Dynamics of Rotational motion

Prof. Igor Roshchin
Overview: Rotational Motion

- Take our results from "linear" physics and do the same for "angular" physics
- Analogue of
 - Position ←
 - Velocity ←
 - Acceleration ←
 - Force ←
 - Mass ←
 - Momentum ←
 - Energy ←

Chapters 1-3

Chapters 4-7
Angular Quantities

• So far:
 - Position \rightarrow Angle θ
 - Velocity \rightarrow Angular Velocity ω
 - Acceleration \rightarrow Angular Acceleration α

• Now, we’ll start discussing the vector nature of the variables and then move forward on the others:
 - Force
 - Mass
 - Momentum
 - Energy
Angular Quantities

- Position \rightarrow Angle θ
- Velocity \rightarrow Angular Velocity ω
- Acceleration \rightarrow Angular Acceleration α

Moving forward:
- Force
- Mass
- Momentum
- Energy
Slamming a door

We know this from experience:

- If we want to slam a door really hard, we grab it at the end.
- If we try to push in the middle, we aren’t able to make it slam nearly as hard.
Torque

• **Torque** is the analogue of **Force**

• Take into account the perpendicular distance from axis

 - Same force further from axis leads to more Torque

\[\text{Torque} = \text{Force} \times \text{Distance from axis} \]

![Diagram showing two forces, \(F_1 \) and \(F_2 \), at different distances from the axis, \(R_1 \) and \(R_2 \).]
Slamming a door

We also know this from experience:

- If we want to slam a door really hard, we grab it at the end and “throw” perpendicular to the hinges.
- If we try to pushing towards the hinges, the door won’t even close.
• What if we change the angle at which the Force is applied?

• What is the “Effective Radius?”
Torque

- Torque is our “slamming” ability
- Write Torque as τ

$$|\tau| = r \| F \| \sin \theta$$
Torque and Force

Torque problems are like Force problems

1. Draw a force diagram
2. Then, sum up all the torques to find the total torque

Is torque a vector?
Torque

• Torque is our “slamming” ability
• Write Torque as τ

$$|\tau| = r \| F \| \sin \theta$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

• To find the direction of the torque, wrap your fingers in the direction the torque makes the object twist
Torque and Force

Torque problems are like Force problems
1. Draw a force diagram
2. Then, sum up all the torques to find the total torque

Is torque a vector?
Vector Cross Product

\[\vec{C} = \vec{A} \times \vec{B} \]
\[|C| = |A| |B| \sin \theta \]

This is the last way of multiplying vectors we will see

- Direction from the “right-hand rule”
- Swing from A into B!
Vector Cross Product Cont...

- Multiply out, but use the $\sin \theta$ to give the magnitude, and RHR to give the direction.

\[
\hat{i} \times \hat{i} = 0 \quad (\sin \theta = 0)
\]
\[
\hat{i} \times \hat{j} = \hat{k} \quad (\sin \theta = 1)
\]
\[
\hat{i} \times \hat{k} = -\hat{j} \quad (\sin \theta = 1)
\]
Example: Composite Wheel

- Two forces, F_1 and F_2, act on different radii of a wheel, R_1 and R_2, at different angles Θ_1 and Θ_2. Θ_1 is a right angle.

- If the axis is fixed, what is the net Torque on the wheel?
Angular Quantities

- Position \Rightarrow Angle θ
- Velocity \Rightarrow Angular Velocity ω
- Acceleration \Rightarrow Angular Acceleration α

Moving forward:

- Force \Rightarrow Torque τ
- Mass
- Momentum
- Energy
Analogue of Mass

The analogue of Mass is called *Moment of Inertia*

Example: A ball of mass m moving in a circle of radius R around a point has a moment of inertia

$$F=ma \Rightarrow \tau = I \alpha$$
Calculate Moment of Inertia

• Calculate the moment of inertia for a ball of mass m relative to the center of the circle R
Moment of Inertia

• To find the mass of an object, just add up all the little pieces of mass

• To find the moment of inertia around a point, just add up all the little moments (each is \(mr^2\))

\[I = \sum mr^2 \quad \text{or} \quad I = \int r^2 \, dm \]
Torque and Moment of Inertia

• Force vs. Torque

\[F = ma \Rightarrow \tau = I \alpha \]

• Mass vs. Moment of Inertia

\[m \Rightarrow I = \sum mr^2 \quad \text{or} \quad I = \int r^2 \, dm \]
Moment of Inertia for a Disc

• Calculate moment of inertia for a thin disk of mass M and radius R

• How will the result change if this is a cylinder of length l (i.e. a very thick disc)?
Rotational Kinetic Energy

\[KE_{\text{trans}} = \frac{1}{2}mv^2 \]

\[KE_{\text{rotate}} = \frac{1}{2}I\omega^2 \]

Conservation of Energy must take into account rotational kinetic energy
Rotation and Translation

- Objects can both Rotate and Translate
- Need to add the two

\[KE_{total} = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2 \]

- Rotational part: pick axis going through the CM
- Rolling without slipping is a special case where you can relate the two
 - \(V = \omega r \)
Next Time

• The rest of Chapter 10
 - More on “angular stuff”
 - Angular Momentum
 - Energy
Coming up...

• Next week:
 - Homework 8 - BOTH PARTS! Was due today

• Chapter 10 (and 9!) - read it!

 Hints: Reading questions due: Q10.13-10.15 & Q10.17-10.20, Q10.26