Lenses & Mirrors (ch. 34)

- **Mirror images**: Focal length, \(f = \frac{R}{2} \)

 \((\infty \text{ for flat mirror, negative for convex}) \)

 Image formation, \(\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \),

 where \(s \) is for object, \(s' \) for image.

 Magnification: \(m = \frac{y'}{y} = -\frac{s'}{s} \)

- **Converging lens** (\(s \) positive on back side, \(s' \) on observer side)

 \[\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \], \[\frac{y'}{y} = -\frac{s'}{s} \]

 lens power, \(1/f \) in Diopters (\(D = 1/m \))

 \(m = -\frac{s'}{s} \), magnification, \(M = \frac{\theta'}{\theta} \), angular magnification

 \(f \)-stop or \(f \)-number: ratio of \(f \) to diameter

- **Diverging lens** (\(f \) negative, \(s' \) always negative)

 then use \(\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \), same as above.

- **Lens combinations**:

 Image of first lens acts as *object* for second lens.

- **Lens-makers equation**:

 \[\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \],

 where \(n \) is index of refraction.