(1a) The Riemann tensor in n dimensions has $\frac{1}{12}n^2(n^2 - 1)$ algebraically-independent components. Use this information to show that in two dimensions, the Riemann tensor for any metric can be identically written as

$$R_{\mu\nu\rho\sigma} = \frac{1}{2}R(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}),$$

where R is the Ricci scalar. (Be sure to present an argument for why the Riemann tensor must be of the form (1).)

(1b) Hence show that in two dimensions, the Einstein tensor

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$$

vanishes identically.

(2a) Consider the four-dimensional metric

$$ds^2 = -e^{2u}dt^2 + e^{-2u}h_{ij}dx^i dx^j,$$

where u and h_{ij} are functions of x^i (with $i = 1, 2, 3$) only. Calculate the Christoffel connection $\Gamma^\mu_{\nu\rho}$ (where $\mu = (0, i)$ and $x^0 = t$), expressing your answers (for Γ^0_{00}, Γ^0_{0i}, etc.) in terms of the function u and its derivatives, the 3-metric h_{ij} and the Christoffel connection $\tilde{\Gamma}^{ijk}$ of the 3-metric h_{ij}.

(2b) Hence calculate the components of the Ricci tensor $R_{\mu\nu}$ of the four-dimensional metric, expressing your answers in terms of u and its derivatives, h_{ij} and R_{ij} (the Ricci tensor of the 3-metric h_{ij}). Your answers should be expressed in terms of 3-dimensionally covariant quantities, so you may need to introduce the covariant derivative $\tilde{\nabla}_i$ constructed using the Christoffel connection $\tilde{\Gamma}^{ijk}$ for the 3-metric h_{ij}.

(2c) Hence show that the vacuum Einstein equations imply $\tilde{R}_{ij} = 2\partial_i u \partial_j u$ and $\tilde{\nabla}^2 u = 0$, where $\tilde{\nabla}^2 = \tilde{\nabla}^i \tilde{\nabla}_i$ is the scalar Laplacian calculated in the 3-metric h_{ij}.

(3a) A two-dimensional surface Σ in Euclidean 3-space \mathbb{R}^3 is specified by the embedding

$$x = (a + b \sin \phi) \cos \psi, \quad y = (a + b \sin \phi) \sin \psi, \quad z = b \cos \phi,$$

where ϕ and ψ both have period 2π, and (x, y, z) are the Cartesian coordinate in \mathbb{R}^3. The constants a and b are such that $a > b > 0$. Sketch the 2-surface Σ and describe its shape; i.e. what does it look like?.

(3b) Calculate the induced metric on the 2-surface Σ.

(3c) Calculate the Ricci tensor for the 2-metric on Σ.

(3d) Calculate $\int \sqrt{g} R d^2x$ for this metric.

TURN OVER FOR QUESTION 4 !!!!
Use the Komar formula

\[J = \frac{1}{32\pi} \int_{S^2} \epsilon_{\mu \nu} \partial_{\rho} L_{\sigma} d\Sigma^{\mu \nu}, \]

(2)
evaluated over the "sphere at infinity," to calculate the angular momentum of the Kerr black hole, where \(L = \partial / \partial \varphi \) is the Killing vector that generates azimuthal rotations. (The Kerr metric, and all definitions needed in (2), are given in the notes.)

Note: The answer is already given in the notes; the point of this problem is to give a clearly-presented logical sequence of steps that shows how the result is obtained. Merely reporting that the answer is \(J = am \) is not enough!!!! A very useful tip is to keep in mind is that eventually one is going to take the limit where \(r \) goes to infinity, and so one can expand the Kerr metric in inverse powers of \(r \) at the outset and keep only the leading-order term in each component.

Please scan your script, and e-mail it to me as a single pdf file, by the deadline on Thursday at 5:00pm. Please make sure you write using a pen that will be legible in the scanned version!