\right)=U\left(\lambda S, \lambda V, \lambda N_{1}, \lambda N_{2} \ldots\right)$
also $U=\frac{\partial(\lambda U)}{\partial \lambda}$

$$
U=T S-P V+\mu N
$$

Euler equation, distinct from first law; general property comes from extensivity behavior.

- From this result, establish that $r+2$ equations completely determine thermal properties.
- Similar $S\left(U, V, N_{1}, N_{2} \ldots\right)$ relation, see text.

Formal structure of the thermodynamics relationships:

$$
U=T S-P V+\mu N
$$

Example from HW1:

$$
\begin{aligned}
& S=\alpha V^{1 / 4} U^{3 / 4} \text { (Blackbody radiation) } \\
& \text { Find } T \& P \text { relationships? }
\end{aligned}
$$

Formal structure of the thermodynamics relationships:

$$
U=T S-P V+\mu N
$$

Means: $\quad d U=T d S-P d V+\mu d N$
And: $\quad d U=T d S+S d T-P d V-V d P+\mu d N+N d \mu$

Formal structure of the thermodynamics relationships:

$$
U=T S-P V+\mu N
$$

Means: $\quad d U=T d S-P d V+\mu d N$
And: $\quad d U=T d S+S d T-P d V-V d P+\mu d N+N d \mu$

$$
S d T-V d P+N d \mu=0
$$

Gibbs-Duhem relation

$$
\text { or } S d T-V d P+\sum N_{i} d \mu_{i}=0
$$

$r+1$ degrees of freedom can see

Formal structure of the thermodynamics relationships:

$$
S d T-V d P+\sum N_{i} d \mu_{i}=0 \quad \text { Gibbs-Duhem relation }
$$

- Can integrate to find e.g. μ in terms of other parameters. Thus 2 (or $r+1$) equations of state are sufficient.
- Nice trick when $r=1$: per-atom (or molar) relations.

Formal structure of the thermodynamics relationships:

$$
S d T-V d P+\sum N_{i} d \mu_{i}=0 \quad \text { Gibbs-Duhem relation }
$$

- Can integrate to find e.g. μ in terms of other parameters. Thus 2 (or $r+1$) equations of state are sufficient.
- Nice trick when $r=1$: per-atom (or molar) relations.

$$
\begin{aligned}
U & =U(S, V, N) \\
\longrightarrow \quad u & \equiv \frac{U}{N}=U(s, v) \quad v \equiv \frac{V}{N}=\frac{1}{n} \quad s \equiv \frac{S}{N}
\end{aligned}
$$

Formal structure of the thermodynamics relationships:

$$
S d T-V d P+\sum N_{i} d \mu_{i}=0 \quad \text { Gibbs-Duhem relation }
$$

- Can integrate to find e.g. μ in terms of other parameters. Thus 2 (or $r+1$) equations of state are sufficient.
- Nice trick when $r=1$: per-atom (or molar) relations.

$$
u \equiv \frac{U}{N}=U(s, v) \longrightarrow d u=T d s-P d v
$$

similar result for $d S$

Formal structure of the thermodynamics relationships:

$$
S d T-V d P+\sum N_{i} d \mu_{i}=0 \quad \text { Gibbs-Duhem relation }
$$

- Can integrate to find e.g. μ in terms of other parameters. Thus 2 (or $r+1$) equations of state are sufficient.
- Nice trick when $r=1$: per-atom (or molar) relations.

$$
u \equiv \frac{U}{N}=U(s, v) \longrightarrow d u=T d s-P d v
$$

similar result for $d S$

$$
P V=N k_{B} T, U=\frac{3}{2} N k_{B} T ; \text { find } s ?
$$

Blackbody Radiation

- Cavity with perfect emissivity walls
- Measure output through tiny non-perturbing aperture.

- Cavity mode, perfect conducting walls
- Each normal mode equivalent to "simple harmonic oscillator"

Blackbody radiation, thermodynamic solution

- Experimental quantities: $I=\sigma T^{4}$ Stefan-Boltzmann

$$
U=b V T^{4}
$$

$$
P=U /(3 V)
$$

- Then can easily solve for $S=\frac{4}{3} b^{1 / 4} U^{3 / 4} V^{1 / 4}$, using methods we have seen.
- Also note, $S=\frac{4 U}{3 T}$ simpler form.
- Note N is formally zero (or can treat N as number of photons; $\mu=0$ since U independent of N).

Absorbers\& emitters in walls maintain thermal equilibrium EM standing waves equivalent to set of harmonic oscillators:

- Cavity mode, perfect conducting walls, electric field solutions

$E_{x}(x, y, z)=E_{0}^{(x)} \cos \left[n \pi x / L_{x}\right] \sin \left[m \pi y / L_{y}\right] \sin \left[l \pi z / L_{z}\right]$
$E_{y}(x, y, z)=E_{0}^{(y)} \sin \left[n \pi x / L_{x}\right] \cos \left[m \pi y / L_{y}\right] \sin \left[l \pi z / L_{z}\right]$
See E\&M book
$E_{z}(x, y, z)=E_{0}^{(z)} \sin \left[n \pi x / L_{x}\right] \sin \left[m \pi y / L_{y}\right] \cos \left[l \pi z / L_{z}\right]$
- 3 pre-factors must solve Maxwell equations; 2 solutions for each $n, m, l=$ TE and TM standing waves.
- Possible modes fill up one octant in "wave-number space" (except some modes not allowed: 100, etc.)

Counting photon states: recall harmonic oscillator result (3N independent 1D oscillators)

$$
U=N \frac{\hbar \omega}{2}+N \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

Counting photon states: recall harmonic oscillator result (3N independent 1D oscillators)

$$
U=N \frac{\hbar \omega}{2}+N \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

Same as Bose-Einstein occupation number (photon statistics)

$$
\frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \equiv \hbar \omega\langle\langle n\rangle
$$

Photons: Quantized cavity modes.

$$
\langle n\rangle=\sum_{\text {all modes }} \frac{1}{\left(e^{\beta \varepsilon_{i}}-1\right)} \quad \begin{aligned}
& \varepsilon_{i} \equiv \hbar \omega_{i}=\hbar k_{i} \mathrm{c} \\
& \text { "energy per photon" }
\end{aligned}
$$

- 2 polarizations, for each cavity mode Bose distribution with photon statistics
N goes to infinity

$$
U=\sum_{\text {all modes }} \frac{\hbar \omega_{i}}{\left(e^{\beta \hbar \omega_{i}}-1\right)}
$$

- Throwing away infinite amount of zero-point energy!

State counting:

- Start with cavity modes in a box with perfectly conducting sides, dimensions L.

$$
E_{x} \propto \cos \left(n_{x} \frac{\pi}{L} x\right) \sin \left(n_{y} \frac{\pi}{L} y\right) \sin \left(n_{z} \frac{\pi}{L} z\right) \text { etc. }
$$

$$
\Delta k=\frac{\pi}{L}->V_{k}=\left(\frac{\pi}{L}\right)^{3}
$$

"Phase space volume" $h^{3} / 8$
but with $8 \times$ state density.
(3D sphere radius will go to infinity)

