
Physics 408 Problem Set 9 Due Thurs, Nov 11 at beginning of class 
 
1)  Callen problem 16.2.6, with the additions:   
(i) In your answers include the ground state energies per atom for atoms A and B given explicitly 
as EA0 and EB0. 
(ii) Add part (c):  Identify the low-temperature limit for your answer in part a, and show that it 
has the expected form, and identify the high-temperature limiting form for the heat capacity, and 
discuss why this result is also expected from a physical standpoint. 
 
2)  Callen 16.7.2, with the added second part: 
(b)  Starting with the formal result for the Debye-model entropy established in this problem, 
consider the low-T limit. As explained in class, in this limit for the energy the upper limit of the 
integral can be replaced by infinity since the decay of the exponential function make the cutoff 
frequency irrelevant; the same holds for the integrals involved here. Find the entropy in this 
limit, and as a result show that the ratio ST/U is the same as for thermal photons in a blackbody 
cavity; I showed this in my slides earlier in the term. This result comes about because of the 
equivalence of the phonon and photon excitations. 
 
3)  a)  Consider a gas which obeys the van der Waals equation of state. Could a factorized 
partition function such as in equation 16.17 of the text (or possibly with a 1/N! factor for 
indistinguishable particles) be used to represent the properties of this gas? Explain. (Note, recall 
our discussion of the physical meaning of the a parameter in the vdW equation of state.) 
b)  There are some materials in which a portion of the atoms are loosely bonded to their 
neighbors. This can happen in some crystals which have relatively open “cages” in which ions 
can be positioned, or in ice crystals where hydrogens are constrained rather weakly along one 
direction, a situation which also leads to its nonzero entropy at T = 0, mentioned earlier in the 
term. In these situations the vibrational behavior can be modeled by assuming the Einstein model 
applies to some of the vibrational modes and the Debye model applies to the rest. Suppose that a 
solid has NE Einstein modes, and ND Debye modes. What do you expect for the high-temperature 
specific heat in this situation? 
 
4)  Consider a distribution of relativistic particles where the thermal energies is such that the 
mass can be neglected: 𝜀 = #𝑝!𝑐! +𝑚!𝑐" ≅ 𝑝𝑐. The large gravitational energy in some 
collapsed stars leads to such a situation, and for example the crossover from classical to 
relativistic behavior sets the limit for white dwarf stability.  
a) Consider a set of N identical relativistic particles of one particle type, in the dilute limit so that 
our ideal-gas approximations are valid. Write down the general form of the partition function.  
b) Solve for the energy vs. T in the high-temperature limit. 
c) Repeat the process for the case of a 1-D relativistic ideal gas. (Electrons in carbon nanotubes 
in some cases can be treated in an equivalent way.) Find the partition function, and solve for the 
energy vs. T. 
d)  As a result, identify a modified equipartition theorem which applies for a Hamiltonian which 
is linear in the generalized coordinates, rather than quadratic. 
 
5) In a ferromagnet with all spins aligned in the same direction at low temperatures, the 
quantized normal modes are magnons: local disturbances in spin orientation lead to oscillating 
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spin waves. The quantized waves have discrete energies ℏ𝜔 similar to photons or phonons, and 
the quantized spin waves are called magnons. Magnons can carry information, but without the 
dissipation that comes with electric currents; this is a possible basis for spintronics as a more 
efficient platform for next-generation integrated circuits.  
a)  Unlike phonons, magnons have a dispersion relation 𝜔 = 𝛼𝑘!, with 𝛼 a constant. Also 
consider that there are two polarizations similar to photons. Calculate the density of modes 𝐷(𝜔) 
for this case. 
b) Find the temperature exponent for the low-temperature specific heat, e.g. 𝐶 ∝ 𝑇#. 
 
6)   Ionization of hydrogen:  I treated this situation earlier by determining the chemical 
potentials, but the problem can be treated naturally in the Canonical formalism. Consider for 
simplicity a 1 cm3 volume containing one H atom. Assume that the possible states are, (i) the 
non-ionized atom at a relative energy –13.6 eV, (ii) the ionized electron, an ideal gas. For 
simplicity assume that the atom, and the ionized proton, are fixed in place so their motion 
contributes no degrees of freedom. (The masses are the same so their density of states integrals 
nearly cancel, making this a good approximation.) 
(a)  At a temperature of 5000 K, calculate the ratio of probability of finding the atom ionized, 
using the simplified picture that only the Boltzmann factor matters with the ionized atom 
assumed to have relative energy E = 0, vs. the atom at energy –13.6 eV. 
(b) Repeat, but using the more realistic approximation that the ionized electron probability is the 
sum of the ideal-gas probabilities vs energy, normalized by the partition function. For this you 
need the density of states in energy for the electron (ideal gas form). Integrate over available 
energy from zero to infinity to find the total probability that the electron occupies one of the 
ideal-gas states. Rather than calculating the partition function, find instead the ratio of the 
ionized vs. non-ionized atom probability, for which Z drops out. 
(c)  Compare to the result I derived in class; show that they are the same, within a factor of 2 
since in our previous treatment the electron spin was not included. [Added note: a further 
refinement of this calculation should properly include the proton spin, which gives a factor of 2 
further increase in the likelihood of ionization, since the density of available ionized states is 
enhanced; we are neglecting this term for simplicity.] 
 


