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1 Electrodynamics and Special Relativity

1.1 Introduction

The final form of Maxwell’s equations describing the electromagnetic field had been es-

tablished by 1865. Although this was forty years before Einstein formulated his theory of

special relativity, the Maxwell equations are, remarkably, fully consistent with the special

relativity. The Maxwell theory of electromagnetism is the first, and in many ways the most

important, example of what is known as a classical relativistic field theory.

James Clerk Maxwell

Our emphasis in this course will be on establishing the formalism within which the

relativistic invariance of electrodynamics is made manifest, and thereafter exploring the

relativistic features of the theory.

In Newtonian mechanics, the fundamental laws of physics, such as the dynamics of

moving objects, are valid in all inertial frames (i.e. all non-accelerating frames). If S is an

inertial frame, then the set of all inertial frames comprises all frames that are in uniform

motion relative to S. Suppose that two inertial frames S and S′, are parallel, and that their

origins coincide at at t = 0. If S′ is moving with uniform velocity ~v relative to S, then a

point P with position vector ~r with respect to S will have position vector ~r ′ with respect

to S′, where

~r ′ = ~r − ~v t . (1.1)
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Of course, it is always understood in Newtonian mechanics that time is absolute, and so

the times t and t′ measured by observers in the frames S and S′ are the same:

t′ = t . (1.2)

The transformations (1.1) and (1.2) form part of what is called the Galilean Group. The

full Galilean group includes also rotations of the spatial Cartesian coordinate system, so

that we can define

~r ′ = M · ~r − ~v t , t′ = t , (1.3)

where M is an orthogonal 3 × 3 constant matrix acting by matrix multiplication on the

components of the position vector:

~r ↔


x

y

z

 , M · ~r ←→M


x

y

z

 , (1.4)

where MT M = 1, and MT denotes the transpose of the matrix M.

Returning to our simplifying assumption that the two frames are parallel, i.e. that

M = 1l, it follows that if a particle having position vector ~r in S moves with velocity

~u = d~r/dt, then its velocity ~u′ = d~r ′/dt as measured with respect to the frame S′ is given

by

~u ′ = ~u− ~v . (1.5)

Suppose, for example, that ~v lies along the x axis of S; i.e. that S′ is moving along

the x axis of S with speed v = |~v |. If a beam of light were moving along the x axis of S

with speed c, then the prediction of Newtonian mechanics and the Galilean transformation

would therefore be that in the frame S′, the speed c′ of the light beam would be

c′ = c− v . (1.6)

Of course, as is well known, this contradicts experiment. As far as we can tell, with

experiments of ever-increasing accuracy, the true state of affairs is that the speed of the

light beam is the same in all inertial frames. Thus the predictions of Newtonian mechanics

and the Galilean transformation are falsified by experiment.

Of course, it should be emphasised that the discrepancies between experiment and the

Galilean transformations are rather negligible if the relative speed v between the two inertial

frames is of a typical “everyday” magnitude, such as the speed of a car or a plane. But if
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v begins to become appreciable in comparison to the speed of light, then the discrepancy

becomes appreciable too.

By contrast, it turns out that Maxwell’s equations of electromagnetism do predict a

constant speed of light, independent of the choice of inertial frame. To be precise, let us

begin with the free-space Maxwell’s equations,

~∇ · ~E =
1

ε0
ρ , ~∇× ~B − µ0ε0

∂ ~E

∂t
= µ0

~J ,

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 , (1.7)

where ~E and ~B are the electric and magnetic fields, ρ and ~J are the charge density and

current density, and ε0 and µ0 are the permittivity and permeability of free space.1

To see the electromagnetic wave solutions, we can consider a region of space where there

are no sources, i.e. where ρ = 0 and ~J = 0. Taking the curl of the last equation in (1.7)

and then using the time derivative of the second equation (with ~J = 0), we shall have

~∇× (~∇× ~E) = − ∂

∂t
~∇× ~B = −µ0ε0

∂2 ~E

∂t2
. (1.8)

Let us assume we are working in Cartesian coordinates. Using the vector identity ~∇× (~∇×
~E) = ~∇(~∇· ~E)−∇2 ~E, it follows from ~∇· ~E = 0 (which holds by virtue of the first equation

in (1.7) when ρ = 0) that the electric field satisfies the wave equation

∇2 ~E − µ0ε0
∂2 ~E

∂t2
= 0 . (1.9)

This admits plane-wave solutions of the form

~E = ~E0 e
i(~k·~r−ωt) , (1.10)

where ~E0 and ~k are constant vectors, and ω is also a constant, with

k2 = µ0ε0 ω
2 . (1.11)

Here k means |~k|, the magnitude of the wave-vector ~k. Thus we see that the waves travel

at speed c given by

c =
ω

k
=

1
√
µ0ε0

. (1.12)

Putting in the numbers, this gives c ≈ 3× 108 metres per second, i.e. the familiar speed of

light.

1The equations here are written using the system of units known as SI, which could be said to stand for

“Super Inconvenient.” We shall pass to more convenient units a little bit later.
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A similar calculation shows that the magnetic field ~B also satisfies an identical wave

equation, and in fact ~B and ~E are related by

~B =
1

ω
~k × ~E . (1.13)

The situation, then, is that if the Maxwell equations (1.7) hold in a given frame of

reference, then they predict that the speed of light will be c ≈ 3 × 108 metres per second

in that frame. Therefore, if we assume that the Maxwell equations hold in all inertial

frames, then they predict that the speed of light will have that same value in all inertial

frames. Since this prediction is in agreement with experiment, we can reasonably expect

that the Maxwell equations will indeed hold in all inertial frames. Since the prediction

contradicts the implications of the Galilean transformations, it follows that the Maxwell

equations are not invariant under Galilean transformations. This is just as well, since the

Galilean transformations are wrong!

In fact, as we shall see, the transformations that correctly describe the relation between

observations in different inertial frames in uniform motion are the Lorentz Transformations

of Special Relativity. Furthermore, even though the Maxwell equations were written down in

the pre-relativity days of the nineteenth century, they are in fact perfectly invariant2 under

the Lorentz transformations. No further modification is required in order to incorporate

Maxwell’s theory of electromagnetism into special relativity.

However, the Maxwell equations as they stand, written in the form given in equation

(1.7), do not look manifestly covariant with respect to Lorentz transformations. This is

because they are written in the language of 3-vectors. To make the Lorentz transformations

look nice and simple, we should instead express them in terms of 4-vectors, where the extra

component is associated with the time direction.

Actually, before proceeding it is instructive to take a step back and look at what the

Maxwell equations actually looked like in Maxwell’s 1865 paper A Dynamical Theory of the

Electromagnetic Field, published in the Philosophical Transactions of the Royal Society of

London. It must be recalled that in 1865 three-dimensional vectors had not yet been in-

vented, and so everything was written out explicitly in terms of the x, y and z components.3

To make matters worse, Maxwell used a different letter of the alphabet for each component

of each field. In terms of the now-familiar electric vector fields ~E, ~D, the magnetic fields

~B, ~H, the current density ~J and the charge density ρ, Maxwell’s chosen names for the

2Strictly, as will be explained later, we should say covariant rather than invariant.
3Vectors were invented independently by Josiah Willard Gibbs, and Oliver Heaviside, around the end of

the 19th century.
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components were

~E = (P,Q,R) , ~D = (f, g, h) ,

~B = (F,G,H) , ~H = (α, β, γ) ,

~J = (p, q, r) , ρ = e . (1.14)

Thus the Maxwell equations that we now write rather compactly as4

~∇ · ~D = 4πρ , ~∇ · ~B = 0 , (1.15)

~∇× ~H − ∂ ~D

∂t
= 4π ~J , ~∇× ~E +

∂ ~B

∂t
= 0 , (1.16)

took, in 1865, the highly inelegant forms

∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 4πe ,

∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 , (1.17)

for the two equations in (1.15), and

∂γ

∂y
− ∂β

∂z
− ∂f

∂t
= 4πp ,

∂α

∂z
− ∂γ

∂x
− ∂g

∂t
= 4πq ,

∂β

∂x
− ∂α

∂y
− ∂h

∂t
= 4πr ,

∂R

∂y
− ∂Q

∂z
+
∂F

∂t
= 0 ,

∂P

∂z
− ∂R

∂x
+
∂G

∂t
= 0 ,

∂Q

∂x
− ∂P

∂y
+
∂H

∂t
= 0 , (1.18)

for the two vector-valued equations in (1.16). Not only does Maxwell’s way of writing his

equations, in (1.17) and (1.18), look like a complete mess, but it also completely fails to

make manifest the familiar fact that the equations are symmetric under arbitrary rotations

of the three-dimensional (x, y, z) coordinate system. Of course in the 3-vector notation of

(1.15) and (1.16) this rotational symmetry is completely manifest; that is precisely what

the vectors notation was invented for, to make manifest the rotational symmetry of three-

dimensional equations like the Maxwell equations. The symmetry is, of course, actually

there in Maxwell’s equations (1.17) and (1.18), but it is completely obscure and non-obvious.

4Here, we are writing the equations in the so-called “Natural Units,” which we shall be using throughout

this course.
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So the moral of the story is that one not only wants equations that have the nice symme-

tries, but one wants to write them in a notation that makes these symmetries manifest. It is

worth bearing this in mind when we pursue our goal of re-writing the Maxwell equations in

a notation that does even more, and makes their symmetry under Lorentz transformations

manifest. In order to give a nice elegant treatment of the Lorentz transformation properties

of the Maxwell equations, we should first therefore reformulate special relativity in terms

of 4-vectors and 4-tensors. Since there are many different conventions on offer in the mar-

ketplace, we shall begin with a review of special relativity in the notation that we shall be

using in this course.

1.2 The Lorentz Transformation

The derivation of the Lorentz transformation follows from Einstein’s two postulates:

• The laws of physics are the same for all inertial observers.

• The speed of light is the same for all inertial observers.

To derive the Lorentz transformation, let us suppose that we have two inertial frames

S and S′, whose origins coincide at time zero, that is to say, at t = 0 in the frame S, and

at t′ = 0 in the frame S′. If a flash of light is emitted at the origin at time zero, then it will

spread out over a spherical wavefront given by

x2 + y2 + z2 − c2t2 = 0 (1.19)

in the frame S, and by

x′
2

+ y′
2

+ z′
2 − c2t′

2
= 0 (1.20)

in the frame S′. Note that, following the second of Einstein’s postulates, we have used the

same speed of light c for both inertial frames. Our goal is to derive the relation between

the coordinates (x, y, z, t) and (x′, y′, z′, t′) in the two inertial frames.

Consider for simplicity the case where S′ is parallel to S, and moves along the x axis

with velocity v. Clearly we must have

y′ = y , z′ = z . (1.21)

Furthermore, the transformation between (x, t) and (x′, t′) must be a linear one, since

otherwise it would not be translation-invariant or time-translation invariant. Thus we may

say that

x′ = Ax+Bt , t′ = Cx+Dt , (1.22)
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for constants A, B , C and D to be determined.

Now, if x′ = 0, this must, by definition, correspond to the equation x = vt in the frame

S, and so from the first equation in (1.22) we have B = −Av, and so we have

x′ = A (x− vt) . (1.23)

By the same token, if we exchange the roles of the primed and the unprimed frames, and

consider the origin x = 0 for the frame S, then this will correspond to x′ = −vt′ in the

frame S′. (If the origin of the frame S′ moves along x in the frame S with velocity v, then

the origin of the frame S must be moving along x′ in the frame S′ with velocity −v.) It

follows that we must have

x = A (x′ + vt′) . (1.24)

Note that it must be the same constant A in both these equations, since the two really just

correspond to reversing the direction of the x axis, and the physics must be the same for

the two cases.

Now we bring in the postulate that the speed of light is the same in the two frames, so

if we have x = ct then this must imply x′ = ct′. Solving the resulting two equations

ct′ = A (c− v)t , ct = A (c+ v)t′ (1.25)

for A, we obtain

A =
1√

1− v2/c2
. (1.26)

Solving x2 − c2t2 = x′2 − c2t′2 for t′, after using (1.23), we find t′2 = A2 (t − vx/c2)2 and

hence

t′ = A (t− v

c2
x) . (1.27)

(We must choose the positive square root since it must reduce to t′ = +t if the velocity v

goes to zero.) At this point we shall change the name of the constant A to the conventional

one γ, and thus we arrive at the Lorentz transformation

x′ = γ(x− vt) , y′ = y , z′ = z , t′ = γ(t− v

c2
x) , (1.28)

where

γ =
1√

1− v2/c2
, (1.29)

in the special case where S′ is moving along the x direction with velocity v.

At this point, for notational convenience, we shall introduce the simplification of working

in a system of units in which the speed of light is set equal to 1. We can do this because the
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speed of light is the same for all inertial observers, and so we may as well choose to measure

length in terms of the time it takes for light in vacuo to traverse the distance. In fact, the

metre is nowadays defined to be the distance travelled by light in vacuo in 1/299,792,458

of a second. By making the small change of taking the light-second as the basic unit of

length, rather than the 1/299,792,458′th of a light-second, we end up with a system of units

in which c = 1. Alternatively, we could measure time in “light metres,” where the unit is

the time taken for light to travel 1 metre. In these units, the Lorentz transformation (1.28)

becomes

x′ = γ(x− vt) , y′ = y , z′ = z , t′ = γ(t− vx) , (1.30)

where

γ =
1√

1− v2
. (1.31)

Note that if desired, we can easily restore the explicit factors of the speed of light

in any expression just by using dimensional analysis. If a quantity X has dimensions

[X] = Ln1 Mn2 Tn3 , then to restore c we just make the replacement

X −→ cn3 X . (1.32)

For example, the dimensions of velocity ~v are [~v ] = LT−1, and so to restore the factors of

c in the expression (1.31) for γ, we should send v −→ v/c, hence bringing us back to the

original expression for γ in eqn (1.29). Similarly, restoring the powers of c in the Lorentz

transformations (1.30) brings them back to the original expressions in eqn (1.28).

It will be convenient to generalise the Lorentz transformation (1.30) to the case where

the frame S′ is moving with (constant) velocity ~v in an arbitrary direction, rather than

specifically along the x axis. It is rather straightforward to do this. We know that there is a

complete rotational symmetry in the three-dimensional space parameterised by the (x, y, z)

coordinate system. Therefore, if we can first rewrite the special case described by (1.30) in

terms of 3-vectors, where the 3-vector velocity ~v happens to be simply ~v = (v, 0, 0), then

generalisation will be immediate. It is easy to check that with ~v taken to be (v, 0, 0), the

Lorentz transformation (1.30) can be written as

~r ′ = ~r +
γ − 1

v2
(~v · ~r )~v − γ~v t , t′ = γ(t− ~v · ~r ) , (1.33)

with γ = (1 − v2)−1/2 and v ≡ |~v |, and with ~r = (x, y, z). Since these equations are

manifestly covariant under 3-dimensional spatial rotations (i.e. they are written entirely in

a 3-vector notation), it must be that they are the correct form of the Lorentz transformations

for an arbitrary direction for the velocity 3-vector ~v.
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The Lorentz transformations (1.33) are what are called the pure boosts. It is easy to

check that they have the property of preserving the spherical light-front condition, in the

sense that points on the expanding spherical shell given by r2 = t2 of a light-pulse emitted

at the origin at t = 0 in the frame S will also satisfy the equivalent condition r′2 = t′2 in

the primed reference frame S′. (Note that r2 = x2 + y2 + z2.) In fact, a stronger statement

is true: The Lorentz transformation (1.33) satisfies the equation

x2 + y2 + z2 − t2 = x′
2

+ y′
2

+ z′
2 − t′2 . (1.34)

1.3 An interlude on 3-vectors and suffix notation

Before describing the 4-dimensional spacetime approach to special relativity, it may be

helpful to give a brief review of some analogous properties of 3-dimensional Euclidean space,

and Cartesian vector analysis.

Consider a 3-vector ~A, with x, y and z components denoted by A1, A2 and A3 respec-

tively. Thus we may write

~A = (A1, A2, A3) . (1.35)

It is convenient then to denote the set of components by Ai, for i = 1, 2, 3.

The scalar product between two vectors ~A and ~B is given by

~A · ~B = A1B1 +A2B2 +A3B3 =

3∑
i=1

AiBi . (1.36)

This expression can be written more succinctly using the Einstein Summation Convention.

The idea is that when writing valid expressions using vectors, or more generally tensors,

on every occasion that a sumation of the form
∑3

i=1 is performed, the summand is an

expression in which the summation index i occurs exactly twice. Furthermore, there will

be no occasion when an index occurs exactly twice in a given term and a sum over i is

not performed. Therefore, we can abbreviate the writing by simply omitting the explicit

summation symbol, since we know as soon as we see an index occuring exactly twice in a

term of an equation that it must be accompanied by a summation symbol. Thus we can

abbreviate (1.36) and just write the scalar product as

~A · ~B = AiBi . (1.37)

The index i here is called a “dummy suffix.” It is just like a local summation variable in

a computer program; it doesn’t matter if it is called i, or j or anything else, as long as it

doesn’t clash with any other index that is already in use.
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The next concept to introduce is the Kronecker delta tensor δij . This is defined by

δij = 1 if i = j , δij = 0 if i 6= j , (1.38)

Thus

δ11 = δ22 = δ33 = 1 , δ12 = δ13 = · · · = 0 . (1.39)

Note that δij is a symmetric tensor: δij = δji. The Kronecker delta clearly has the replace-

ment property

Ai = δijAj , (1.40)

since by (1.38) the only non-zero term in the summation over j is the term when j = i.

Now consider the vector product ~A× ~B. We have

~A× ~B = (A2B3 −A3B2, A3B1 −A1B3, A1B2 −A2B1) . (1.41)

To write this using index notation, we first define the 3-index totally-antisymmetric ten-

sor εijk. Total antisymmetry means that the tensor changes sign if any pair of indices is

swapped. For example

εijk = −εikj = −εjik = −εkji . (1.42)

Given this total antisymmetry, we actually only need to specify the value of one non-zero

component in order to pin down the definition completely. We shall define ε123 = +1. From

the total antisymmetry, it then follows that

ε123 = ε231 = ε312 = +1 , ε132 = ε321 = ε213 = −1 , (1.43)

with all other components vanishing.

It is now evident that in index notation, the i’th component of the vector product ~A× ~B

can be written as

( ~A× ~B)i = εijkAjBk . (1.44)

For example, the i = 1 component (the x component) is given by

( ~A× ~B)1 = ε1jkAjBk = ε123A2B3 + ε132A3B2 = A2B3 −A3B2 , (1.45)

in agreement with the x-component given in (1.41).

Now, let us consider the vector triple product ~A×( ~B× ~C). The i component is therefore

given by

[ ~A× ( ~B × ~C)]i = εijkAj( ~B × ~C)k = εijkεk`mAjB`Cm . (1.46)
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For convenience, we may cycle the indices on the second ε tensor around and write this as

[ ~A× ( ~B × ~C)]i = εijkε`mkAjB`Cm . (1.47)

There is an extremely useful identity, which can be proved simply by considering all possible

values of the free indices i, j, `,m:

εijkε`mk = δi`δjm − δimδj` . (1.48)

Using this in (1.47), we have

[ ~A× ( ~B × ~C)]i = (δi`δjm − δimδj`)AjB`Cm ,

= δi`δjmAjB`Cm − δimδj`AjB`Cm ,

= BiAjCj − CiAjBj ,

= ( ~A · ~C)Bi − ( ~A · ~B)Ci . (1.49)

In other words, we have proven that

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C . (1.50)

Using index notation, and with the aid of the identity (1.48), one doesn’t really ever

again need to memorise or look up any identity in 3-dimensional Cartesian vector analysis;

it is easier and quicker to derive them as and when they are needed.

It is useful also to apply the index notation to the gradient operator ~∇. This is a

vector-valued differential operator, whose components are given by

~∇ =
( ∂
∂x
,
∂

∂y
,
∂

∂z

)
. (1.51)

In terms of the index notation, we may therefore say that the i’th component (~∇)i of the

vector ~∇ is given by ∂/∂xi. In order to make the writing a little less clumsy, it is useful to

rewrite this as

∂i =
∂

∂xi
. (1.52)

Thus, the i’th component of ~∇ is ∂i.

It is now evident that the divergence and the curl of a vector ~A can be written in index

notation as

div ~A = ~∇ · ~A = ∂iAi , (curl ~A)i = (~∇× ~A)i = εijk∂jAk . (1.53)

The Laplacian, ∇2 = ~∇ · ~∇ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, is given by

∇2 = ∂i∂i . (1.54)
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By the rules of partial differentiation, we have ∂ixj = δij . If we consider the position

vector ~r = (x, y, z), then we have r2 = x2 + y2 + z2, which can be written as

r2 = xjxj . (1.55)

If we now act with ∂i on both sides, we get

2r ∂ir = 2xj ∂ixj = 2xj δij = 2xi . (1.56)

Thus we have the very useful result that

∂ir =
xi
r
. (1.57)

So far, we have not given any definition of what a 3-vector actually is, and now is the

time to remedy this. We may define a 3-vector ~A as an ordered triplet of real quantities,

~A = (A1, A2, A3), which transforms under rigid rotations of the Cartesian axes in the same

way as does the position vector ~r = (x, y, z). Now, any rigid rotation of the Cartesian

coordinate axes can be expressed as a constant 3 × 3 orthogonal matrix M acting on the

column vector whose components are x, y and z:
x′

y′

z′

 = M


x

y

z

 , (1.58)

where

MT M = 1 . (1.59)

An example would be the matrix describing a rotation by a (constant) angle θ around the

z axis, for which we would have

M =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (1.60)

Matrices satisfying the equation (1.59) are called orthogonal matrices. If they are of

dimension n× n, they are called O(n) matrices. Thus the 3-dimensional rotation matrices

are called O(3) matrices.5

5There is a little subtlety that we have glossed over, here. If we take the determinant of (1.59), and

use the facts that det(AB) = (detA)(detB) and det(AT ) = detA, we see that (detM)2 = 1 and hence

detM = ±1. The matrices with detM = +1 are called SO(n) matrices in n dimensions, where the “S”

stands for “special,” meaning unit determinant. It is actually SO(n) matrices that are pure rotations. The

transformations with detM = −1 are actually rotations combined with a reflection of the coordinates (such

as x→ −x). Thus, the pure rotation group in 3 dimensions is SO(3).
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In index notation, we can write M as Mij , where i labels the rows and j labels the

columns:

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (1.61)

The rotation (1.58) can then be expressed as

x′i = Mij xj , (1.62)

and the orthogonality condition (1.59) is

MkiMkj = δij . (1.63)

(Note that if M has components Mij then its transpose MT has components Mji.) One can

directly see in the index notation that the orthogonality condition (1.63) implies, together

with (1.62), that the quadratic form xi xi = x2 + y2 + z2 is invariant under these rotations

and reflections:

x′i x
′
i = MijMik xj xk = δjk xj xk = xj xj = xi xi . (1.64)

As stated above, the components of any 3-vector transform the same way under rotations

as do the components of the position vector ~r. Thus, if ~A and ~B are 3-vectors, then after

a rotation by the matrix M we shall have

A′i = Mij Aj , B′i = Mij Bj . (1.65)

If we calculate the scalar product of ~A and ~B after the rotation, we shall therefore have

A′iB
′
i = MijAjMikBk . (1.66)

(Note the choice of a different dummy suffix in the expression for B′i!) Using the orthogo-

nality condition (1.63), we therefore have that

A′iB
′
i = AjBkδjk = AjBj . (1.67)

Thus the scalar product of any two 3-vectors is invariant under rotations of the coordinate

axes. That is to say, AiBi is a scalar quantity, and by definition a scalar is invariant under

rotations.

In matrix notation, viewing a 3-vector such as ~A as column vector, one has

~A ′ = M ~A , ~B ′ = M ~B , (1.68)
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and the scalar product of the primed vectors is A′iB
′
i = ~A ′

T ~B ′, with

~A ′
T ~B ′ = (M ~A)T (M ~B) = ~A T MT M ~B = ~A T ~B , (1.69)

when in reaching the final result we used the orthogonality of the matrix M defined in eqn

(1.59).

It is useful to count up how many independent parameters are needed to specify the

most general possible rotation matrix M. Looking at (1.61), we can see that a general

3 × 3 matrix has 9 components. But our matrix M is required to be orthogonal, i.e. it

must satisfy MT M − 1 = 0. How many equations does this amount to? Naively, it is a

3 × 3 matrix equation, which would imply 9 conditions. But this is not correct, since the

left-hand side of MT M − 1 = 0 is in fact a symmetric matrix. (Take the transpose, and

verify this.) A 3× 3 symmetric matrix has (3× 4)/2 = 6 independent components, and so

setting a symmetric 3× 3 matrix to zero implies only 6 independent equations rather than

9. Thus the orthogonality condition imposes 6 constraints on the 9 components of a general

3× 3 matrix, and so that leaves

9− 6 = 3 (1.70)

as the number of independent components of a 3 × 3 orthogonal matrix, It is easy to see

that this is the correct counting; to specify a general rotation in 3-dimensional space, we

need two angles to specify an axis (for example, the latitude and longitude), and a third

angle to specify the rotation around that axis.

The above are just a few simple examples of the use of index notation in order to write

3-vector and 3-tensor expressions in Cartesian 3-tensor analysis. It is a very useful notation

when one needs to deal with complicated expressions. As we shall now see, there is a very

natural generalisation to the case of vector and tensor analysis in 4-dimensional Minkowski

spacetime.

1.4 4-vectors and 4-tensors

The Lorentz transformations given in (1.33) are linear in the space and time coordinates.

They can be written more succinctly if we first define the set of four spacetime coordinates

denoted by xµ, where µ is an index, or label, that ranges over the values 0, 1, 2 and 3. The

case µ = 0 corresponds to the time coordinate t, while µ = 1, 2 and 3 corresponds to the
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space coordinates x, y and z respectively. Thus we have6

(x0, x1, x2, x3) = (t, x, y, z) . (1.71)

Of course, once the abstract index label µ is replaced, as here, by the specific index values

0, 1, 2 and 3, one has to be very careful when reading a formula to distinguish between, for

example, x2 meaning the symbol x carrying the spacetime index µ = 2, and x2 meaning

the square of x. It should generally be obvious from the context which is meant.

The invariant quadratic form x2 + y2 + z2− t2 appearing on the left-hand side of (1.34)

can now be written in a nice way, if we first introduce the 2-index quantity ηµν , defined by

η00 = −1 , η11 = η22 = η33 = 1 , (1.72)

with ηµν = 0 if µ 6= ν. Note that ηµν is symmetric:

ηµν = ηνµ . (1.73)

Using ηµν , the quadratic form on the left-hand side of (1.34) can be rewritten as

x2 + y2 + z2 − t2 =
3∑

µ=0

3∑
ν=0

ηµν x
µxν . (1.74)

In the same way as we previously associated 2-index objects in 3-dimensional Euclidean

space with 3× 3 matrices, so here too we can associate ηµν with a 4× 4 matrix ηηη:

ηηη =


η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33

 =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.75)

Thus one can think of the rows of the matrix on the right as being labelled by the index µ

and the columns being labelled by the index ν.

At this point, it is convenient again to introduce the Einstein Summation Convention,

now for four-dimensional spacetime indices. This makes the writing of expressions such as

(1.74) much less cumbersome. The summation convention works as follows:

In an expression such as (1.74), if an index appears exactly twice in a term, then it will

be understood that the index is summed over the natural index range (0, 1, 2, 3 in our

6The choice to put the index label µ as a superscript, rather than a subscript, is purely conventional. But,

unlike the situation with many arbitrary conventions, in this case the coordinate index is placed upstairs in

all modern literature.
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present case), and the explicit summation symbol will be omitted. An index that occurs

twice in a term, thus is understood to be summed over, is called a Dummy Index.

Since in (1.74) both µ and ν occur exactly twice, we can rewrite the expression, using

the Einstein summation convention, as simply

x2 + y2 + z2 − t2 = ηµν x
µxν . (1.76)

On might at first think there would be a great potential for ambiguity, but this is not the

case. The point is that in any valid vectorial (or, more generally, tensorial) expression, the

only time that a particular index can ever occur exactly twice in a term is when it is summed

over. Thus, there is no ambiguity resulting from agreeing to omit the explicit summation

symbol, since it is logically inevitable that a summation is intended.7 Note that the pair of

dummy indices will always occur with one index upstairs and the other downstairs, in any

valid expression.

Now let us return to the Lorentz transformations. The pure boosts written in (1.33),

being linear in the space and time coordinates, can be written in the form

x′
µ

= Λµν x
ν , (1.77)

where Λµν are constants, and the Einstein summation convention is operative for the dummy

index ν. By comparing (1.77) carefully with (1.33), we can see that the components Λµν

are given by

Λ0
0 = γ , Λ0

i = −γvi ,

Λi0 = −γ vi , Λij = δij +
γ − 1

v2
vivj , (1.78)

where δij is the Kronecker delta symbol,

δij = 1 if i = j , δij = 0 if i 6= j . (1.79)

A couple of points need to be explained here. Firstly, we are introducing Latin indices here,

namely the i and j indices, which range only over the three spatial index values, i = 1, 2

and 3. Thus the 4-index µ can be viewed as µ = (0, i), where i = 1, 2 and 3. This piece

of notation is useful because the three spatial index values always occur on a completely

7As a side remark, it should be noted that in a valid vectorial or tensorial expression, a specific index can

NEVER appear more than twice in a given term. If you have written down a term where a given index

occurs 3, 4 or more times then there is no need to look further at it; it is WRONG. Thus, for example, it

is totally meaningless to write ηµµ x
µxµ. If you ever find such an expression in a calculation then you must

stop, and go back to find the place where an error was made.
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symmetric footing, whereas the time index value µ = 0 is a bit different. This can be seen,

for example, in the definition of ηµν in (1.75) or (1.72).

The second point is that when we consider spatial indices (for example when µ takes the

values i = 1, 2 or 3), it actually makes no difference whether we write the index i upstairs

or downstairs. Sometimes, as in (1.78), it will be convenient to be rather relaxed about

whether we put spatial indices upstairs or downstairs. By contrast, when the index takes

the value 0, it is very important to be careful about whether it is upstairs or downstairs.

The reason why we can be cavalier about the Latin indices, but not the Greek, will become

clearer as we proceed.

We already saw that the Lorentz boost transformations (1.33), re-expressed in terms of

Λµν in (1.78), have the property that ηµν x
µxν = ηµν x

′µx′ν . Thus from (1.77) we have

ηµν x
µxν = ηµν Λµρ Λνσ x

ρxσ . (1.80)

(Note that we have been careful to choose two different dummy indices for the two implicit

summations over ρ and σ!) On the left-hand side, we can replace the dummy indices µ and

ν by ρ and σ, and thus write

ηρσ x
ρxσ = ηµν Λµρ Λνσ x

ρxσ . (1.81)

This can be grouped together as

(ηρσ − ηµν Λµρ Λνσ)xρxσ = 0 , (1.82)

and, since it is true for any values for the coordinates xµ, we must have that

ηµν Λµρ Λνσ = ηρσ . (1.83)

(This can be verified explicitly for the Lorentz boosts given in eqn (1.78).) The full set of Λ’s

that satisfy (1.83) are the Lorentz Transformations. The Lorentz Boosts, given by (1.78),

are examples, but they are just a subset of the full set of Lorentz transformations that

satisfy (1.83). Essentially, the additional Lorentz transformations consist of rotations of

the three-dimensional spatial coordinates. Thus, one can really say that the Lorentz boosts

(1.78) are the “interesting” Lorentz transformations, i.e. the ones that rotate space and

time into one another. The remainder are just rotations of our familiar old 3-dimensional

Euclidean space.

We can count the number of independent parameters in a general Lorentz transformation

in the same way we did for the 3-dimensional rotations in the previous section. We start
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with Λµν , which can be thought of as a 4× 4 matrix with rows labelled by µ and columns

labelled by ν. Thus

Λµν −→ Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 . (1.84)

These 4 × 4 = 16 components are subject to the conditions (1.83). In matrix notation,

(1.83) clearly translates into

ΛT ηΛ− η = 0 . (1.85)

This is itself a 4× 4 matrix equation, but not all its components are independent since the

left-hand side is a symmetric matrix. (Verify this by taking its transpose.) Thus (1.85)

contains (4 × 5)/2 = 10 independent conditions, implying that the most general Lorentz

transformation has

16− 10 = 6 (1.86)

independent parameters.

Notice that if η had been simply the 4× 4 unit matrix, then (1.85) would have been a

direct 4-dimensional analogue of the 3-dimensional orthogonality condition (1.59). In other

words, were it not for the minus sign in the 00 component of η, the Lorentz transformations

would just be spatial rotations in 4 dimensions, and they would be elements of the group

O(4). The counting of the number of independent such transformations would be identical

to the one given above, and so the group O(4) of orthogonal 4× 4 matrices is characterised

by 6 independent parameters.

Because of the minus sign in η, the group of 4 × 4 matrices satisfying (1.85) is called

O(1, 3), with the numbers 1 and 3 indicating the number of time and space dimensions

respectively. Thus the four-dimensional Lorentz Group is O(1, 3).

Obviously, the subset of Λ matrices of the form

Λ =

1 0

0 M

 , which is shorthand for Λ =


1 0 0 0

0 M11 M12 M13

0 M21 M22 M23

0 M31 M32 M33

 , (1.87)

where M is any 3× 3 orthogonal matrix, satisfies (1.85). This O(3) subgroup of the O(1, 3)

Lorentz group describes the pure rotations (and reflections) in the 3-dimensional spatial

directions. The 3 parameters characterising these transformations, together with the 3
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parameters of the velocity vector characterising the pure boost Lorentz transformations

(1.78), comprise the total set of 3+3 = 6 parameters of the general Lorentz transformations.

It is useful to note that any Lorentz transformation Λµν can be decomposed into a

product of a pure Lorentz boost and a pure spatial rotation. Thus we can write a general

Lorentz transformation Λµν in the form

Λµν = Λµρ(R) Λρν(B) , (1.88)

where Λρν(B) denotes a pure boost, of the form (1.78), and Λµρ(R) denotes a pure spatial

rotation, of the form (1.87).

The decomposition given in (1.88) has been organised in the form of a pure Lorentz

boost, followed by a pure spatial rotation. One could instead make a decomposition of Λµν

in the opposite order, as a pure spatial rotation followed by a pure Lorentz boost:

Λµν = Λ̃µρ(B) Λ̃ρν(R) , (1.89)

Note that the pure boost and pure rotation transformations will, in general, differ from those

in the previous deomposition (1.88), which is why they are written with tildes in (1.89).

In other words, the pure boost and the pure spatial rotation matrices do not commute in

general.

An example of a decomposition into boost times rotation appears in homework 1, where

you are asked to re-express the composition of a pure boost along x followed by a pure

boost along y in the form (1.88).

The coordinates xµ = (x0, xi) live in a four-dimensional spacetime, known as Minkowski

Spacetime. This is the four-dimensional analogue of the three-dimensional Euclidean Space

described by the Cartesian coordinates xi = (x, y, z). The quantity ηµν is called the

Minkowski Metric, and for reasons that we shall see presently, it is called a tensor. It is

called a metric because it provides the rule for measuring distances in the four-dimensional

Minkowski spacetime. The distance, or to be more precise, the interval, between two

infinitesimally-separated points (x0, x1, x2, x3) and (x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3)

in spacetime is written as ds, and is given by

ds2 = ηµν dx
µdxν . (1.90)

Clearly, this is the Minkowskian generalisation of the three-dimensional distance dsE be-

tween neighbouring points (x, y, z) and (x + dx, y + dy, z + dz) in Euclidean space, which,

by Pythagoras’ theorem, is given by

ds2
E = dx2 + dy2 + dz2 = δij dx

idxj . (1.91)
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The Euclidean metric (1.91) is invariant under arbitrary constant rotations of the (x, y, z)

coordinate system. (This is clearly true because the distance between the neighbouring

points must obviously be independent of how the axes of the Cartesian coordinate system

are oriented.) By the same token, the Minkowski metric (1.90) is invariant under arbitrary

Lorentz transformations. In other words, as can be seen to follow immediately from (1.83),

the spacetime interval ds′2 = ηµν dx
′µdx′ν calculated in the primed frame is identical to the

interval ds2 calculated in the unprimed frame

ds′
2

= ηµν dx
′µdx′

ν
= ηµν Λµρ Λνσ dx

ρdxσ ,

= ηρσ dx
ρdxσ = ds2 . (1.92)

For this reason, we do not need to distinguish between ds2 and ds′2, since it is the same in

all inertial frames. It is what is called a Lorentz Scalar.

The Lorentz transformation rule of the coordinate differential dxµ, i.e.

dx′
µ

= Λµν dx
ν , (1.93)

can be taken as the prototype for more general 4-vectors. Thus, we may define any set

of four quantities Uµ, for µ = 0, 1, 2 and 3, to be the components of a Lorentz 4-vector

(often, we shall just abbreviate this to simply a 4-vector) if they transform, under Lorentz

transformations, according to the rule

U ′
µ

= Λµν U
ν . (1.94)

The Minkowski metric ηµν may be thought of as a 4×4 matrix, whose rows are labelled

by µ and columns labelled by ν, as in (1.75). Clearly, the inverse of this matrix takes

the same form as the matrix itself. We denote the components of the inverse matrix by

ηµν . This is called, not surprisingly, the inverse Minkowksi metric. Clearly it satisfies the

relation

ηµν η
νρ = δρµ , (1.95)

where the 4-dimensional Kronecker delta is defined to equal 1 if µ = ρ, and to equal 0 if

µ 6= ρ. Note that like ηµν , the inverse ηµν is symmetric also: ηµν = ηνµ.

The Minkowksi metric and its inverse may be used to lower or raise the indices on other

quantities. Thus, for example, if Uµ are the components of a 4-vector, then we may define

Uµ = ηµν U
ν . (1.96)
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This is another type of 4-vector. Two distinguish the two, we call a 4-vector with an upstairs

index a contravariant 4-vector, while one with a downstairs index is called a covariant 4-

vector. Note that if we raise the lowered index in (1.96) again using ηµν , then we get back

to the starting point:

ηµν Uν = ηµν ηνρ U
ρ = δµρ U

ρ = Uµ . (1.97)

It is for this reason that we can use the same symbol U for the covariant 4-vector Uµ = ηµν U
ν

as we used for the contravariant 4-vector Uµ.

Note that it follows from eqn (1.96) that the explicit components of Uµ are related to

those of Uµ by

U0 = −U0 , U1 = U1 , U2 = U2 , U3 = U3 . (1.98)

In other words, in terms of the time-plus-space split of the greek index µ into µ = (0, i),

where i = 1, 2 or 3, we have

U0 = −U0 , Ui = U i . (1.99)

This justifies the statement made earlier, that as far as the spatial indices are concerned (the

latin indices i, j, k, `, . . .), it is completely immaterial whether we write the index upstairs

or downstairs. It is often convenient to choose a location for the latin indices on the basis

of where there is “more room to put them.” For the time index (i.e. the 0 index), it is a

very different story; for these, there is a crucial difference between the vector or tensor with

the index upstairs and with the index downstairs.

In a similar fashion, we may define the quantities Λµ
ν by

Λµ
ν = ηµρ η

νσ Λρσ . (1.100)

It is then clear that (1.83) can be restated as

Λµν Λµ
ρ = δρν . (1.101)

Notice two points concerning raising and lowering indices with η. The first is that if we

have a vector-valued or tensor-valued equation, such as Aµ = Bµ, or Sµν = Tµν or whatever,

we can raise or lower these free indices at will, as long as we raise them on both sides of the

equation at the same time. Thus, for example,

Sµν = Tµν ⇐⇒ Sµ
ν = Tµ

ν ⇐⇒ Sµν = Tµν ⇐⇒ Sµν = Tµν . (1.102)
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The second point is that if there is an index contraction in a term, we can freely “see-saw”

the pair of dummy indices, moving the upper index down and simultaneously the lower

index up. Thus, for example,

AµBµ = AµB
µ , (1.103)

and so on. The reason for emphasising these two points is just to make clear that one does

not need to make a song and dance about raising or lowering free indices, or see-sawing

dummy index positions. After any such operations, a valid covariant equation will always

have the properties that every matching free index will be in the same location (upstairs

or downstairs) in every term in the equation. Furthermore, every dummy index pair will

always have one occurrence of that index upstairs, and the other downstairs.8

We can invert the Lorentz transformation x′µ = Λµν x
ν , by multiplying both sides by

Λµ
ρ and using (1.101) to give x′µ Λµ

ρ = δρν xν = xρ, and hence, after relabelling,

xµ = Λν
µ x′

ν
. (1.104)

It follows from (1.94) that the components of the covariant 4-vector Uµ defined by (1.96)

transform under Lorentz transformations according to the rule

U ′µ = Λµ
ν Uν . (1.105)

Any set of 4 quantities Uµ which transform in this way under Lorentz transformations will

be called a covariant 4-vector.

Using (1.104), we can see that the gradient operator ∂
∂xµ transforms as a covariant

4-vector. Using the chain rule for partial differentiation we have

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
. (1.106)

But from (1.104) we have (after a relabelling of indices) that

∂xν

∂x′µ
= Λµ

ν , (1.107)

and hence (1.106) gives
∂

∂x′µ
= Λµ

ν ∂

∂xν
. (1.108)

8These statements apply to equations written in the four-dimensionally covariant language, with Greek

indices µ, ν, . . . ranging over 0, 1, 2 and 3. As has already been emphasised, if one decomposes a four-

dimensionally covariant expression into the 1+3 language of time plus three spatial diections (denoted by

the Latin spatial indices i, j, . . .), then one is completely free to write the Latin indices upstairs or downstairs,

unmatched between different terms. In the context of our Minkowski spacetime discussions in this course,

the only reason for caring about the distinction between upstairs and downstairs indices is because of the

time direction.
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As can be seen from (1.105), this is precisely the transformation rule for a a covariant

4-vector. The gradient operator arises sufficiently often that it is useful to use a special

symbol to denote it. We therefore define

∂µ ≡
∂

∂xµ
. (1.109)

Thus the Lorentz transformation rule (1.108) is now written as

∂′µ = Λµ
ν ∂ν . (1.110)

1.5 Lorentz tensors

Having seen how contravariant and covariant 4-vectors transform under Lorentz transfor-

mations (as given in (1.94) and (1.105) respectively), we can now define the transformation

rules for more general objects called tensors. These objects carry multiple indices, and each

one transforms with a Λ factor, of either the (1.94) type if the index is upstairs, or of the

(1.105) type if the index is downstairs. Thus, for example, a tensor Tµν transforms under

Lorentz transformations according to the rule

T ′µν = Λµ
ρ Λν

σ Tρσ . (1.111)

More generally, a tensor Tµ1···µm
ν1···νn will transform according to the rule

T ′
µ1···µm

ν1···νn = Λµ1
ρ1 · · ·Λµmρm Λν1

σ1 · · ·Λνnσn T ρ1···ρm
σ1···σn . (1.112)

Note that scalars are just special cases of tensors with no indices, while vectors are special

cases with just one index.

It is easy to see that products of tensors give rise again to tensors. For example, if Uµ

and V µ are two contravariant vectors then Tµν ≡ UµV ν is a tensor, since, using the known

transformation rules for U and V we have

T ′
µν

= U ′
µ
V ′

ν
= Λµρ U

ρ Λνσ V
σ ,

= Λµρ Λνσ T
ρσ . (1.113)

Note that the gradient operator ∂µ can also be used to map a tensor into another tensor.

For example, if Uµ is a vector field (i.e. a vector that changes from place to place in space-

time) then Sµν ≡ ∂µUν is a tensor field. As always, the way to check that that something

is a tensor is to check that it transforms in the proper way under Lorentz transformations.

So in this case, one needs to check that it transforms in the way an (m,n) = (0, 2) tensor

in eqn (1.112) does.

26



We make also define the operation of Contraction, which reduces a tensor to one with

a smaller number of indices. A contraction is performed by setting an upstairs index on a

tensor equal to a downstairs index. The Einstein summation convention then automatically

comes into play, and the result is that one has an object with one fewer upstairs indices and

one fewer downstairs indices. Furthermore, a simple calculation shows that the new object

is itself a tensor. Consider, for example, a tensor Tµν . This, of course, transforms as

T ′
µ
ν = Λµρ Λν

σ T ρσ (1.114)

under Lorentz transformations. If we form the contraction and define φ ≡ Tµµ, then we see

that under Lorentz transformations we shall have

φ′ ≡ T ′
µ
µ = Λµρ Λµ

σ T ρσ ,

= δσρ T
ρ
σ = φ . (1.115)

Since φ′ = φ, it follows, by definition, that φ is a scalar.

An essentially identical calculation shows that for a tensor with arbitrary numbers of

upstairs and downstairs indices, if one makes an index contraction of one upstairs with one

downstairs index, the result is a tensor with the corresponding reduced numbers of indices.

Of course multiple contractions work in the same way.

The Minkowski metric ηµν is itself a tensor, but of a rather special type, known as an

invariant tensor. This is because, unlike a generic 2-index tensor, the Minkowski metric is

identical in all Lorentz frames. To see this, let us first write out how it would transform

under Lorentz transformations, using the usual transformation rules in (1.112):

η′µν = Λµ
ρ Λν

σ ηρσ . (1.116)

Our goal is to show that in fact η′µν = ηµν , i.e. that it is actualy invariant under Lorentz

transformations. Now although the right-hand side of (1.116) looks reminiscent of what one

has in (1.83), which is the defining property of the Λµν Lorentz transformations, it is not the

same. Specifically, in (1.116) the indices of the two Λ transformations are contracted with η

on their second indices, rather than on the first indices as in (1.83). We can easily work out

what the right-hand side of (1.116) is by going through the following steps. First, we rewrite

(1.83) in matrix language as ΛT ηΛ = η. Then right-multiply by Λ−1 and left-multiply by

η−1; this gives η−1 ΛT η = Λ−1. Next left-multiply by Λ and right-multiply by η−1, which

gives Λ η−1 ΛT = η−1. (This is the analogue for the Lorentz transformations of the proof,

for ordinary orthogonal matrices, that MT M = 1 implies MMT = 1.) Converting back to
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index notation gives Λµρ Λνσ η
ρσ = ηµν . After some index raising and lowering, this gives

Λµ
ρ Λν

σ ηρσ = ηµν . (1.117)

Applying this result to the right-hand side of (1.116) therefore gives the desired result,

η′µν = ηµν . (1.118)

Thus we have shown that the tensor ηµν is actually invariant under Lorentz transformations.

The same is also true for the inverse metric ηµν .

We already saw that the gradient operator ∂µ ≡ ∂/∂xµ transforms as a covariant vector.

If we define, in the standard way, ∂µ ≡ ηµν ∂ν , then it is evident from what we have seen

above that the operator

≡ ∂µ∂µ = ηµν ∂µ∂ν (1.119)

transforms as a scalar under Lorentz transformations. This is a very important operator,

which is otherwise known as the wave operator, or d’Alembertian:

= −∂0∂0 + ∂i∂i = − ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.120)

It is worth commenting further at this stage about a remark that was made earlier.

Notice that in (1.120) we have been cavalier about the location of the Latin indices, which

of course range only over the three spatial directions i = 1, 2 and 3. We can get away with

this because the metric that is used to raise or lower the Latin indices is just the Minkowski

metric restricted to the index values 1, 2 and 3. But since we have

η00 = −1 , ηij = δij , η0i = ηi0 = 0 , (1.121)

this means that latin indices are lowered and raised using the Kronecker delta δij and its

inverse δij . But these are just the components of the unit matrix, and so raising or lowering

Latin indices has no effect. It is because of the minus sign associated with the η00 component

of the Minkowski metric that we have to pay careful attention to the process of raising and

lowering greek indices. Thus, we can get away with writing ∂i∂i, but we cannot write ∂µ∂µ.

1.6 Proper time and 4-velocity

We defined the Lorentz-invariant interval ds between infinitesimally-separated spacetime

events by

ds2 = ηµν dx
µdxν = −dt2 + dx2 + dy2 + dz2 . (1.122)
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This is the Minkowskian generalisation of the spatial interval in Euclidean space. Note that

ds2 can be positive, negative or zero. These cases correspond to what are called spacelike,

timelike or null separations, respectively.

On occasion, it is useful to define the negative of ds2, and write

dτ2 = −ds2 = −ηµν dxµdxν = dt2 − dx2 − dy2 − dz2 . (1.123)

This is called the Proper Time interval, and τ is the proper time. Since ds is a Lorentz

scalar, it is obvious that dτ is a scalar too.

We know that dxµ transforms as a contravariant 4-vector. Since dτ is a scalar, it follows

that

Uµ ≡ dxµ

dτ
(1.124)

is a contravariant 4-vector also. If we think of a particle following a path, or worldline in

spacetime parameterised by the proper time τ , i.e. it follows the path xµ = xµ(τ), then Uµ

defined in (1.124) is called the 4-velocity of the particle.

It is useful to see how the 4-velocity is related to the usual notion of 3-velocity of a

particle. By definition, the 3-velocity ~u is a 3-vector with components ui given by

ui =
dxi

dt
. (1.125)

From (1.123), it follows that

dτ2 = dt2[1− (dx/dt)2 − (dy/dt)2 − (dz/dt)2)] = dt2(1− u2) , (1.126)

where u = |~u |, or in other words, u =
√
uiui. In view of the definition of the γ factor in

(1.31), it is natural to define

γ ≡ 1√
1− u2

. (1.127)

Thus we have dτ = dt/γ, and so from (1.124) the 4-velocity can be written as

Uµ =
dt

dτ

dxµ

dt
= γ

dxµ

dt
. (1.128)

Since dx0/dt = 1 and dxi/dt = ui, we therefore have that

U0 = γ , U i = γ ui . (1.129)

Note that UµUµ = −1, since, from (1.123), we have

UµUµ = ηµνU
µUν =

ηµνdx
µdxν

(dτ)2
=
−(dτ)2

(dτ)2
= −1 . (1.130)
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We shall sometimes find it convenient to rewrite (1.129) as

Uµ = (γ, γ ui) or Uµ = (γ, γ ~u) . (1.131)

Having set up the 4-vector formalism, it is now completely straightforward write down

how velocities transform under Lorentz transformations. We know that the 4-velocity Uµ

will transform according to (1.94), and this is identical to the way that the coordinates xµ

transform:

U ′
µ

= Λµν U
ν , x′

µ
= Λµν x

ν . (1.132)

Therefore, if we want to know how the 3-velocity transforms, we need only write down

the Lorentz transformations for (t, x, y, z), and then replace (t, x, y, z) by (U0, U1, U2, U3).

Finally, using (1.131) to express (U0, U1, U2, U3) in terms of ~u will give the result.

Consider, for simplicity, the case where S′ is moving along the x axis with velocity v.

The Lorentz transformation for Uµ can therefore be read off from (1.30) and (1.31):

U ′
0

= γv (U0 − vU1) ,

U ′
1

= γv (U1 − vU0) ,

U ′
2

= U2 ,

U ′
3

= U3 , (1.133)

where we are now using γv ≡ (1 − v2)−1/2 to denote the gamma factor of the Lorentz

transformation, to distinguish it from the γ constructed from the 3-velocity ~u of the particle

in the frame S, which is defined in (1.127). Thus from (1.131) we have

γ′ = γ γv (1− vux) ,

γ′ u′x = γ γv (ux − v) ,

γ′ u′y = γ uy ,

γ′ u′z = γ uz , (1.134)

where, of course, γ′ = (1− u′2)−1/2 is the analogue of γ in the frame S′. Thus we find

u′x =
ux − v
1− vux

, u′y =
uy

γv (1− vux)
, u′z =

uz
γv (1− vux)

. (1.135)

2 Electrodynamics and Maxwell’s Equations

2.1 Natural units

We saw earlier that the supposition of the universal validity of Maxwell’s equations in all

inertial frames, which in particular would imply that the speed of light should be the same in
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all frames, is consistent with experiment. It is therefore reasonable to expect that Maxwell’s

equations should be compatible with special relativity. However, written in their standard

form (1.7), this compatibility is by no means apparent. Our next task will be to re-express

the Maxwell equations, in terms of 4-tensors, in a way that makes their Lorentz covariance

manifest.

We shall begin by changing units from the S.I. system in which the Maxwell equations

are given in (1.7). The first step is to change to Gaussian units, by performing the rescalings

~E −→ 1√
4πε0

~E , ~B −→
√
µ0

4π
~B ,

ρ −→
√

4πε0 ρ , ~J −→
√

4πε0 ~J . (2.1)

Bearing in mind that the speed of light is given by c = 1/
√
µ0ε0, we see that the Maxwell

equations (1.7) become

~∇ · ~E = 4π ρ , ~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J ,

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 , (2.2)

Finally, we pass from Gaussian units to Natural units, by choosing our units of length and

time so that c = 1, as we did in our discussion of special relativity. Thus, in natural units,

the Maxwell equations become

~∇ · ~E = 4π ρ , ~∇× ~B − ∂ ~E

∂t
= 4π ~J , (2.3)

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 , (2.4)

The equations (2.3), which have sources on the right-hand side, are called the Field Equa-

tions. The equations (2.4) are called Bianchi Identities. We shall elaborate on this a little

later.

2.2 Gauge potentials and gauge invariance

We already remarked that the two Maxwell equations (2.4) are know as Bianchi identities.

They are not field equations, since there are no sources; rather, they impose constraints on

the electric and magnetric fields. The first equation in (2.4), i.e. ~∇ · ~B = 0, can be solved

by writing

~B = ~∇× ~A , (2.5)
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where ~A is the magnetic 3-vector potential. Note that (2.5) identically solves ~∇ · ~B = 0,

because of the vector identity that div curl ≡ 0. Substituting (2.5) into the second equation

in (2.4), we obtain

~∇×
(
~E +

∂ ~A

∂t

)
= 0 . (2.6)

This can be solved, again identically, by writing

~E +
∂ ~A

∂t
= −~∇φ , (2.7)

where φ is the electric scalar potential. Thus we can solve the Bianchi identities (2.4) by

writing ~E and ~B in terms of scalar and 3-vector potentials φ and ~A:

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A . (2.8)

Although we have now “disposed of” the two Maxwell equations in (2.4), it has been

achieved at a price, in that there is a redundancy in the choice of gauge potentials φ and

~A. First, we may note that that ~B in (2.8) is unchanged if we make the replacement

~A −→ ~A+ ~∇λ , (2.9)

where λ is an arbitrary function of position and time. The expression for ~E will also be

invariant, if we simultaneously make the replacement

φ −→ φ− ∂λ

∂t
. (2.10)

To summarise, if a given set of electric and magnetic fields ~E and ~B are described by a

scalar potential φ and 3-vector potential ~A according to (2.8), then the identical physical

situation (i.e. identical electric and magnetic fields) is equally well described by a new pair

of scalar and 3-vector potentials, related to the original pair by the Gauge Transformations

given in (2.9) and (2.10), where λ is an arbitrary function of position and time.

We can in fact use the gauge invariance to our advantage, by making a convenient

and simplifying gauge choice for the scalar and 3-vector potentials. We have one arbitrary

function (i.e. λ(t, ~r )) at our disposal, and so this allows us to impose one functional relation

on the potentials φ and ~A. For our present purposes, the most useful gauge choice is to use

this freedom to impose the Lorenz gauge condition,

~∇ · ~A+
∂φ

∂t
= 0 . (2.11)

Note that, contrary to the belief of many physicists, this gauge choice was introduced by

the Danish physicist Ludvig Valentin Lorenz, and not the Dutch physicist Hendrik Antoon
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Lorentz (he of the Lorentz transformations). Adding to the confusion is that unlike many

other gauge choices that one encounters, the Lorenz gauge condition is, as we shall see later,

Lorentz invariant.

Ludvig Valentin Lorenz Hendrik Antoon Lorentz

Substituting (2.8) into the remaining Maxwell equations (i.e. (2.3), and using the Lorenz

gauge condition (2.11), we therefore find

∇2φ− ∂2φ

∂t2
= −4πρ , ∇2 ~A− ∂2 ~A

∂t2
= −4π ~J . (2.12)

The important thing, which we shall make use of shortly, is that in each case we have on

the left-hand side the d’Alembertian operator = ∂µ∂µ, which we discussed earlier, so

φ = −4πρ , ~A = −4π ~J . (2.13)

2.3 Maxwell’s equations in 4-tensor notation

The next step is to write the Maxwell equations in terms of four-dimensional quantities.

Since the ~E and ~B describing the electric and magnetic fields have three components each,

there is clearly no way in which they can be “assembled” into 4-vectors. However, we may

note that in four dimensions a two-index antisymmetric tensor has (4×3)/2 = 6 independent

components. Since this is equal to 3 + 3, it suggests that perhaps we should be grouping

the electric and magnetic fields together into a single 2-index antisymmetric tensor. This is
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in fact exactly what is needed. Thus we introduce a tensor Fµν , satisfying

Fµν = −Fνµ . (2.14)

It turns out that we should define its components in terms of ~E and ~B as follows:

F0i = −Ei , (which implies Fi0 = Ei) , Fij = εijk Bk . (2.15)

Here εijk is the usual totally-antisymmetric tensor of 3-dimensional vector calculus. It is

equal to +1 if (ijk) is an even permutation of (123), to = −1 if it is an odd permutation,

and to zero if it is no permutation (i.e. if two or more of the indices (ijk) are equal). In

other words, we have

F23 = B1 , F31 = B2 , F12 = B3 ,

F32 = −B1 , F13 = −B2 , F21 = −B3 . (2.16)

Viewing Fµν as a matrix F with rows labelled by µ and columns labelled by ν, we shall

have

F =


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

 =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (2.17)

We also need to combine the charge density ρ and the 3-vector current density ~J into

a four-dimensional quantity. This is easy; we just define a 4-vector Jµ, whose spatial

components J i are just the usual 3-vector current components, and whose time component

J0 is equal to the charge density ρ:

J0 = ρ , J i = J i . (2.18)

A word of caution is in order here. Although we have defined objects Fµν and Jµ that

have the appearance of a 4-tensor and a 4-vector, we are only entitled to call them such if

we have verified that they transform in the proper way under Lorentz transformations. In

fact they do, and we shall justify this a little later.

For now, we shall proceed to see how the Maxwell equations look when expressed in

terms of Fµν and Jµ. The answer is that they become

∂µF
µν = −4πJν , (2.19)

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (2.20)
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Two very nice things have happened. First of all, the original four Maxwell equations

(2.3) and (2.4) have become just two four-dimensional equations; (2.19) is the field equa-

tion, and (2.20) is the Bianchi identity. Secondly, the equations are manifestly Lorentz

covariant; i.e. they transform tensorially under Lorentz transformations. This means that

they keep exactly the same form in all Lorentz frames. If we start with (2.19) and (2.20)

in the unprimed frame S, then we know that in the frame S′, related to S by the Lorentz

transformation (1.77), the equations will look identical, except that they will now have

primes on all the quantities. Furthermore, we know precisely how the primed quantities are

related to the unprimed:

F ′µν = Λµ
ρ Λν

σ Fρσ , J ′
µ

= Λµν J
ν , (2.21)

etc., where Λµν describes the Lorentz transformation from the frame S to the frame S′.

We should first verify that indeed (2.19) and (2.20) are equivalent to the Maxwell equa-

tions (2.3) and (2.4). Consider first (2.19). This equation is vector-valued, since it has the

free index ν. Therefore, to reduce it down to three-dimensional equations, we have two

cases to consider, namely ν = 0 or ν = j. For ν = 0 we have

∂µF
µ0 = ∂0F

00 + ∂iF
i0 = ∂iF

i0 = −4πJ0 , (2.22)

which therefore corresponds (see (2.15) and (2.18)) to

−∂iEi = −4πρ , i.e. ~∇ · ~E = 4πρ . (2.23)

For ν = j, we shall have

∂µF
µj = ∂0F

0j + ∂iF
ij = −4πJ j , (2.24)

which gives

∂0Ej + εijk∂iBk = −4πJ j . (2.25)

This is just9

−∂
~E

∂t
+ ~∇× ~B = 4π ~J . (2.26)

Thus (2.19) is equivalent to the two Maxwell field equations in (2.3).

Turning now to (2.20), it follows from the antisymmetry (2.14) of Fµν that the left-hand

side is totally antisymmetric in (µνρ) (i.e. it changes sign under any exchange of a pair of

indices). Thefore there are two distinct inequivalent assignments of indices, after we make

9Recall that the i’th component of ~∇× ~V is given by (~∇× ~V )i = εijk∂jVk for any 3-vector ~V .
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the 1 + 3 decomposition µ = (0, i) etc.: Either one of the indices is a 0 with the other two

Latin, or else all three are Latin. (In other words, since the expression on the left-hand side

of eqn (2.20) is totally antisymmetric in µνρ, the expression will be trivially zero if two or

more indices are assigned the same value. In particular, the only non-trivial possibilities

are that either one of the three indices takes the value 0, or none of them takes the value

0.) Consider first (µ, ν, ρ) = (0, i, j):

∂0Fij + ∂iFj0 + ∂jF0i = 0 , (2.27)

which, from (2.15), means

εijk
∂Bk
∂t

+ ∂iEj − ∂jEi = 0 . (2.28)

Since this is antisymmetric in ij there is no loss of generality involved in contracting with

εij`, which gives10

2
∂B`
∂t

+ 2εij` ∂iEj = 0 . (2.29)

This is just the statement that

~∇× ~E +
∂ ~B

∂t
= 0 , (2.30)

which is the second of the Maxwell equations in (2.4).

The other distinct possibility for assigning decomposed indices in (2.20) is to take

(µ, ν, ρ) = (i, j, k), giving

∂iFjk + ∂jFki + ∂kFij = 0 . (2.31)

Since this is totally antisymmetric in (i, j, k), no generality is lost by contracting it with

εijk, giving

3εijk ∂iFjk = 0 . (2.32)

From (2.15), this implies

3εijkεjk`∂iB` = 0 , and hence 6∂iBi = 0 . (2.33)

This has just reproduced the first Maxwell equation in (2.4), i.e. ~∇ · ~B = 0.

We have now demonstrated that the equations (2.19) and (2.20) are equivalent to the four

Maxwell equations (2.3) and (2.4). Since (2.19) and (2.20) are written in a four-dimensional

notation, it is highly suggestive that they are indeed Lorentz covariant. However, we should

be a little more careful, in order to be sure about this point. Not every set of objects V µ

can be viewed as a Lorentz 4-vector, after all. The test is whether they transform properly,

as in (1.94), under Lorentz transformations.

10Recall that εijmεk`m = δikδj` − δi`δjk, and hence εijmεkjm = 2δik.
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We may begin by considering the quantities Jµ = (ρ, J i). Note first that by applying

∂ν to the Maxwell field equation (2.19), we get identically zero on the left-hand side, since

partial derivatives commute and Fµν is antisymmetric. Thus from the right-hand side we

get (after a relabelling of the dummy index)

∂µJ
µ = 0 . (2.34)

This is the equation of charge conservation. Decomposed into the 3 + 1 language, it takes

the familiar form
∂ρ

∂t
+ ~∇ · ~J = 0 . (2.35)

By integrating over a closed 3-volume V and using the divergence theorem on the second

term, we learn that the rate of change of charge inside V is balanced by the flow of charge

through its boundary S:
∂

∂t

∫
V
ρ d3x = −

∫
S

~J · d~S , (2.36)

where d3x = dxdydz is the spatial 3-volume element, and ~dS = (dydz, dzdx, dxdy) is the

2-area elemenent.

Now we are in a position to show that Jµ = (ρ, ~J) is indeed a 4-vector. Considering

J0 = ρ first, we may note that

dQ ≡ ρ(~r ) dxdydz (2.37)

is clearly Lorentz invariant, since it is an electric charge; specifically, it is the charge in the

infinitesimal 3-volume dxdydz located at the point ~r. Clearly, all Lorentz observers will

agree on the number of electrons in a specified closed spatial region, and so they will agree

on the amount of charge. Another quantity that is Lorentz invariant is

dv = dtdxdydz , (2.38)

the 4-volume element of an infinitesimal volume in spacetime. This can be seen from the

fact that the Jacobian J of the transformation from dv to dv′ = dt′dx′dy′dz′ is given by

J = det
(∂x′µ
∂xν

)
= det(Λµν) . (2.39)

(Recall that the transformation from the unprimed to the primed Lorentz frame is given

by x′µ = Λµν x
ν .) Now the defining property (1.83) of the Lorentz transformation can be

written in a matrix notation as

ΛT ηΛ = η , (2.40)
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and hence taking the determinant, we get (det Λ)2 = 1 and hence

det Λ = ±1 . (2.41)

Assuming that we restrict attention to Lorentz transformations without reflections, then

they will be connected to the identity (we can take the boost velocity ~v to zero and/or

the rotation angle to zero and continuously approach the identity transformation), and so

det Λ = 1. Thus it follows from (2.39) that for Lorentz transformations without reflections,

the 4-volume element dv = dtdxdydz is invariant.

Comparing dQ = ρdxdydz and dv = dtdxdydz, both of which we have argued are

Lorentz invariant, we can conclude that, just as dt transforms as the 0 component of a

4-vector, so the charge density ρ must transform as the 0 component of a 4-vector under

Lorentz transformations. Thus writing, as we did, that J0 = ρ, is justified.

In the same way, we may consider the spatial components J i of the putative 4-vector

Jµ. Considering J1, for example, we know that J1dydz is the current flowing through the

area element dydz. Therefore in time dt, there will have been a flow of charge J1dtdydz.

Being a charge, this must be Lorentz invariant, and so it follows from the known Lorentz

invariance of dv = dtdxdydz that J1 must transform the same way as dx under Lorentz

transformations. That is, J1 must transform as the 1 component of a 4-vector. Similar

arguments apply to J2 and J3. (It is important in this argument that, because of the

charge-conservation equation (2.34) or (2.36), the flow of charges we are discussing when

considering the J i components are the same charges we discussed when considering the J0

component.)

We have now argued that Jµ = (ρ, J i) is indeed a Lorentz 4-vector, where ρ is the charge

density and J i the 3-vector current density.

Actually, the argument we have presented for showing that Jµ is a 4-vector is a little

sketchy. One should really be rather more careful about getting the orientations of the

3-area elements orthogonal to the 0, 1, 2 and 3 directions right. This involves defining the

infinitesimal 3-area 4-vector

dΣµ = (dxdydz,−dtdydz,−dtdzdx,−dtdxdy) . (2.42)

Charge conservation can then be described in 4-dimensional terms, by considering an arbi-

trary 4-volume V4 in spacetime, which is bounded by a 3-dimensional surface S3. Integrat-

ing ∂µJ
µ = 0 over V4 and then using the 4-dimensional analogue of the divergence theorem
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gives11

0 =

∫
V4

∂µJ
µ d4x =

∫
S3

Jµ dΣµ , (2.43)

where d4x = dtdxdydz is the infinitesimal 4-volume element.

Now consider a 4-volume V4 comprising the entire infinite spatial 3-volume sandwiched

between an initial timelike surface at t = t1 and a final timelike surface at t = t2. Thus the

bounding 3-surface S3 is like an infinite-radius hyper-cylinder, comprising the two end-caps

given by the infinite spatial hyperplane at t = t1 with −∞ ≤ x ≤ ∞, −∞ ≤ y ≤ ∞ and

−∞ ≤ z ≤ ∞, and the infinite spatial hyperplane at t = t2, again with −∞ ≤ x ≤ ∞,

−∞ ≤ y ≤ ∞ and −∞ ≤ z ≤ ∞; and then finally the the side of the cylinder, with

t1 ≤ t ≤ t2 and x, y and z all being at infinity (the “sphere at infinity”). We shall assume

that the charge and current densities are localised, and that they fall off at spatial infinity.

Thus from (2.43) we then have

0 = −
∫
Cap 1

J0 dxdydz + +

∫
Cap 2

J0 dxdydz +

∫
Sphere at infinity

J i dΣi . (2.44)

(The minus sign on the first term is because in the divergence theorem the 3-area element

dΣi points outwards from the 4-volume V4 on all of the boundary surface.) The fall-off

assumptions imply the final integral vanishes, and so we have∫
Cap 1

J0 dxdydz =

∫
Cap 2

J0 dxdydz , i.e.

∫
t=t1

ρ dxdydz =

∫
t=t2

ρ dxdydz , (2.45)

and hence we conclude that the total charge at time t1 is the same as the total charge at

time t2. That is to say, charge is conserved.

The conclusion about charge conservation would be the same for any choice of inertial

observer. That is to say, the conclusion must be independent of the choice of Lorentz frame.

This implies that Jµ dΣµ must be Lorentz invariant. Since one could consider all possible

timelike slicings for the “sandwich” in (2.43), one is essentially saying that Jµ dΣµ must

be a Lorentz scalar where the 4-vector dΣµ can be oriented arbitrarily. By the quotient

theorem (see homework 2), it therefore follows that Jµ = (ρ, J i) must be a 4-vector.

At this point, we recall that by choosing the Lorenz gauge (2.11), we were able to reduce

the Maxwell field equations (2.3) to (2.12). Furthermore, we can write these equations

11One can verify, by carefully generalising the usual proof of the 3-dimensional divergence theorem to four

dimensions, that the signs given in the definition of dΣµ in (2.42) are correct, where the convention is that a

3-area element such as dtdxdy is positively oriented, in the sense that dtdxdy would give a positive number

when integrated over a 3-area in the (t, x, y) hyperplane.
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together as

Aµ = −4π Jµ , (2.46)

where we have defined

Aµ = (φ, ~A) , (2.47)

where the D’Alembertian, or wave operator, = ∂µ∂µ = ∂i∂i−∂2
0 was introduced in (1.120).

We saw that it is manifestly a Lorentz scalar operator, since it is built from the contraction

of indices on the two Lorentz-vector gradient operators. Since we have already established

that Jµ is a 4-vector, it therefore follows that Aµ is a 4-vector. Note, en passant, that the

Lorenz gauge condition (2.11) that we imposed earlier translates, in the four-dimensional

language, into

∂µA
µ = 0 , (2.48)

which is nicely Lorentz invariant.

The final step is to note that our definition (2.15) is precisely consistent with (2.47) and

(2.8), if we write

Fµν = ∂µAν − ∂νAµ . (2.49)

First, we note from (2.47) that because of the η00 = −1 needed when lowering the 0 index,

we shall have

Aµ = (−φ, ~A) . (2.50)

Therefore we find

F0i = ∂0Ai − ∂iA0 =
∂Ai
∂t

+ ∂iφ = −Ei ,

Fij = ∂iAj − ∂jAi = εijk(~∇× ~A)k = εijk Bk . (2.51)

In summary, we have shown that Jµ is a 4-vector, and hence, using (2.46), that Aµ is a

4-vector. Then, it is manifest from (2.49) that Fµν is a 4-tensor. Hence, we have established

that the Maxwell equations, written in the form (2.19) and (2.20), are indeed expressed in

terms of 4-tensors and 4-vectors, and so the manifest Lorentz covariance of the Maxwell

equations is established.

Finally, it is worth remarking that in the 4-tensor description, the way in which the gauge

invariance arises is very straightforward. First, it is manifest that the Bianchi identity (2.20)

is solved identically by writing

Fµν = ∂µAν − ∂νAµ , (2.52)
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for some 4-vector Aµ. This is because (2.20) is totally antisymmetric in µνρ, and so, when

(2.52) is substituted into it, one gets identically zero since partial derivatives commute.

(Try making the substitution and verify this explicitly. The vanishing because of the com-

mutativity of partial derivatives is essentially the same as the reason why curl grad ≡ 0

and div curl ≡ 0.) It is also clear from (2.52) that Fµν will be unchanged if we make the

replacement

Aµ −→ Aµ + ∂µλ , (2.53)

where λ is an arbitrary function of position and time. Again, the reason is that partial

derivatives commute. Comparing (2.53) with (2.50), we see that (2.53) implies

φ −→ φ− ∂λ

∂t
, Ai −→ Ai + ∂iλ , (2.54)

and so we have reproduced the gauge transformations (2.9) and (2.10).

It should have become clear by now that all the familiar features of the Maxwell equa-

tions are equivalently described in the spacetime formulation in terms of 4-vectors and

4-tensors. The only difference is that everything is described much more simply and ele-

gantly in the four-dimensional language.

2.4 Lorentz transformation of ~E and ~B

Although for many purposes the four-dimensional decsription of the Maxwell equations is

the most convenient, it is sometimes useful to revert to the original description in terms of

~E and ~B. For example, we may easily derive the Lorentz transformation properties of ~E

and ~B, making use of the four-dimensional formulation. In terms of Fµν , there is no work

needed to write down its behaviour under Lorentz transformations. Raising the indices for

convenience, we shall have

F ′
µν

= Λµρ Λνσ F
ρσ . (2.55)

From this, and the fact (see (2.15) that F 0i = Ei, F
ij = εijkBk, we can then immediately

read of the Lorentz transformations for ~E and ~B.

From the expressions (1.78) for the most general Lorentz boost transformation, we may

first calculate ~E ′, calculated from

E′i = F ′
0i

= Λ0
ρ Λiσ F

ρσ ,

= Λ0
0 Λik F

0k + Λ0
k Λi0 F

k0 + Λ0
k Λi` F

k` ,

= γ
(
δik +

γ − 1

v2
vivk

)
Ek − γ2vivkEk − γ vk

(
δi` +

γ − 1

v2
viv`

)
εk`mBm ,

= γEi + γεijk vjBk −
γ − 1

v2
vivkEk . (2.56)
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(Note that because Fµν is antisymmetric, there is no F 00 term on the right-hand side on

the second line.) Thus, in terms of 3-vector notation, the Lorentz boost transformation of

the electric field is given by

~E′ = γ( ~E + ~v × ~B)− γ − 1

v2
(~v · ~E)~v . (2.57)

An analogous calculation shows that the Lorentz boost transformation of the magnetic field

is given by

~B′ = γ( ~B − ~v × ~E)− γ − 1

v2
(~v · ~B)~v . (2.58)

Suppose, for example, that in the frame S there is just a magnetic field ~B, while ~E = 0.

An observer in a frame S′ moving with uniform velocity ~v relative to S will therefore observe

not only a magnetic field, given by

~B′ = γ ~B − γ − 1

v2
(~v · ~B)~v , (2.59)

but also an electric field, given by

~E′ = γ~v × ~B . (2.60)

This, of course, is the principle of the dynamo.12

It is instructive to write out the Lorentz transformations explicitly in the case when the

boost is along the x direction, ~v = (v, 0, 0). Equations (2.57) and (2.58) become

E′x = Ex , E′y = γ(Ey − vBz) , E′z = γ(Ez + vBy) ,

B′x = Bx , B′y = γ(By + vEz) , B′z = γ(Bz − vEy) . (2.61)

2.5 The Lorentz force

Consider a point particle following the path, or worldline, xµ = xµ(τ) in Minkowski space-

time. As we saw earlier, its 4-velocity is given by

Uµ =
dxµ(τ)

dτ
= (γ, γ ~u) , where γ =

1√
1− u2

, (2.62)

where ui = dxi/dt is its 3-velocity. Multiplying (2.62) by the rest mass m of the particle

gives another 4-vector, namely the 4-momentum

pµ = mUµ = (mγ,mγ ~u) . (2.63)

12In a practical dynamo the rotor is moving with a velocity ~v which is much less than the speed of light,

i.e. |~v| << 1 in natural units. This means that the gamma factor γ = (1 − v2)−1/2 is approximately equal

to unity in such cases.
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The 0 component p0 = mγ is called the relativistic energy E, and the spatial components

pi = mγ ui are called the relativistic 3-momentum. Note that since UµUµ = −1, we shall

have

pµpµ = −m2 . (2.64)

We now define the relativistic 4-force fµ acting on the particle to be

fµ =
dpµ

dτ
, (2.65)

where τ is the proper time. Clearly fµ is indeed a 4-vector, since it is the 4-vector dpµ

divided by the scalar dτ .

Using (2.63), we can write the 4-force as

fµ =
(
mγ3~u · d~u

dτ
,mγ3~u · d~u

dτ
~u+mγ

d~u

dτ

)
. (2.66)

It follows that if we move to the instantaneous rest frame of the particle, i.e. the frame in

which ~u = 0 at the particular moment we are considering, then fµ reduces to

fµ
∣∣∣
rest frame

= (0, ~F ) , (2.67)

where

~F = m
d~u

dt
(2.68)

is the Newtonian force measured in the rest frame of the particle.13 Thus, we should

interpret the 4-force physically as describing the Newtonian 3-force when measured in the

instantaneous rest frame of the accelerating particle.

If we now suppose that the particle has electric charge e, and that it is moving under

the influence of an electromagnetic field Fµν , then its motion is given by the Lorentz force

equation

fµ = eFµν Uν . (2.69)

One can more or less justify this equation on the grounds of “what else could it be?”, since

we know that there must exist a relativistic equation (i.e. a Lorentz covariant equation)

that describes the motion. In fact it is easy to see that (2.69) is correct. We calculate the

spatial components:

f i = eF iν Uν = eF i0 U0 + eF ij Uj ,

= e(−Ei)(−γ) + eεijk Bkγ uj , (2.70)

13Note that we can replace the proper time τ by the coordinate time t in the instantaneous rest frame,

since dτ = dt/γ, and γ = 1 when ~u = 0.
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and thus

~f = eγ ( ~E + ~u× ~B) . (2.71)

But fµ = dpµ/dτ , and so ~f = d~p/dτ = γ d~p/dt (recall from section 1.6 that dτ = dt/γ) and

so we have
d~p

dt
= e ( ~E + ~u× ~B) , (2.72)

where d~p/dt is the rate of change of th relativistic 3-momentum ~p = mγ u~u. This is indeed

the standard expression for the motion of a charged particle under the Lorentz force.

2.6 Action principle for charged particles

In this section, we shall show how the equations of motion for a charged particle moving

in an electromagnetic field can be derived from an action principle. To begin, we shall

consider an uncharged particle of mass m, with no forces acting on it. It will, of course,

move in a straight line. It turns out that its equation of motion can be derived from the

Lorentz-invariant action

S = −m
∫ τ2

τ1

dτ , (2.73)

where τ is the proper time along the trajectory xµ(τ) of the particle, starting at proper

time τ = τ1 and ending at τ = τ2. The action principle then states that if we consider all

possible paths between the initial and final spacetime points on the path, then the actual

path followed by the particle will be such that the action S is stationary. In other words, if

we consider small variations of the path around the actual path, then to first order in the

variations we shall have δS = 0.

To see how this works, we note that dτ2 = dt2 − dxidxi = dt2(1 − vivi) = dt2(1 − v2),

where vi = dxi/dt is the 3-velocity of the particle. Thus dτ = dt/γ where γ = (1− v2)−1/2

and so

S = −m
∫ t2

t1

dt

γ
= −m

∫ t2

t1

(1− v2)1/2 dt = −m
∫ t2

t1

(1− ẋiẋi)1/2 dt . (2.74)

In other words, the Lagrangian L, for which S =
∫ t2
t1
Ldt, is given by

L = −m
γ

= −m(1− ẋiẋi)1/2 . (2.75)

As a check, if we expand (2.75) for small velocities (i.e. small compared with the speed

of light, so |ẋi| << 1), we shall have

L = −m+ 1
2mv

2 + · · · . (2.76)
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Since the Lagrangian is given by L = T − V we see that T is just the usual kinetic energy

1
2mv

2 for a non-relativistic particle of mass m, while the potential energy is just m. Of

course if we were not using units where the speed of light were unity, this energy would be

mc2. Since it is just a constant, this rest-mass energy of the particle does not affect the

equations of motion that will follow from the action principle.

Now let us consider small variations δxi(t) around the path xi(t) followed by the particle.

The action will vary according to

δS = m

∫ t2

t1

(1− ẋj ẋj)−1/2 ẋiδẋidt . (2.77)

Integrating by parts then gives

δS = −m
∫ t2

t1

d

dt

(
(1− ẋj ẋj)−1/2 ẋi

)
δxidt+m

[
(1− ẋj ẋj)−1/2 ẋiδxi

]t2
t1
. (2.78)

As usual in an action principle, we restrict to variations of the path that vanish at the

endpoints, so δxi(t1) = δxi(t2) = 0 and the boundary term can be dropped. The variation

δxi is allowed to be otherwise arbitrary in the time interval t1 < t < t2, and so we conclude

from the requirement of stationary action δS = 0 that

d

dt

(
m(1− ẋj ẋj)−1/2 ẋi

)
= 0 . (2.79)

Now, recalling that we define γ = (1− v2)−1/2, we see that

d(mγ~v )

dt
= 0 , (2.80)

or, in other words,
d~p

dt
= 0 , (2.81)

where ~p = mγ~v is the relativistic 3-momentum. We have, of course, derived the equation

for straight-line motion in the absence of any forces acting.

Now we extend the discussion to the case of a particle of mass m and charge e, moving

under the influence of an electromagnetic field Fµν . This field will be written in terms of a

4-vector potential:

Fµν = ∂µAν − ∂νAµ . (2.82)

The action will now be the sum of the free-particle action (2.74) above plus a term describing

the interaction of the particle with the electromagnetic field. The total action turns out to

be

S =

∫ τ2

τ1

(−mdτ + eAµdx
µ) . (2.83)
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Note that it is again Lorentz invariant.

From (2.50) we have Aµ = (φ, ~A ) and hence Aµ = (−φ, ~A ), and so

Aµdx
µ = Aµ

dxµ

dt
dt = (A0 +Aiẋ

i)dt = (−φ+Aiẋ
i)dt . (2.84)

Thus we have S =
∫ t2
t1
Ldt with the Lagrangian L given by

L = −m(1− ẋj ẋj)1/2 − eφ+ eAiẋ
i , (2.85)

where potentials φ and Ai depend on t and x. The first-order variation of the action under

a variation δxi in the path gives

δS =

∫ t2

t1

[
m(1− ẋj ẋj)−1/2 ẋiδẋi − e∂iφ δxi + eAiδẋ

i + e∂jAiẋ
iδxj

]
dt ,

=

∫ t2

t1

[
− d

dt
(mγẋi)− e∂iφ− e

dAi
dt

+ e∂iAj ẋ
j
]
δxidt . (2.86)

(We have dropped the boundary terms immediately, since δxi is again assumed to vanish

at the endpoints.) Thus the principle of stationary action δS = 0 implies

d(mγẋi)

dt
= −e∂iφ−

dAi
dt

+ e∂iAj ẋ
j . (2.87)

Now, the total time derivative dAi/dt has two contributions, and we may write it as

dAi
dt

=
∂Ai
∂t

+ ∂jAi
dxj

dt
=
∂Ai
∂t

+ ∂jAi ẋ
j . (2.88)

This arises because first of all, Ai can depend explicitly on the time coordinate; this con-

tribution is ∂Ai/∂t. Additionally, Ai depends on the spatial coordinates xi, and along the

path followed by the particle, xi depends on t because the path is xi = xi(t). This accounts

for the second term.

Putting all this together, we have

d(mγẋi)

dt
= e

(
− ∂iφ−

∂Ai
∂t

)
+ e(∂iAj − ∂jAi) ẋj ,

= e(Ei + εijk ẋ
jBk) . (2.89)

In other words, we have
d~p

dt
= e( ~E + ~v × ~B) , (2.90)

which is the Lorentz force equation (2.72).

It is worth noting that although we gave a “three-dimensional” derivation of the equa-

tions of motion following from the action (2.83), we can also instead directly derive the four-

dimensional equation dpµ/dτ = eFµνUν . To begin, we note that since dτ2 = −ηµνdxµdxν ,
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its variation under a variation of the path xµ(τ) in spacetime gives 2dτ δ(dτ) = −2ηµνd(δxµ) dxν ,

and so dividing by 2dτ gives

δ(dτ) = −ηµν
dxν

dτ
d(δxµ) ,

= −Uµ d(δxµ) , (2.91)

where Uµ is the 4-velocity. Thus the variation of the action (2.83) gives

δS =

∫ τ2

τ1

(
mUµdδx

µ + eAµ dδx
µ + e∂νAµ δx

νdxµ
)
,

=

∫ τ2

τ1

(
d(mUµ δx

µ)−mdUµ δxµ + d(eAµ δx
µ)− edAµ δxµ + e∂µAν δx

µdxν
)
,

=

∫ τ2

τ1

(
−mdUµ δxµ − edAµ δxµ + e∂µAν δx

µdxν
)
,

=

∫ τ2

τ1

(
−mdUµ

dτ
− edAµ

dτ
+ e∂µAν

dxν

dτ

)
δxµdτ , (2.92)

where we have dropped the boundary terms
∫ τ2
τ1
d(mUµ δx

µ + eAµ δx
µ) in getting to the

third line, since they integrate to give [mUµ δx
µ + eAµ δx

µ]τ2τ1 and therefore vanish, as we

assume δxµ = 0 at the initial and final proper times τ1 and τ2. Now by the chain rule

dAµ
dτ

= ∂νAµ
dxν

dτ
= ∂νAµ U

ν , (2.93)

and so

δS =

∫ τ2

τ1

(
−mdUµ

dτ
− e∂νAµ Uν + e∂µAν U

ν
)
δxµdτ ,

=

∫ τ2

τ1

(
−mdUµ

dτ
+ eFµν U

ν
)
dτ . (2.94)

Requiring δS = 0 for all variations (that vanish at the endpoints) we therefore obtain the

equation of motion

m
dUµ
dτ

= eFµν U
ν . (2.95)

Thus we have reproduced the Lorentz force equation in its four-dimensionally covariant

form
dpµ

dτ
= eFµν Uν , (2.96)

where pµ = mUµ is the 4-momentum.

47



2.7 Gauge invariance of the action

In writing down the relativistic action (2.83) for a charged particle we had to make use

of the 4-vector potential Aµ. This is itself not physically observable, since, as we noted

earlier, Aµ and A′µ = Aµ + ∂λ describe the same physics, where λ is any arbitrary function

in spacetime, since Aµ and A′µ give rise to the same electromagnetic field Fµν . One might

worry, therefore, that the action itself would be gauge dependent, and therefore might not

properly describe the required physical situation. However, all is in fact well. This already

can be seen from the fact that, as we demonstrated, the variational principle for the action

(2.83) does in fact produce the correct gauge-invariant Lorentz force equation (2.72).

It is instructive also to examine the effects of a gauge transformation directly at the

level of the action. If we make the gauge transformation Aµ → A′µ = Aµ+∂µλ, we see from

(2.83) that the action S transforms to S′ given by

S′ =

∫ τ2

τ1

(−mdτ + eAµdx
µ + e∂µλdx

µ) ,

= S + e

∫ τ2

τ1

∂µλdx
µ = e

∫ τ2

τ1

dλ , (2.97)

and so

S′ = S + e[λ(τ2)− λ(τ1)] . (2.98)

The simplest situation to consider is where we restrict ourselves to gauge transformations

that vanish at the endpoints, in which case the action will be gauge invariant, S′ = S. Even

if λ is non-vanishing at the endpoints, we see from (2.98) that S and S′ merely differ by a

constant that depends solely on the values of λ at τ1 and τ2. Clearly, the addition of this

constant has no effect on the equations of motion that one derives from S′.

2.8 Canonical momentum, and Hamiltonian

Given any Lagrangian L(xi, ẋi, t) one defines the canonical momentum πi as

πi =
∂L

∂ẋi
. (2.99)

The relativistic Lagrangian for the charged particle is given by (2.85), and so we have

πi = m(1− ẋj ẋj)−1/2 ẋi + eAi , (2.100)

or, in other words,

πi = mγ ẋi + eAi , (2.101)

= pi + eAi , (2.102)
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where pi as usual is the standard mechanical relativistic 3-momentum of the particle.

As usual, the Hamiltonian for the system is given by

H = πi ẋ
i − L , (2.103)

and so we find

H = mγẋiẋi +
m

γ
+ eφ ,

= mγv2 +
m

γ
+ eφ . (2.104)

Now, mγv2 +m/γ = mγ(v2 + (1− v2)) = mγ, so we have

H = mγ + eφ . (2.105)

As always, the Hamiltonian is to be viewed as a function of the coordinates xi and the

canonical momenta πi. To express γ in terms of πi, we note from (2.101) that mγẋi =

πi − eAi, and so squaring, we get m2γ2v2 = m2v2/(1 − v2) = (πi − eAi)2. Solving for v2,

and hence for γ, we find that m2γ2 = (πi − eAi)2 + m2, and so finally, from (2.105), we

arrive at the Hamiltonian

H =
√

(πi − eAi)2 +m2 + eφ , (2.106)

with H expressed as a function of the coordinates xi and the canonical momenta πi.

Note that Hamilton’s equations, which will necessarily give rise to the same Lorentz

force equations of motion we encountered previously, are given by

∂H

∂πi
= ẋi ,

∂H

∂xi
= −π̇i . (2.107)

As a check of the correctness of the Hamiltonian (2.106) we may examine it in the non-

relativistic limit when (πi− eAi)2 is much less than m2. We then extract an m2 factor from

inside the square root in
√

(πi − eAi)2 +m2 and expand to get

H = m
√

1 + (πi − eAi)2/m2 + eφ ,

= m+
1

2m
(πi − eAi)2 + eφ+ · · · . (2.108)

The first term is the rest-mass energy, which is just a constant, and the remaining terms

presented explicitly in (2.108) give the standard non-relativistic Hamiltonian for a charged

particle

Hnon-rel. =
1

2m
(πi − eAi)2 + eφ . (2.109)

This should be familiar from quantum mechanics, when one writes down the Schrödinger

equation for the wave function for a charged particle in an electromagnetic field.
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3 Particle Motion in Static Electromagnetic Fields

In this chapter, we discuss the motion of a charged particle in static (i.e. time-independent)

electromagnetic fields.

3.1 Description in terms of potentials

If we are describing static electric and magnetic fields, ~E = ~E(~r ) and ~B = ~B(~r ), it is

natural (and always possible) to describe them in terms of scalar and 3-vector potentials

that are also static, φ = φ(~r ), ~A = ~A(~r ). Thus we write

~E = −~∇φ− ∂ ~A

∂t
= −~∇φ(~r ) ,

~B = ~∇× ~A(~r ) . (3.1)

We can still perform gauge transformations, as given in (2.9) and (2.10). The most general

gauge transformation that preserves the time-independence of the potentials is therefore

given by taking the parameter λ to be of the form

λ(~r, t) = λ(~r ) + k t , (3.2)

where k is an arbitrary constant. This implies that φ and ~A will transform according to

φ −→ φ− k , ~A −→ ~A+ ~∇λ(~r ) . (3.3)

Note, in particular, that the electrostatic potential φ can just be shifted by an arbitrary

constant. This is the familiar freedom that one typically uses to set φ = 0 at infinity.

Recall that the Hamiltonian for a particle of mass m and charge e in an electromagnetic

field is given by (2.105)

H = mγ + eφ , (3.4)

where γ = (1−v2)−1/2. In the present situation with static fields, the Hamiltonian does not

depend explicitly on time, i.e. ∂H/∂t = 0. It then follows that the Hamiltonian is conserved

(i.e. it is the same at all times) since we have (by the chain rule)

dH

dt
=

∂H

∂t
+
∂H

∂xi
ẋi +

∂H

∂πi
π̇i ,

= 0− π̇i ẋi + ẋi π̇i = 0 . (3.5)

(We used the Hamilton equations (2.107) in getting to the second line.) This time-independent

quantity H is then just the energy E of the system:

E ≡ H = mγ + eφ . (3.6)
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We may think of the first term in E as being the mechanical term,

Emech = mγ , (3.7)

since this is just the total energy of a particle of rest mass m moving with velocity ~v. The

second term, eφ, is the contribution to the total energy from the electric field. Note that the

magnetic field, described by the 3-vector potential ~A, does not contribute to the conserved

energy. This is because the magnetic field ~B does no work on the charge:

Recall that the Lorentz force equation can be written as

d(mγvi)

dt
= e(Ei + εijk v

jBk) . (3.8)

Multiplying by vi we therefore have

mγvi
dvi

dt
+mvivi

dγ

dt
= eviEi . (3.9)

Now γ = (1− v2)−1/2, so

dγ

dt
= (1− v2)−3/2vi

dvi

dt
= γ3vi

dvi

dt
, (3.10)

and so (3.9) gives

m
dγ

dt
= eviEi . (3.11)

Since Emech = mγ, and m is a constant, we therefore have

dEmech

dt
= e~v · ~E . (3.12)

Thus, the mechanical energy of the particle is changed only by the electric field, and not

by the magnetic field.

Note that another (and equivalent) derivation of the constancy of E = mγ + eφ is as

follows:

dE
dt

=
d(mγ)

dt
+ e

dφ

dt

=
dEmech

dt
+ e∂iφ

dxi

dt
,

= e~v · ~E − e~v · ~E = 0 . (3.13)

3.2 Particle motion in static uniform ~E and ~B fields

Let us consider the case where a charged particle is moving in static (i.e. time-independent)

uniform ~E and ~B fields. In other words, ~E and ~B are constant vectors, independent of
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time and of position. In this situation, it is easy to write down explicit expressions for the

corresponding scalar and 3-vector potentials. For the scalar potential, we can take

φ = − ~E · ~r = −Eixi . (3.14)

Clearly this gives the correct electric field, since

−∂iφ = ∂i(Ejx
j) = Ej∂ix

j = Ejδij = Ei . (3.15)

(It is, of course, essential that Ej is constant for this calculation to be valid.)

Turning now to the uniform ~B field, it is easily seen that this can be written as ~B =

~∇× ~A, with the 3-vector potential given by

~A = 1
2
~B × ~r . (3.16)

It is easiest to check this using index notation. We have

(~∇× ~A)i = εijk ∂jAk = εijk∂j(
1
2εk`mB`x

m) ,

= 1
2εijkε`mk B`∂jx

m = 1
2εijkε`jk B` ,

= δi`B` = Bi . (3.17)

Of course the potentials we have written above are not unique, since we can still perform

gauge transformations. If we restrict attention to transformations that maintain the time-

independence of φ and ~A, then for φ the only remaining freedom is to add an arbitrary

constant to φ. For the 3-vector potential, we can still add ~∇λ(~r) to ~A, where λ(~r) is an

arbitrary function of position. It is sometimes helpful, for calculational reasons, to do this.

Suppose, for example, that the uniform ~B field lies along the z axis: ~B = (0, 0, B). From

(3.16), we may therefore write the 3-vector potential

~A = (−1
2By,

1
2Bx, 0) . (3.18)

Another choice is to take ~A′ = ~A+ ~∇λ(~r), with λ = −1
2Bxy. This gives

~A′ = (−By, 0, 0) . (3.19)

One easily verifies that indeed ~∇× ~A′ = (0, 0, B).

3.2.1 Motion in a static uniform electric field

From the Lorentz force equation, we shall have

d~p

dt
= e ~E , (3.20)
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where ~p = mγ~v is the relativistic 3-momentum. Without loss of generality, we may take

the electric field to lie along the x axis, and so we will have

dpx
dt

= eE ,
dpy
dt

= 0 ,
dpz
dt

= 0 . (3.21)

Since py and pz are therefore constants, we can without loss of generality rotate the coor-

dinate system around the x axis so that pz = 0. Thus we may integrate (3.21 to give

px = eEt , py = p̄ , pz = 0 , (3.22)

where p̄ is a constant. Note that when integrating dpx/dt, we have fixed the unimportant

constant of integration by choosing the origin for the time coordinate t such that px = 0 at

t = 0.

Recalling that the 4-momentum is given by pµ = (mγ, ~p ) = (Emech, ~p ), and that pµpµ =

m2UµUµ = −m2, we see that −E2
mech + ~p · ~p = −m2, and so

Emech =
√
m2 + p2

x + p2
y =

√
m2 + p̄2 + (eEt)2 . (3.23)

Hence we may write

Emech =
√
E2

0 + (eEt)2 , (3.24)

where E2
0 = m2 + p̄2 is the square of the mechanical energy at time t = 0.

We have ~p = mγ ~v = Emech ~v, and so px = Emech dx/dt and therefore

dx

dt
=

px
Emech

=
eEt√

E2
0 + (eEt)2

, (3.25)

which can be integrated to give

x =
1

eE

√
E2

0 + (eEt)2 . (3.26)

(The constant of integration has been absorbed into a choice of origin for the x coordinate.)

Note from (3.25) that the x-component of the 3-velocity asymptotically approaches 1 as t

goes to infinity. Thus the particle is accelerated closer and closer to the speed of light, but

never reaches it.

We also have
dy

dt
=

py
Emech

=
p̄√

E2
0 + (eEt)2

. (3.27)

This can be integrated by changing variable from t to u, defined by

eEt = E0 sinhu . (3.28)
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This gives y = p̄ u/(eE), and hence

y =
p̄

eE
arcsinh

(eEt
E0

)
. (3.29)

(Again, the constant of integration has been absorbed into the choice of origin for y.)

The solutions (3.26) and (3.29) for x and y as functions of t can be combined to give x

as a function of y, leading to

x =
E0

eE
cosh

(eEy
p̄

)
. (3.30)

This is a catenary.

In the non-relativistic limit when |v| << 1, we have p̄ ≈ mv̄ and then, expanding (3.30)

we find the standard “Newtonian” parabolic motion

x ≈ constant +
eE

2mv̄2
y2 . (3.31)

3.2.2 Motion in a static uniform magnetic field

From the Lorentz force equation we shall have

d~p

dt
= e~v × ~B . (3.32)

Recalling (3.11), we see that in the absence of an electric field we shall have γ = constant,

and hence d~p/dt = d(mγ~v )/dt = mγ d~v/dt, leading to

d~v

dt
=

e

mγ
~v × ~B =

e

E
~v × ~B , (3.33)

since E = mγ + eφ = mγ (a constant) here.

Without loss of generality we may choose the uniform ~B field to lie along the z axis:

~B = (0, 0, B). Defining

ω ≡ eB

E
=
eB

mγ
, (3.34)

we then find
dvx
dt

= ω vy ,
dvy
dt

= −ω vx ,
dvz
dt

= 0 . (3.35)

From this, it follows that
d(vx + i vy)

dt
= −iω (vx + i vy) , (3.36)

and so the first two equations in (3.35) can be integrated to give

vx + i vy = v0 e
−i (ωt+α) , (3.37)
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where v0 is a real constant, and α is a constant (real) phase. Thus after further integrations

we obtain

x = x0 + r0 sin(ωt+ α) , y = y0 + r0 cos(ωt+ α) , z = z0 + v̄zt , (3.38)

for constants r0, x0, y0, z0 and v̄z, with

r0 =
v0

ω
=
mγv0

eB
=

p̄

eB
, (3.39)

where p̄ is the magnitude of the relativistic 3-momentum in the (x, y) plane. The particle

therefore follows a helical path, of radius r0, twisting along the z axis.

3.2.3 Motion in uniform ~E and ~B fields

Having considered the case of particle motion in a uniform ~E field, and in a uniform ~B

field, we may also consider the situation of motion in uniform ~E and ~B fields together. To

discuss this in detail is quite involved, and we shall not pursue it extensively here. In fact

a relatively simple way to study this general case is to work directly in the 4-dimensional

language, solving
dUµ

dτ
=

e

m
Fµν U

ν , (3.40)

where U = dxµ

dτ is the 4-velocity of the particle. Since we are assuming ~E and ~B are

uniform, constant, fields it follows that Fµν is a constant tensor. See Homework 4, where

this approach is explored further.

One can, of course, still approach the problem from a 3-dimensional standpoint. The

equations can become quite complicated in general. Here, we consider the situation where

we take

~B = (0, 0, B) , ~E = (0, Ey, Ez) , (3.41)

(there is no loss of generality in choosing axes so that this is the case), and we make the

simplifying assumption that the motion is non-relativistic, i.e. |~v| << 1. The equations of

motion will therefore be

m
d~v

dt
= e( ~E + ~v × ~B) , (3.42)

and so

mẍ = eBẏ , mÿ = eEy − eBẋ , mz̈ = eEz . (3.43)

We can immediately solve for z, finding

z =
e

2m
Ez t

2 + v̄t , (3.44)
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where we have chosen the z origin so that z = 0 at t = 0. The x and y equations can be

combined into
d

dt
(ẋ+ i ẏ) + iω(ẋ+ i ẏ) =

i e

m
Ey , (3.45)

where ω = eB/m. Thus we find

ẋ+ i ẏ = ae−iωt +
e

mω
Ey = ae−iωt +

Ey
B
. (3.46)

Choosing the origin of time so that a is real, we have

ẋ = a cosωt+
Ey
B
, ẏ = −a sinωt . (3.47)

Taking the time averages, we see that

〈ẋ〉 =
Ey
B
, 〈ẏ〉 = 0 . (3.48)

The averaged velocity along the x direction is called the drift velocity. Notice that it is

perpendicular to ~E and ~B. It can be written in general as

~vdrift =
~E × ~B

B2
. (3.49)

For our assumption that |~v| << 1 to be valid, we must have | ~E× ~B| << B2, i.e. |Ey| << |B|.

Integrating (3.47) once more, we find

x =
a

ω
sinωt+

Ey
B
t , y =

a

ω
(cosωt− 1) , (3.50)

where the origins of x and y have been chosen so that x = y = 0 at t = 0. These equations

describe the projection of the particle’s motion onto the (x, y) plane. The curve is called a

trochoid. If |a| > Ey/B there will be loops in the motion, and in the special case a = −Ey/B

the curve becomes a cycloid, with cusps:

x =
Ey
ωB

(ωt− sinωt) , y =
Ey
ωB

(1− cosωt) . (3.51)

4 Action Principle for Electrodynamics

We saw already how the equations of motion for a charged particle in an electromagnetic

field can be derived from an action principle. In this section, we shall show how the Maxwell

equations themselves can also be derived from an action principle. We shall also introduce

the notion of the energy-momentum tensor for the electromagnetic field. We begin with a

discussion of Lorentz invariant quantities that can be built from the Maxwell field strength

tensor Fµν .
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4.1 Invariants of the electromagnetic field

As we shall now show, it is possible to build two independent Lorentz invariants that are

quadratic in the electromagnetic field. One of these will turn out to be just what is needed

in order to construct an action for electrodynamics.

4.1.1 The first invariant

The first quadratic invariant is very simple; consider

I1 ≡ Fµν Fµν . (4.1)

Obviously this is Lorentz invariant, since it is built from the product of two Lorentz tensors,

with all indices contracted. It is instructive to see what this looks like in terms of the electric

and magnetic fields. From the expressions given in (2.15), we see that

I1 = F0i F
0i + Fi0 F

i0 + Fij F
ij ,

= 2F0i F
0i + Fij F

ij = −2EiEi + εijk Bk εij`B` ,

= −2EiEi + 2BiBi , (4.2)

and so

I1 ≡ Fµν Fµν = 2( ~B2 − ~E2) . (4.3)

One could, of course, verify from the Lorentz transformations (2.57) and (2.58) for ~E

and ~B that indeed ( ~B2− ~E2) was invariant, i.e. I ′1 = I1 under Lorentz transformations. This

would be quite an involved computation. However, the great beauty of the 4-dimensional

language is that there is absolutely no work needed at all; one can see by inspection that

Fµν F
µν is Lorentz invariant.

4.1.2 The second invariant

The second quadratic invariant that we can write down is given by

I2 ≡ 1
2ε
µνρσ FµνFρσ . (4.4)

First, we need to explain the tensor εµνρσ. This is the four-dimensional Minkowski spacetime

generalisation of the totally-antisymmetric tensor εijk of three-dimensional Cartesian tensor

analysis. The tensor εµνρσ is also totally antisymmetric in all its indices. That means that
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it changes sign if any two indices are exchanged. For example,14

εµνρσ = −ενµρσ = −εµνσρ = −εσνρµ . (4.5)

Since all the non-vanishing components of εµνρσ are related by the antisymmetry, we need

only specify one non-vanishing component in order to define the tensor completely. We

shall define

ε0123 = −1 , or, equivalently ε0123 = +1 . (4.6)

Thus εµνρσ is −1, +1 or 0 according to whether (µνρσ) is an even permutation of (0123),

and odd permutation, or no permutation at all. We use this definition of εµνρσ in all frames.

This can be done because, like the Minkowski metric ηµν , the tensor εµνρσ is an invariant

tensor, as we shall now discuss.

Actually, to be more precise, εµνρσ is an invariant pseudo-tensor. This means that un-

der Lorentz transformations that are connected to the identity (pure boosts and/or pure

rotations), it is truly an invariant tensor. However, it reverses its sign under Lorentz trans-

formations that involve a reflection. To see this, let us calculate what the transformation

of εµνρσ would be if we assume it behaves as an ordinary Lorentz tensor:

ε′
µνρσ ≡ ΛµαΛνβΛργΛσδ ε

αβγδ ,

= (det Λ) εµνρσ . (4.7)

The last equality can easily be seen by writing out all the terms. (It is easier to play around

with the analogous identity in 2 or 3 dimensions, to convince oneself of it in an example

with fewer terms to write down.) Now, we already saw in section 2.3 that det Λ = ±1,

with det Λ = +1 for pure boosts and/or rotations, and det Λ = −1 if there is a reflection as

well. (See the discussion leading up to equation (2.41).) Thus we see from (4.7) that εµνρσ

behaves like an invariant tensor, taking the same values in all Lorentz frames, provided

there is no reflection. (Lorentz transformations connected to the identity, i.e. where there

is no reflection, are sometimes called proper Lorentz transformations.) In practice, we shall

almost always be considering only proper Lorentz transformations, and so the distinction

between a tensor and a pseudo-tensor will not concern us.

It is useful to note that it follows from the definition of εµνρσ given previously that

ε0ijk = −εijk , ε0ijk = εijk , (4.8)

14Beware that in an odd dimension, such as 3, the process of “cycling” the indices on εijk (for example,

pushing one off the right-hand end and bringing it to the front) is an even permutation; εkij = εijk. By

contrast, in an even dimension, such as 4, the process of cycling is an odd permutation; εσµνρ = −εµνρσ.

This is an elementary point, but easily overlooked if one is familiar only with three dimensions!

58



where as usual latin indices range only over the three spatial directions 1, 2 and 3. (And,

also as usual, we are completely free to write latin indices upstairs or downstairs, since

V i = Vi, etc.)

Returning now to the second quadratic invariant, (4.4), we shall have

I2 = 1
2ε
µνρσ FµνFρσ = 1

2 × 4× ε0ijkF0i Fjk ,

= 2(−εijk)(−Ei)εjk`B` ,

= 4EiBi = 4 ~E · ~B . (4.9)

Thus, to summarise, we have the two quadratic invariants

I1 = FµνF
µν = 2( ~B2 − ~E2) ,

I2 = 1
2ε
µνρσ FµνFρσ = 4 ~E · ~B . (4.10)

Since the two quantities I1 and I2 are (manifestly) Lorentz invariant, this means that,

even though it is not directly evident in the three-dimensional language without quite a lot

of work, the two quantities

~B2 − ~E2 , and ~E · ~B (4.11)

are Lorentz invariant; i.e. they take the same values in all Lorentz frames. This has a

number of consequences. For example

1. If ~E and ~B are perpendicular in one Lorentz frame, then they are perpendicular in

all Lorentz frames.

2. In particular, if there exists a Lorentz frame where the electromagnetic field is purely

electric ( ~B = 0), or purely magnetic ( ~E = 0), then ~E and ~B are perpendicular in any

other frame.

3. If | ~E| > | ~B| in one frame, then it is true in all frames. Conversely, if | ~E| < | ~B| in one

frame, then it is true in all frames.

4. By making an appropriate Lorentz transformation, we can, at a given point, make ~E

and ~B equal to any values we like, subject only to the conditions that we cannot alter

the values of ( ~B2 − ~E2) and ~E · ~B at that point.
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4.2 Action for electrodynamics

We have already discussed the action principle for a charged particle moving in an electro-

magnetic field. In that discussion, the electromagnetic field was just a specified background,

which, of course, would be a solution of the Maxwell equations. We can also derive the

Maxwell equations themselves from an action principle, as we shall now show.

We begin by introducing the notion of Lagrangian density. This is a quantity that is

integrated over a three-dimensional spatial volume (typically, all of 3-space) to give the

Lagrangian:

L =

∫
Ld3x . (4.12)

Then, the Lagrangian is integrated over a time interval t1 ≤ t ≤ t2 to give the action,

S =

∫ t2

t1

Ldt =

∫
V
Ld4x . (4.13)

Here, we are defining the 4-volume V to be the entire infinite spatial 3-space in the sandwich

between the initial time surface at t = t1 and the final time surface at t = t2. In order to

make the following discussion more precise, it will be helpful to think of the infinite 3-space

as being the limit in which one sends the radius R of a 3-dimensional ball to infinity. While

R is still finite, the corresponding 4-volume will be of the form of the interior of a “cylinder”

that is coaxial with the time coordinate, with end caps at t = t1 and t = t2, an having

radius R in the three spatial directions. We cannot visualise such a 4-dimensional cylinder,

but it is really like the higher-dimensional analogue of a tin can, with the time coordinate

coaxial with the can. A t = constant slice through a familiar tin can would be a circle; in the

present case, the t = constant slice will be the surface of a 2-dimensional sphere of radius

R. Eventually, when we send R to infinity this sphere becomes the “sphere at infinity” in

3-space.

Consider first the vacuum Maxwell equations without sources,

∂µF
µν = 0 , ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (4.14)

We immediately solve the second equation (the Bianchi identity) by writing Fµν in terms

of a potential:

Fµν = ∂µAν − ∂νAµ . (4.15)

Since the Maxwell field equations are linear in the fields, it is natural to expect that the

action should be quadratic. In fact, it turns out that the first invariant we considered above

provides the appropriate Lagrangian density. We take

L = − 1

16π
FµνF

µν , (4.16)
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and so the action will be

S = − 1

16π

∫
V
FµνF

µνd4x . (4.17)

We can now derive the source-free Maxwell equations by requiring that this action be

stationary with respect to variations of the gauge field Aµ. It must be emphasised that we

treat Aµ as the fundamental field here.

The derivation goes as follows. We shall have

δS = − 1

16π

∫
V

(δFµνF
µν + FµνδF

µν)d4x = − 1

8π

∫
V
δFµνF

µν d4x ,

= − 1

8π

∫
V
Fµν (∂µδAν − ∂νδAµ)d4x = − 1

4π

∫
V
Fµν ∂µδAνd

4x ,

= − 1

4π

∫
V
∂µ(Fµν δAν)d4x+

1

4π

∫
V

(∂µF
µν) δAνd

4x ,

= − 1

4π

∫
Σ
Fµν δAνdΣµ +

1

4π

∫
V

(∂µF
µν) δAνd

4x ,

=
1

4π

∫
V

(∂µF
µν) δAνd

4x . (4.18)

Note that in the penultimate step, we have used the 4-dimensional analogue of the divergence

theorem to turn the 4-volume integral of the divergence of a vector into a 3-volume integral

over the bounding surface Σ. The four-dimensional divergence theorem says that for any

4-vector Wµ, we have ∫
V

(∂µW
µ) d4x =

∫
Σ
WµdΣµ . (4.19)

In our case, as discussed above, the 4-volume V consists of the “sandwich” of all of 3-space

between the two surfaces t = t1 and t = t2. We think of this as the limit of a sandwich

between t = t1 and t2 extending out to spatial radius R, where eventually R is sent to

infinity. The 3-dimensional boundary Σ of this “tin can” consists of the endcaps at t = t1

and t = t2, plus the spatial sphere of radius R along the sides of the can. The contributions

from the integration over Σ have been dropped in getting to the final line in eqn (4.18).

This happens for two reasons: Firstly, by definition we shall require our variations δAµ to

vanish on the end-caps at t = t1 and t2. This is part of the specification of the variational

problem. It is the analogue of what one always does in a variational problem in particle

mechanics: the variations in the path are required to vanish at the initial and final times.

We also require the electromagnetic field to fall off at spatial infinity. This ensures that the

portion of the surface integral in the penultimate line of (4.18) that is evaluated over the

sides of the “tin can” goes to zero as we send the radius R to infinity.

Finally, we argue that if the action S is to be stationary for all possible infinitesimal

variations δAµ that vanish at t = t1 and t = t2, it must be that the cofactor of δAν in the
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final line of (4.18) must vanish:

∂µF
µν = 0 . (4.20)

Thus we have derived the source-free Maxwell field equation. Of course the Bianchi identity

has already been taken care of by writing Fµν in terms of the 4-vector potential Aµ.

The action (4.17), whose variation gave the Maxwell field equation, is written in what

is called second-order formalism; that is, the action is expressed in terms of the 4-vector-

potential Aµ as the fundamental field, with Fµν just being a short-hand notation for ∂µAν−

∂νAµ. It is sometimes convenient to use instead the first-order formalism, in which one

treats Aµ and Fµν as independent fields. In this formalism, the equation of motion coming

from demanding that S be stationary under variations of Fµν will derive the equation

Fµν = ∂µAν − ∂νAµ. To do this, we need a different action as our starting point, namely

Sf.o. =
1

4π

∫
(1

4F
µνFµν − Fµν ∂µAν)d4x . (4.21)

First, consider the variation of Fµν , now treated as an independent fundamental field. This

gives

δSf.o. =
1

4π

∫
(1

2FµνδF
µν − δFµν∂µAν)d4x ,

=
1

4π

∫
[1
2FµνδF

µν − 1
2δF

µν(∂µAν − ∂νAµ)]d4x , (4.22)

where, in getting to the second line, we have used the fact that Fµν is antisymmetric. The

reason for doing this is that when we vary Fµν we can take δFµν to be arbitary, but it must

still be antisymmetric. Thus it is helpful to force an explicit antisymmetrisation on the

∂µAν that multiplies it, since the symmetric part automatically gives zero when contracted

onto the antisymmetric δFµν . Requiring δSf.o. = 0 for arbitrary δFµν then implies the

integrand must vanish. This gives, as promised, the equation of motion

Fµν = ∂µAν − ∂νAµ . (4.23)

Vraying Sf.o. in (4.21) instead with respect to Aµ, we get

δSf.o. = − 1

4π

∫
Fµν ∂µδAν d

4x ,

=
1

4π

∫
(∂µF

µν) δAν d
4x , (4.24)

and hence reuiring that the variation of Sf.o. with respect to Aµ vanish gives the Maxwell

field equation

∂µF
µν = 0 (4.25)
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again. Note that in this calculation, we immediately dropped the boundary term coming

from the integration by parts, for the usual reason that we only allow variations that vanish

on the boundary.

In practice, we shall usually use the previous, second-order, formalism.

4.3 Inclusion of sources

In general, the Maxwell field equation reads

∂µF
µν = −4πJν . (4.26)

So far, we have seen that by varying the second-order action (4.17) with respect to Aµ, we

obtain

δS =
1

4π

∫
∂µF

µν δAν d
4x . (4.27)

To derive the Maxwell field equation with a source current Jµ, we can simply add a source

term JµAµ to the action, to give

S =

∫ (
− 1

16π
FµνF

µν + JµAµ

)
d4x . (4.28)

Treating Jµ as independent of Aµ, we therefore find

δS =

∫ ( 1

4π
∂µF

µν + Jν
)
δAν d

4x , (4.29)

and so requiring δS = 0 gives the Maxwell field equation (4.26) with the source on the

right-hand side.

The form of the source current Jµ depends, of course, on the details of the situation

one is considering. One might simply have a situation where Jµ is an externally-supplied

source field. Alternatively, the source Jµ might itself be given dynamically in terms of some

charged matter fields, or in terms of a set of moving point charges. Let us consider this

possibility in more detail.

If there is a single point charge q at the location ~r0, then it will be described by the

charge density

ρ = q δ3(~r − ~r0) , (4.30)

where the three-dimensional delta-function δ3(~r ), with ~r = (x, y, z), means

δ3(~r ) = δ(x)δ(y)δ(z) . (4.31)

If the charge is moving, so that its location at time t is at ~r = ~r0(t), then of course we shall

have

ρ = q δ3(~r − ~r0(t)) . (4.32)
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(Note that the 0 subscript on ~r0(t) here is not a time index! We are simply using ~r0(t) as

the name of the position 3-vector of the particle at time t.) The 3-vector current will be

given by multiplying this by the 3-velocity ~v = d~r0(t)
dt , giving

~J = q δ3(~r − ~r0(t))
d~r0

dt
, (4.33)

and so the 4-current is

Jµ = (ρ, ρ~v ) , where ~v =
d~r0

dt
, (4.34)

and ρ is given by (4.32). We can verify that this is the correct current vector, by checking

that it properly satisfies the charge-conservation equation ∂µJ
µ = ∂ρ

∂t + ∂iJ
i = 0. Thus we

have

∂ρ

∂t
= q

∂

∂t
δ3(~r − ~r0(t)) = q

∂

∂xi0
δ3(~r − ~r0(t))

dxi0
dt

,

= −q ∂

∂xi
δ3(~r − ~r0(t))

dxi0
dt

= −∂i
(
ρ
dxi0
dt

)
,

= −∂i(ρvi) = −∂iJi , (4.35)

and hence the result ∂µJ
µ = 0. Note that we used the chain rule for differentiation in the

first line, and that in getting to the second line we used the result that ∂f(x−y)
∂x = f ′(x−y) =

−∂f(x−y)
∂y for any function f with argument (x − y) (where f ′ denotes the derivative of f

with respect to its argument). It is also useful to note that we can write (4.34) as

Jµ = ρ
dxµ0
dt

, (4.36)

where we simply define xµ0 (t) with µ = 0 to be t.

Note that the integral
∫
JµAµ for the point charge gives a contribution to the action

that is precisely of the form we saw previously in equation (2.83):∫
JµAµd

4x =

∫
qδ3(~r − ~r0)

dxµ0
dt

Aµd
3xdt ,

=

∫
path

q
dxµ0
dt

Aµ(xν0) dt = q

∫
path

Aµdx
µ . (4.37)

Suppose now we have N charges qa, following paths ~ra(t). Then the total charge density

will be given by

ρ =

N∑
a=1

qa δ
3(~r − ~ra(t)) . (4.38)

Since we have alluded several times to the fact that ∂µJ
µ = 0 is the equation of charge

conservation, it is appropriate to examine this in a little more detail. The total charge Q
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at time t1 is given by integrating the charge density over the spatial 3-volume:

Q(t1) =

∫
t=t1

ρ d3x =

∫
t=t1

J0dΣ0 , where dΣ0 = dxdydz . (4.39)

This can be written covariantly as

Q(t1) =

∫
t=t1

JµdΣµ , (4.40)

where we define also15

dΣ1 = −dtdydz , dΣ2 = −dtdzdx , dΣ3 = −dtdydz . (4.41)

Because the integral in (4.39) is defined to be over the 3-surface at constant t, it follows

that the extra terms, for µ = 1, 2, 3, in (4.40) do not contribute.

If we now calculate the charge at a later time t2, and then take the difference between

the two charges, we will obtain

Q(t2)−Q(t1) =

∫
Σ
JµdΣµ , (4.42)

where Σ is the boundary of the 4-cylinder V , and it consists of the two “end caps” formed

by the surfaces t = t1 and t = t2, and by the sides at spatial infinity. We are assuming

the charges are confined to a finite region, and so the current Jµ is zero on the sides of the

cylinder, as the radius is sent to infinity.

By the 4-dimensional analogue of the divergence theorem we shall have∫
Σ
JµdΣµ =

∫
V
∂µJ

µ d4x , (4.43)

where V is the 4-volume bounded by Σ. Thus we have

Q(t2)−Q(t1) =

∫
V
∂µJ

µd4x = 0 , (4.44)

since ∂µJ
µ = 0. Thus we see that ∂µJ

µ = 0 implies that the total charge in an isolated

finite region is independent of time.

Note that the equation of charge conservation implies the gauge invariance of the action.

We have

S =

∫ (
− 1

16π
FµνF

µν + JµAµ

)
d4x , (4.45)

15As has been mentioned previously, a careful derivation of the 4-dimensional divergence theorem∫
V
∂µW

µ d4x =
∫

Σ
Wµ dΣµ shows that the components of the 3-area element dΣµ should be as stated

in eqns (4.39) and (4.41).
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and so under a gauge transformation Aµ → Aµ + ∂µλ, we find (since Fµν is invariant under

the gauge transformation)

S −→
∫ (
− 1

16π
FµνF

µν + JµAµ

)
d4x+

∫
Jµ∂µλd

4x ,

= S +

∫
Jµ∂µλd

4x = S +

∫
∂µ(λJµ) d4x−

∫
λ∂µJ

µd4x ,

= S +

∫
Σ
λJµ dΣµ . (4.46)

As usual, Σ here is the 3-cylinder of infinite radius in the spatial directions, with endcaps

at t = t1 and t = t2. The current Jµ will vanish on the sides of the cylinder, since they

are at spatial infinity and we take Jµ to vanish there. If we restrict attention to gauge

transformations that vanish at t = t1 and t = t2 then the surface integral will therefore give

zero, and so S is unchanged. Even if λ is non-zero at t = t1 and t = t2 then the surface

integral will just give a constant, independent of Aµ, and so the original and the gauge

transformed actions will give the same equations of motion.

4.4 Energy density and energy flux

Here, we review the calculation of energy density and energy flux in the 3-dimensional

language. After that, we shall give the more elegant 4-dimensional description.

Consider the two Maxwell equations

~∇× ~B − ∂ ~E

∂t
= 4π ~J , ~∇× ~E +

∂ ~B

∂t
= 0 . (4.47)

From these, we can deduce

~E · ∂
~E

∂t
+ ~B · ∂

~B

∂t
= ~E · (~∇× ~B − 4π ~J)− ~B · (~∇× ~E) ,

= εijk(Ei∂jBk −Bi∂jEk)− 4π ~J · ~E ,

= −εijk(Bi∂jEk + Ek∂jBi)− 4π ~J · ~E ,

= −∂j(εjkiEkBi)− 4π ~J · ~E ,

= −~∇ · ( ~E × ~B)− 4π ~J · ~E . (4.48)

We then define the Poynting vector

~S ≡ 1

4π
~E × ~B , (4.49)

and so

1
2

∂

∂t
( ~E2 + ~B2) = −4π~∇ · ~S − 4π ~J · ~E , (4.50)
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since ~E · ∂ ~E/∂t = 1
2∂/∂t(

~E2), etc.

We now assume that the ~E and ~B fields are confined to some finite region of space.

Integrating (4.50) over all space, we obtain∫
~J · ~Ed3x+

1

8π

d

dt

∫
( ~E2 + ~B2)d3x = −

∫
~∇ · ~Sd3x ,

= −
∫

Σ

~S · d~Σ ,

= 0 . (4.51)

We get zero on the right-hand side because, having used the divergence theorem to convert

it to an integral over Σ, the “sphere at infinity,” the integral vanishes since ~E and ~B, and

hence ~S, are assumed to vanish there.

If the current ~J is assumed to be due to the motion of a set of charges qa with 3-velocities

~va and rest masses ma, we shall have from (4.33) and (3.12) that∫
~J · ~Ed3x =

∑
a

qa~va · ~E(~ra) =
dEmech

dt
, (4.52)

where

Emech =
∑
a

maγa (4.53)

is the total mechanical energy for the set of particles, as defined in (3.7). Note that here

γa ≡ (1− v2
a)
−1/2 . (4.54)

Thus we conclude that

d

dt

(
Emech +

1

8π

∫
( ~E2 + ~B2)d3x

)
= 0 . (4.55)

This is the equation of total energy conservation. It says that the sum of the total mechanical

energy plus the energy contained in the electromagnetic fields is a constant. Thus we

interpret

W ≡ 1

8π
( ~E2 + ~B2) (4.56)

as the energy density of the electromagnetic field.

Returning now to equation (4.50), we can consider integrating it over just a finite 3-

volume V , bounded by a closed 2-surface Σ. We will have

d

dt

(
Emech +

∫
V
Wd3x

)
= −

∫
Σ

~S · d~Σ . (4.57)

We now know that the left-hand side should be interpreted as the rate of change of total

energy in the volume V and so clearly, since the total energy must be conserved, we should
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interpret the right-hand side as the flux of energy passing through the boundary surface Σ.

Thus we see that the Poynting vector

~S =
1

4π
~E × ~B (4.58)

is to be interpreted as the energy flux across the boundary; i.e. the energy per unit area per

unit time.

4.5 Energy-momentum tensor

The discussion above was presented within the 3-dimensional framework. In this section

we shall give a 4-dimensional spacetime description, which involves the introduction of the

energy-momentum tensor. We shall begin with a rather general introduction. In order to

simplify this discussion, we shall first describe the construction of the energy-momentum

tensor for a scalar field φ(xµ). When we then apply these ideas to electromagnetism, we

shall need to make the rather simple generalisation to the case of a Lagrangian for the

vector field Aµ(xν).

Recall that if we write the Maxwell tensor Fµν in terms of the 4-vector potential Aµ,

namely Fµν = ∂µAν − ∂νAµ, then the Bianchi identity ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 is

automatically solved, and so the remaining content of the source-free Maxwell equations is

just the field equation ∂µFµν = 0, which implies

Aµ − ∂µ(∂νA
ν) = 0 , (4.59)

where = ∂ν∂ν is the D’Alembertian. If we choose to work in the Lorenz gauge, ∂νA
ν = 0,

the field equation reduces to

Aµ = 0 . (4.60)

In the analogous, but simpler, example of a scalar field theory, we could consider the

field equation

φ = 0 . (4.61)

A slightly more general possibility would be to add a “mass term” for the scalar field, and

consider the equation of motion

φ−m2φ = 0 , (4.62)

where m is a constant, describing the mass of the field. (As we shall discuss in detail later

in the course, electromagnetism is described by a massless field. At the level of a particle

description, this corresponds to the fact that the photon is a massless particle.)
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The equation of motion (4.62) for the scalar field can be derived from an action. Consider

the Lagrangian density

L = −1
2(∂µφ)(∂µφ)− 1

2m
2 φ2 . (4.63)

Varying the action S =
∫
Ld4x with respect to φ, we obtain

δS =

∫ (
− (∂µφ) ∂µδφ−m2 φ δφ

)
d4x ,

=

∫ (
∂µ∂

µφ−m2 φ
)
δφ d4x , (4.64)

where we have, as usual, dropped the boundary term when performing the integration by

parts to obtain the second line. Requiring δS = 0 for all possible δφ consistent with the

boundary conditions, we conclude that the quantity in the parentheses on the second line

must vanish, and hence we arrive at the equation of motion (4.62).

We can now extend the discussion by considering an abstract Lagrangian density L

describing a scalar field φ. We shall assume that L depends on φ, and on its first derivatives

∂νφ, but that it has no explicit dependence16 on the spacetime coordinates xµ:

L = L(φ, ∂νφ) . (4.65)

The action is then given by

S =

∫
L(φ, ∂νφ) d4x . (4.66)

The Euler-Lagrange equations for the scalar field then follow from requiring that the

16This is the analogue of a Lagrangian in classical mechanics that depends on the coordinates qi and

velocities q̇i, but which does not have explicit time dependence. Energy is conserved in a system described

by such a Lagrangian.
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action be stationary. Thus we have17

δS =

∫ [∂L
∂φ

δφ+
∂L

∂(∂νφ)
∂νδφ

]
d4x ,

=

∫ [∂L
∂φ

δφ− ∂ν
( ∂L
∂(∂νφ)

)
δφ
]
d4x+

∫
Σ

∂L
∂(∂νφ)

δφ dΣν ,

=

∫ [∂L
∂φ

δφ− ∂ν
( ∂L
∂(∂νφ)

)
δφ
]
d4x , (4.69)

where, in getting to the last line, we have as usual dropped the surface term integrated

over the boundary cylinder Σ, since we shall insist that δφ vanishes on the endcaps of Σ

at t = t1 and t = t2, and that φ goes to zero sufficiently fast at spatial infinity. Thus the

requirement that δS = 0 for all such δφ implies the Euler-Lagrange equations18

∂L
∂φ
− ∂ν

( ∂L
∂(∂νφ)

)
= 0 . (4.70)

Now consider the expression ∂ρL = ∂L/∂xρ. Since we are assuming L has no explicit

dependence on the spacetime coordinates, it follows that ∂ρL is given by the chain rule,

∂ρL =
∂L
∂φ

∂ρφ+
∂L

∂(∂νφ)
∂ρ∂νφ . (4.71)

That is, L depends on the spacetime coordinates only because φ and ∂νφ depend on the

spacetime coordinates. Now, using the Euler-Lagrange equations (4.70), we can write eqn

(4.71) as

∂ρL = ∂ν

( ∂L
∂(∂νφ)

)
∂ρφ+

∂L
∂(∂νφ)

∂ν∂ρφ ,

= ∂ν

[ ∂L
∂(∂νφ)

∂ρφ
]
, (4.72)

17Note that ∂L/∂(∂νφ) means taking the partial derivative of L viewed as a function of φ and ∂µφ, with

respect to ∂νφ. For example, if L = − 1
2
(∂µφ)(∂µφ)− 1

2
m2φ2, then

∂L/∂(∂νφ) = −(∂µφ)
∂(∂µφ)

∂(∂νφ)
= −(∂µφ) δνµ = −∂νφ . (4.67)

Perhaps the clearest way to see this is to construct the derivative via an infinitesimal variation. Thus, if we

vary φ we have

δL = −(∂µφ)∂µ(δφ)−m2 φ δφ

= −(∂µφ) δ(∂µφ)−m2 φ δφ . (4.68)

Treating δ(∂µφ) and δφ as independent variations we therefore read off ∂L/∂(∂µφ) as the coefficient of

δ(∂µφ), and we read off ∂L/∂φ as the coefficient of δφ. Of course, in this example ∂L/∂φ is just equal to

−m2 φ.
18These are the analogue of the Euler-Lagrange equations ∂L/∂qi−d/dt(∂L/∂q̇i) = 0 in particle mechanics

for a system of particles with coordinates qi and velocities q̇i, derived from the Lagrangian L = L(qi, q̇i) by

requiring stationarity of the action S =
∫
Ldt.
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and so, writing the left-hand side as ∂ν(δνρ L) and then taking it over to the right-hand side,

we have

∂ν

[ ∂L
∂(∂νφ)

∂ρφ− δνρ L
]

= 0 . (4.73)

We are therefore led to define the 2-index tensor

Tρ
ν ≡ − ∂L

∂(∂νφ)
∂ρφ+ δνρ L , (4.74)

which then satisfies

∂νTρ
ν = 0 . (4.75)

Tρ
ν is called an energy-momentum tensor.

In the specific example of the Lagrangian density (4.63) for a free massive scalar field,

we see that the energy-momentum tensor will be given by

Tρ
ν = ∂νφ∂ρφ− 1

2δ
ν
ρ (∂σφ)(∂σφ) − 1

2m
2 φ2 δνρ . (4.76)

Raising the lower index and relabelling indices, we therefore have

Tµν = ∂µφ∂νφ− 1
2η

µν (∂σφ) (∂σφ)− 1
2m

2 ηµν φ2 . (4.77)

It so happens in this example that Tµν has turned out to be symmetric in the indices µ and

ν, but for a more general Lagrangian density this may not necessarily happen. We shall

discuss this further below.

We saw previously that the equation ∂µJ
µ = 0 for the 4-vector current density Jµ

implies that there is a conserved charge

Q =

∫
t=const

ρ d3x =

∫
t=const

J0 d3x =

∫
t=const

JµdΣµ . (4.78)

The conservation of this charge, i.e. dQ
dt = 0 follows from

dQ

dt
=

∫
t=const

∂0 J
0 d3x

= −
∫
t=const

∂i J
i d3x

= −
∫
S
J i dSi ,

= 0 . (4.79)

(The first step follows from 0 = ∂µJ
µ = ∂0J

0 +∂iJ
i; the second step from the 3-dimensional

divergence theorem; and the final step from the assumption that J i vanishes on S, the sphere

at spatial infinity.)
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By an identical argument, it follows that the equation ∂νTρ
ν = 0 implies that there is a

conserved 4-vector:

Pµ ≡
∫
t=const

Tµ0dΣ0 =

∫
t=const

TµνdΣν . (4.80)

(Of course Tµν = ηµρ Tρ
ν .) Thus we may check

dPµ

dt
= ∂0

∫
t=const

Tµ0d3x =

∫
t=const

∂0T
µ0d3x = −

∫
t=const

∂iT
µid3x ,

= −
∫
S
TµidSi = 0 , (4.81)

where we used that ∂νT
µν = 0 and so ∂0T

µ0 = −∂iTµi, and in the last line we have used

the divergence theorem to turn the integral into a 2-dimensional integral over the boundary

sphere S at infinity. This vanishes since we shall assume the fields are zero at infinity.

Notice that T 00 = −T0
0 and from (4.74) we therefore have

T 00 =
∂L
∂∂0φ

∂0φ− L . (4.82)

Now for a Lagrangian L = L(qi, q̇i) we have the canonical momentum πi = ∂L/∂q̇i, and

the Hamiltonian

H = πiq̇
i − L . (4.83)

Since there is no explicit time dependence, H is conserved, and is equal to the total energy

of the system. Comparing with (4.82), we can recognise that T 00 is the energy density.

From (4.80) we therefore have that

P 0 =

∫
T 00d3x (4.84)

is the total energy. Since it is manifest from its construction that Pµ is a 4-vector, and

since its 0 component is the energy, it follows that Pµ is the 4-momentum.

The essential point in the discussion above is that Pµ given in (4.80) should be conserved,

which requires ∂νTρ
ν = 0. The quantity Tρ

ν we constructed is not the unique tensor with

this property. We can define a new one, according to

Tρ
ν −→ Tρ

ν + ∂σψρ
νσ , (4.85)

where ψρ
νσ is an arbitrary tensor that is antisymmetric in its last two indices,

ψρ
νσ = −ψρσν . (4.86)

We shall take ψρ
νσ to vanish at spatial infinity.
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The antisymmetry implies, since partial derivatives commute, that

∂ν∂σψρ
νσ = 0 , (4.87)

and hence that the modified energy-momentum tensor defined by (4.85) is conserved too.

Furthermore, the modification to Tρ
ν does not alter Pµ, since, from (4.80), the extra term

will be

Pµextra =

∫
t=const

∂σψ
µνσdΣν =

∫
t=const

∂σψ
µ0σdΣ0 ,

=

∫
t=const

∂0ψ
µ00d3x+

∫
t=const

∂iψ
µ0id3x =

∫
t=const

∂iψ
µ0id3x ,

=

∫
S
ψµ0idSi = 0 , (4.88)

where S is the sphere at spatial infinity. (The fact that the integral is over a t = constant

surface means that only the dΣ0 term contributes on the first line. The antisymmetry of

ψµνσ in ν and σ implies that ψµ00 on the second line is zero.) The modification to Pµ

therefore vanishes since we are requiring that ψρ
νσ vanishes at spatial infinity.

The energy-momentum tensor can be pinned down uniquely by requiring that the four-

dimensional angular momentum Mµν , defined by

Mµν =

∫
(xµdP ν − xνdPµ) (4.89)

be conserved, where dPµ = Tµρ dΣρ, i.e. it is the integrand of the 4-momentum integral

(4.80). First, let us make a remark about angular momentum in four dimensions. In three

dimensions, we define the angular momentum 3-vector as ~L = ~r × ~p. In other words,

Li = εijkx
jpk = 1

2εijk(x
jpk − xkpj) = 1

2εijkM
jk , (4.90)

where M jk ≡ xjpk−xkpj . Thus taking Mµν = xµpν−xνpµ in four dimensions is a plausible-

looking generalisation. It should be noted that in a general dimension, angular momentum

is described by a 2-index antisymmetric tensor; in other words, angular momentum is

associated with a rotation in a 2-dimensional plane. It is a very special feature of three

dimensions that we can use the εijk tensor to map the 2-index antisymmetric tensor M jk

into the vector Li = 1
2εijkM

jk. Put another way, a very special feature of three dimensions

is that a rotation in the (x, y) plane can equivalently be described as a rotation about the

orthogonal (i.e. z) axis. In higher dimensions, rotations do not occur around axes, but

rather, in 2-planes. It is amusing, therefore, to try to imagine what the analogue of an axle

is for a higher-dimensional car!
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Getting back to our discussion of angular momentum and the energy-momentum tensor

in four dimensions, we are defining

Mµν =

∫
t=const

(xµdP ν − xνdPµ) =

∫
t=const

(xµ T νρ − xν Tµρ)dΣρ, . (4.91)

By analogous arguments to those we used earlier, this will be conserved (i.e. dMµν/dt = 0)

if

∂ρ(x
µ T νρ − xν Tµρ) = 0 . (4.92)

Distributing the derivative, we therefore have the requirement that

δµρ T
νρ + xµ ∂ρT

νρ − δνρ Tµρ − xν ∂ρTµρ = 0 , (4.93)

and hence, since ∂ρT
µρ = 0, that Tµν is symmetric,

Tµν = T νµ . (4.94)

Using the freedom to add ∂σψ
µνσ to Tµν , as we discussed earlier, it is always possible to

arrange for Tµν to be symmetric. From now on, we shall assume that this is done.

We already saw that Pµ =
∫
Tµ0d3x is the 4-momentum, so T 00 is the energy density,

and T i0 is the 3-momentum density. Let us now look at the conservation equation ∂νT
µν = 0

in more detail. Taking µ = 0, we have ∂νT
0ν = 0, or

∂

∂t
T 00 + ∂jT

0j = 0 . (4.95)

integrating over a spatial 3-volume V with boundary S, we therefore find

d

dt

∫
V
T 00d3x = −

∫
V
∂jT

0jd3x = −
∫
S
T 0jdSj . (4.96)

The left-hand side is the rate of change of field energy in the volume V , and so we can

deduce, from energy conservation, that T 0j is the energy flux 3-vector. But since we are

now working with a symmetric energy-momentum tensor, we have that T 0j = T j0, and we

already identified T j0 as the 3-momentum density. Thus we have that

energy flux = momentum density . (4.97)

From the µ = i components of ∂νT
µν = 0, we have

∂

∂t
T i0 + ∂jT

ij = 0 , (4.98)

and so, integrating over the 3-volume V , we get

d

dt

∫
V
T i0d3x = −

∫
V
∂jT

ijd3x = −
∫
S
T ijdSj . (4.99)
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The left-hand side is the rate of change of 3-momentum, and so we deduce that T ij is the

3-tensor of momentum flux density. It gives the i component of 3-momentum that flows,

per unit time, through the 2-surface perpendicular to the xj axis. T ij is sometimes called

the 3-dimensional stress tensor.

4.6 Energy-momentum tensor for the electromagnetic field

Recall that for a scalar field φ, the original construction of the energy-momentum tensor

Tρ
ν (which we later modified by adding ∂σψρ

νσ where ψρ
νσ = −ψρσν) was given by

Tρ
ν = − ∂L

∂(∂νφ)
∂ρφ+ δνρ L . (4.100)

If we have a set of N scalar fields φa, then it is easy to see that the analogous conserved

tensor is

Tρ
ν = −

N∑
a=1

∂L
∂(∂νφa)

∂ρφa + δνρ L . (4.101)

A similar calculation shows that if we consider instead a vector field Aσ, with Lagrangian

density L(Aσ, ∂νAσ), the construction will give a conserved energy-momentum tensor

Tρ
ν = − ∂L

∂(∂νAσ)
∂ρAσ + δνρ L . (4.102)

Let us apply this to the Lagrangian density for pure electrodynamics (without sources),

L = − 1

16π
FµνF

µν . (4.103)

We have

δL = − 1

8π
FµνδFµν = − 1

4π
Fµν∂µδAν , (4.104)

and so
∂L

∂(∂µAν)
= − 1

4π
Fµν . (4.105)

Thus from (4.102) we find

Tρ
ν =

1

4π
F νσ∂ρAσ −

1

16π
δνρ FσλF

σλ , (4.106)

and so

Tµν =
1

4π
F νσ∂µAσ −

1

16π
ηµν FσλF

σλ . (4.107)

This expression is not symmetric in µ and ν. However, following our previous discussion,

we can add a term ∂σψ
µνσ to it, where ψµνσ = −ψµσν , without upsetting the conservation
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condition ∂νT
µν = 0. Specifically, we shall choose ψµνσ = −1/(4π)AµF νσ, and so

∂σψ
µνσ = − 1

4π
∂σ(AµF νσ) ,

= − 1

4π
(∂σA

µ)F νσ − 1

4π
Aµ∂σF

νσ = − 1

4π
(∂σA

µ)F νσ . (4.108)

(the ∂σF
νσ term drops as a consequence of the source-free field equation.) This leads to

the new energy-momentum tensor

Tµν =
1

4π
F νσ(∂µAσ − ∂σAµ)− 1

16π
ηµν FσλF

σλ , (4.109)

or, in other words,

Tµν =
1

4π

(
Fµσ F

νσ − 1
4η

µν FσλF
σλ
)
. (4.110)

This is indeed manifestly symmetric in µ and ν. From now on, it will be understood when

we speak of the energy-momentum tensor for electrodynamics that this is the one we mean.

It is a straightforward exercise to verify directly, using the source-free Maxwell field

equation and the Bianchi identity, that indeed Tµν given by (4.110) is conserved, ∂νT
µν = 0.

Note that it has another simple property, namely that it is trace-free, in the sense that

ηµνT
µν = 0 . (4.111)

This is easily seen from (4.110), as a consequence of the fact that ηµνηµν = 4 in four

dimensions. The trace-free property is related to a special feature of the Maxwell equations

in four dimensions, known as conformal invariance.

Having obtained the energy-momentum tensor (4.110) for the electromagnetic field, it

is instructive to look at its components from the three-dimensional point of view. First,

recall that we showed earlier that

FσλF
σλ = 2( ~B2 − ~E2) . (4.112)

Then, we find

T 00 =
1

4π
(F 0

σF
0σ − 1

4η
00FσλF

σλ) ,

=
1

4π
(F 0iF 0i + 1

2
~B2 − 1

2
~E2) ,

=
1

4π
( ~E2 + 1

2
~B2 − 1

2
~E2) ,

=
1

8π
( ~E2 + ~B2) . (4.113)

Thus T 00 is equal to the energy density W that we introduced in (4.56).
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Now consider T 0i. Since η0i = 0, we have

T 0i =
1

4π
F 0

σF
iσ =

1

4π
F 0

j F
ij ,

=
1

4π
EjεijkBk = Si , (4.114)

where ~S = 1/(4π) ~E× ~B is the Poynting vector introduced in (4.49). Thus T 0i is the energy

flux. As we remarked earlier, since we now have T 0i = T i0, it can be equivalently interpreted

as the 3-momentum density vector.

Finally, we consider the components T ij . We have

T ij =
1

4π

(
F iσF

jσ − 1
4η

ij2( ~B2 − ~E2)
)
,

=
1

4π

(
F i0F

j0 + F ikF
jk − 1

2δij(
~B2 − ~E2)

)
,

=
1

4π

(
− EiEj + εik`εjkmB`Bm − 1

2δij(
~B2 − ~E2)

)
,

=
1

4π

(
− EiEj + δij ~B

2 −BiBj − 1
2δij(

~B2 − ~E2)
)
,

=
1

4π

(
− EiEj −BiBj + 1

2δij(
~E2 + ~B2)

)
. (4.115)

To summarise, we have

Tµν =

T 00 T 0j

T i0 σij

 =

W Sj

Si σij

 , (4.116)

where W and ~S are the energy density and Poynting flux,

W =
1

8π
( ~E2 + ~B2) , ~S =

1

4π
~E × ~B , (4.117)

and

σij = − 1

4π
(EiEj +BiBj) +Wδij . (4.118)

Canonical Forms for Tµν :

• Unless ~E and ~B are perpendicular and equal in magnitude, we can always choose a

Lorentz frame where ~E and ~B are parallel at a point. (In the case that ~E and ~B are

perpendicular (but unequal in magnitude), one or other of ~E or ~B will be zero, at the

point, in the new Lorentz frame.)

Let the direction of ~E and ~B then be along z:

~E = (0, 0, E) , ~B = (0, 0, B) . (4.119)
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Then we have ~S = 1/(4π) ~E × ~B = 0 and

σ11 = σ22 = W , σ33 = −W , σij = 0 otherwise , (4.120)

and so Tµν is diagonal, given by

Tµν =


W 0 0 0

0 W 0 0

0 0 W 0

0 0 0 −W

 , (4.121)

with W = 1/(8π)(E2 +B2).

• If ~E and ~B are perpendicular and | ~E| = | ~B| at a point, then at that point we can

choose axes so that

~E = (E, 0, 0) , ~B = (0, B, 0) = (0, E, 0) . (4.122)

(We shall see later on that this ~E · ~B = 0 and | ~E | = | ~B | case arises for electromagnetic

plane waves.) Then we have

W =
1

4π
E2 , ~S = (0, 0,W ) ,

σ11 = σ22 = 0 , σ33 = W , σij = 0 otherwise , (4.123)

and therefore Tµν is given by

Tµν =


W 0 0 W

0 0 0 0

0 0 0 0

W 0 0 W

 . (4.124)

4.7 Inclusion of massive charged particles

We now consider the energy-momentum tensor for a particle with rest mass m. We proceed

by analogy with the construction of the 4-current density Jµ for charged non-interacting

particles. Thus we define first a mass density, ε, for a point mass m located at ~r = ~r0(t).

This will simply be given by a 3-dimensional delta function, with strength m, located at

the instantaneous position of the mass point:

ε(~r, t) = mδ3(~r − ~r0(t)) . (4.125)
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The energy density for the particle will then be its mass density times the corresponding γ

factor, i.e. T 00 = ε γ, where γ = (1 − v2)−1/2 and ~v = d~r0(t)
dt is the velocity of the particle.

Since the coordinate time t and the proper time τ in the frame of the particle are related,

as usual, by dt = γdτ , we then have

T 00 = ε
dt

dτ
. (4.126)

The 3-momentum density will be vi times the energy density, and so

T 0i = εγ
dxi

dt
= ε

dt

dτ

dxi

dt
. (4.127)

We can therefore write

T 0ν = ε
dt

dτ

dxν

dt
= ε

dx0

dτ

dxν

dt
. (4.128)

On general grounds of Lorentz covariance, it must therefore be that

Tµν = ε
dxµ

dτ

dxν

dt
,

= ε
dxµ

dτ

dxν

dτ

dτ

dt
,

=
ε

γ

dxµ

dτ

dxν

dτ
(4.129)

By writing it as we have done in the second line here, it becomes manifest that Tµν for the

particle is symmetric in µ and ν.

Consider now a system consisting of a particle with mass m and charge q, moving

in an electromagnetic field. Clearly, since the particle interacts with the field, we should

not expect either the energy-momentum tensor (4.110) for the electromagnetic field or

the energy-momentum tensor (4.129) for the particle to be conserved separately. This is

because energy, and momentum, is being exchanged between the particle and the field. We

can expect, however, that the total energy-momentum tensor for the system, i.e. the sum

of (4.110) and (4.129), to be conserved.

In order to distinguish clearly between the various energy-momentum tensors, let us

define

Tµνtot. = Tµνe.m. + Tµνpart. , (4.130)

where Tµνe.m. and Tµνpart. are the energy-momentum tensors for the electromagnetic field and

the particle respectively:

Tµνe.m. =
1

4π

(
Fµσ F

νσ − 1
4η

µν FσλF
σλ
)
,

Tµνpart. = ε
dxµ

dτ

dxν

dt
, (4.131)
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where ε = mδ3(~r − ~r0(t)).

Consider Tµνe.m. first. Taking the divergence, we find

∂νT
µν
e.m. =

1

4π

(
Fµσ ∂νF

νσ + ∂νF
µ
σ F

νσ − 1
2F

σλ∂µFσλ

)
,

=
1

4π

(
Fµσ ∂νF

νσ + ∂νF
µ
σ F

νσ + 1
2F

σλ ∂σFλ
µ + 1

2F
σλ ∂λF

µ
σ

)
,

=
1

4π

(
Fµσ ∂νF

νσ + F νσ ∂νF
µ
σ − 1

2F
σλ ∂σF

µ
λ − 1

2F
λσ ∂λF

µ
σ

)
,

=
1

4π
Fµσ ∂νF

νσ ,

= −Fµν Jν . (4.132)

In getting to the second line we used the Bianchi identity on the last term in the top line,

by writing ∂µFσλ = −∂σFλµ − ∂λFµσ. The third line is obtained by swapping indices on

a field strength in each of the two terms with the 1
2 factors (producing a minus sign in

each case), and this reveals that, after index relabelling, the third and fourth terms cancel

the second term, leading to the result on the fourth line. Finally, the result on the fifth

line follows after using the Maxwell equation of motion ∂νF
νσ = −4πJσ. As expected, the

energy-momentum tensor for the electromagnetic field by itself is not conserved when there

are sources.

Now we want to show that this non-conservation is balanced by an equal and opposite

non-conservation for the energy-momentum tensor of the particle, which is given in (4.131).

We have

∂νT
µν
part. = ∂ν

(
ε
dxν

dt

)dxµ
dτ

+ ε
dxν

dt
∂ν

(dxµ
dτ

)
. (4.133)

The first term is zero. This can be seen from the fact that the calculation is identical to

the one which we used a while back in section 4.3 to show that the 4-current Jµ = ρdx
µ

dt for

a charged particle is conserved. Thus we have

∂νT
µν
part. = ε

dxν

dt
∂ν

(dxµ
dτ

)
= ε

dxν

dt
∂νU

µ ,

= ε
dUµ

dt
(4.134)

(using the chain rule for differentiation to arrive at the final line). By the Lorentz force

equation mdUµ

dτ = qFµνU
ν , after multipliying each side by δ3(~r − ~r0(t)), we have

ε
dUµ

dτ
= ρFµνU

ν = ρFµν
dxν

dτ
, (4.135)

and so

ε
dUµ

dt
= ρFµν

dxν

dt
= FµνJ

ν , (4.136)
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since Jµ = ρdx
µ

dt . Thus we conclude that

∂νT
µν
part. = FµνJ

ν , (4.137)

and so, combining this with (4.132), we conclude that the total energy-momentum tensor

for the particle plus electromagnetic field, defined in (4.130) is conserved,

∂νT
µν
tot. = 0 . (4.138)

5 Coulomb’s Law

5.1 Potential of a point charge

Consider first a static point charge, for which the Maxwell equations therefore reduce to

~∇× ~E = 0 , ~∇ · ~E = 4πρ . (5.1)

The first equation implies, of course, that we can write

~E = −~∇φ , (5.2)

and then the second equation implies that φ satisfies the Poisson equation

∇2φ = −4πρ . (5.3)

If the point charge is located at the origin, and the charge is e, then the charge density

ρ is given by

ρ = e δ3(~r ) . (5.4)

Away from the origin, (5.3) implies that φ should satisfy the Laplace equation,

∇2φ = 0 , |~r | > 0 . (5.5)

Since the charge density (5.4) is spherically symmetric, we can assume that φ will be

spherically symmetric too, φ(~r) = φ(r), where r = |~r |. From r2 = xjxj we deduce, by

acting with ∂i, that

∂ir =
xi

r
. (5.6)

From this it follows by the chain rule that

∂iφ = φ′∂ir = φ′
xi

r
, (5.7)
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where φ′ ≡ dφ/dr, and hence

∇2φ = ∂i∂iφ = ∂i

(
φ′
xi

r

)
= φ′′

xi

r

xi

r
+ φ′

∂ix
i

r
+ φ′xi∂i

1

r
,

= φ′′ +
2

r
φ′ . (5.8)

Thus the Laplace equation (5.5) can be written as

(r2φ′)′ = 0 , r > 0 , (5.9)

which integrates to give

φ =
q

r
, (5.10)

where q is a constant, and we have dropped an additive constant of integration by using

the gauge freedom to choose φ(∞) = 0.

To determine the constant q, we integrate the Poisson equation (5.3) over the interior

VR of a sphere of radius R centred on the origin, and use the divergence theorem:∫
VR

∇2φd3x = −4πe

∫
VR

δ3(~r )d3x = −4πe ,

=

∫
SR

~∇φ · d~S =

∫
SR

∂i

(q
r

)
dSi ,

= −q
∫
SR

xidSi
r3

= −q
∫
SR

nidSi
R2

, (5.11)

where SR is the surface of the sphere of radius R that bounds the volume VR, and ni ≡ xi/r

is the outward-pointing unit vector. Clearly we have

nidSi = R2dΩ , (5.12)

where dΩ is the area element on the unit-radius sphere, and so

−q
∫
SR

nidSi
r2

= −q
∫
dΩ = −4πq , (5.13)

and so we conclude that q is equal to e, the charge on the point charge at r = 0.

Note that if the point charge e were located at ~r ′, rather than at the origin, then by

trivially translating the coordinate system we will have the potential

φ(~r ) =
e

|~r − ~r ′|
, (5.14)

and this will satisfy

∇2φ = −4πeδ3(~r − ~r ′) . (5.15)
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5.2 Electrostatic energy

In general, the energy density of an electromagnetic field is given by W = 1/(8π)( ~E2 + ~B2).

A purely electrostatic system therefore has a field energy U given by

U =

∫
Wd3x =

1

8π

∫
~E2d3x ,

= − 1

8π

∫
~E · ~∇φd3x ,

= − 1

8π

∫
~∇ · ( ~E φ)d3x+

1

8π

∫
(~∇ · ~E)φd3x ,

= − 1

8π

∫
S
φ ~E · d~S + 1

2

∫
ρ φ d3x ,

= 1
2

∫
ρ φ d3x . (5.16)

Note that the surface integral over the sphere at infinity gives zero because the electric field

is assumed to die away to zero there. Thus we conclude that the electrostatic field energy

is given by

U = 1
2

∫
ρ φ d3x . (5.17)

We can apply this formula to a system of N charges qa, located at points ~ra, for which

we shall have

ρ =
N∑
a=1

qaδ
3(~r − ~ra) . (5.18)

However, a naive application of (5.17) would give nonsense, since we find

U = 1
2

N∑
a=1

qa

∫
δ3(~r − ~ra)φ(~r )d3x = 1

2

N∑
a=1

qaφ(~ra) , (5.19)

where φ(~r ) is given by (5.14),

φ(~r) =

N∑
b=1

qb
|~r − ~rb|

, (5.20)

This means that (5.19) will give infinity since φ(~r), not unreasonably, diverges at the location

of each point charge.

This is the classic “self-energy” problem, which one encounters even for a single point

charge. There is no totally satisfactory way around this in classical electromagnetism, and

so one has to adopt a “fudge.” The fudge consists of observing that the true self-energy

of a charge, whatever that might mean, is a constant. Naively, it appears to be an infinite

constant, but that is clearly the result of making the idealised assumption that the charge

is literally located at a single point. In any case, one can argue that the constant self-energy

will not be observable, as far as energy-conservation considerations are concerned, and so
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one might as well just drop it for now. Thus the way to make sense of the ostensibly

divergent energy (5.19) for the system of point charges is to replace φ(~ra), which means the

potential at ~r = ~ra due to all the charges, by φa, which is defined to be the potential at

~r = ~ra due to all the charges except the charge qa that is itself located at ~r = ~ra. Thus we

have

φa ≡
∑
b 6=a

qb
|~ra − ~rb|

, (5.21)

and so (5.19) is now interpreted to mean that the total energy of the system of charges is

U = 1
2

∑
a

∑
b6=a

qaqb
|~ra − ~rb|

. (5.22)

5.3 Field of a uniformly moving charge

Suppose a charge e is moving with uniform velocity ~v in the Lorentz frame S. We may

transform to a frame S′, moving with velocity ~v relative to S, in which the charge is at

rest. For convenience, we shall choose the origin of axes so that the charge is located at the

origin of the frame S′.

It follows that in the frame S′, the field due to the charge can be described purely by

the electric scalar potential φ′:

In the frame S′: φ′ =
e

r′
, ~A′ = 0 . (5.23)

(Note that the primes here all signify that the quantities are those of the primed frame S′.)

We know that Aµ = (φ, ~A) is a 4-vector, and so the components Aµ transform under

Lorentz boosts in exactly the same way as the components of xµ. Thus we shall have

(compare with eqns (1.33))

φ′ = γ (φ− ~v · ~A) , ~A′ = ~A+
γ − 1

v2
(~v · ~A)~v − γ~v φ , (5.24)

where γ = (1−v2)−1/2. Clearly the inverse Lorentz transformation is obtained by switching

the roles of the primed and unprimed fields and sending ~v → −~v, and so we shall have

φ = γ (φ′ + ~v · ~A′) , ~A = ~A′ +
γ − 1

v2
(~v · ~A′)~v + γ~v φ′ . (5.25)

From (5.23), we therefore find that the potentials in the frame S, in which the particle is

moving with velocity ~v, are given by

φ = γφ′ =
eγ

r′
, ~A = γ~v φ′ =

eγ~v

r′
. (5.26)
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Note that we still have r′ appearing in the denominator, which we would now like to

express in terms of the unprimed coordinates.

Suppose, for example, that we orient the axes so that ~v lies along the x direction. Then

we shall have

x′ = γ(x− vt) , y′ = y , z′ = z , (5.27)

and so

r′
2

= x′
2

+ y′
2

+ z′
2

= γ2(x− vt)2 + y2 + z2 , (5.28)

= γ2
[
(x− vt)2 + (1− v2)(y2 + z2)

]
. (5.29)

It follows therefore from (5.26) that the scalar and 3-vector potentials in the frame S are

given by

φ =
e

R∗
, ~A =

e~v

R∗
, (5.30)

where we have defined

R2
∗ ≡ (x− vt)2 + (1− v2)(y2 + z2) . (5.31)

The electric and magnetic fields can now be calculated in the standard way from φ and

~A, as in (2.8). Alternatively, and equivalently, we can first calculate ~E′ and ~B′ in the primed

frame, and then Lorentz transform these back to the unprimed frame. This is a simpler

way to do the calculation, in fact. In the frame S′, we shall of course have

~E′ =
e~r ′

r′3
, ~B′ = 0 , (5.32)

since in this frame we just have the point charge e sitting at the origin. The transformation

to the unprimed frame is then given by inverting the standard results (2.57) and (2.58) that

express ~E′ and ~B′ in terms of ~E and ~B. Again, this is simply achieved by interchanging

the primed and unprimed fields, and sending ~v to −~v. This gives

~E = γ( ~E′ − ~v × ~B′)− γ − 1

v2
(~v · ~E′)~v ,

~B = γ( ~B′ + ~v × ~E′)− γ − 1

v2
(~v · ~B′)~v , (5.33)

and so from (5.32), we find that ~E and ~B in the frame S are given by

~E =
eγ~r ′

r′3
− γ − 1

v2

e~v · ~r ′

r′3
~v ,

~B = γ~v × ~E′ =
eγ~v × ~r ′

r′3
. (5.34)
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Let us again assume that we orient the axes so that ~v lies along the x direction. Then

from the above we find that

Ex =
ex′

r′3
, Ey =

eγy′

r′3
, Ez =

eγz′

r′3
, (5.35)

and so

Ex =
eγ(x− vt)

r′3
, Ey =

eγy

r′3
, Ez =

eγz

r′3
. (5.36)

Since the charge is located at the (uniformly moving) point (vt, 0, 0) in the frame S, it

follows that the vector from the charge to the point ~r = (x, y, z) is

~R = (x− vt, y, z) . (5.37)

From (5.36), we then find that the electric field is given by

~E =
eγ ~R

r′3
=
e(1− v2)~R

R3
∗

, (5.38)

where R∗ was defined in (5.31).

If we now define θ to be the angle between the vector ~R and the x axis, then the

coordinates (x, y, z) of the observation point P will be such that

y2 + z2 = R2 sin2 θ , where R2 = |~R|2 = (x− vt)2 + y2 + z2 . (5.39)

This implies, from (5.31), that

R2
∗ = R2 − v2(y2 + z2) = R2(1− v2 sin2 θ) , (5.40)

and so the electric field due to the moving charge is

~E =
e~R

R3

1− v2

(1− v2 sin2 θ)3/2
. (5.41)

For an observation point P located on the x axis, the electric field will be E‖ (parallel

to the x axis), and given by setting θ = 0 in (5.41). On the other hand, we can define the

electric field E⊥ in the (y, z) plane at x = vt (corresponding to θ = π/2). From (5.41) we

therefore have

E‖ =
e(1− v2)

R2
, E⊥ =

e(1− v2)−1/2

R2
. (5.42)

Note that E‖ has the smallest magnitude, and E⊥ has the largest magnitude, that ~E attains

as a function of θ.

When the velocity is very small, the magnitude of the electric field is (as one would

expect) more or less independent of θ. However, as v approaches 1 (the speed of light), we
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see that E‖ decreases to zero, while E⊥ diverges. Thus for v near to the speed of light the

electric field is very sharply peaked around θ = π
2 . If we set

θ =
π

2
− ψ , (5.43)

then

| ~E| = e(1− v2)

R2(1− v2 cos2 ψ)3/2
≈ e(1− v2)

(1− v2 + 1
2ψ

2)3/2
(5.44)

if v ≈ 1. Thus the angular width of the peak is of the order of

ψ ∼
√

1− v2 . (5.45)

We saw previously that the magnetic field in the frame S is given by ~B = γ~v× ~E′. From

(5.34) we have ~v × ~E = γ~v × ~E′, and so therefore

~B = ~v × ~E =
e(1− v2)~v × ~R

R3
∗

. (5.46)

Note that if |~v| << 1 we get the usual non-relativistic expressions

~E ≈ e~R

R3
, ~B ≈ e~v × ~R

R3
. (5.47)

5.4 Motion of a charge in a Coulomb potential

We shall consider a particle of mass m and charge e moving in the field of a static charge

Q. The classic “Newtonian” result is very familiar, with the orbit of the particle being

a conic section; an ellipse, a parabola or a hyperbola, depending on the charges and the

orbital parameters. In this section we shall consider the fully relativistic problem, when

the velocity of the particle is not necessarily small compared with the speed of light. Note

that we shall be assuming here that the charge Q is fixed, at the origin. In practice, if Q

represented a nucleus and e an electron, the two objects would move around their common

centre of gravity. Allowing for this would be a straightforward, if rather tedious, minor

distraction from the main points to be studied here, and so we shall make the idealisation

that the centre of attraction or repulsion, namely the charge Q, is fixed.

The Lagrangian for the system is given by (2.85), with φ = Q
r and ~A = 0:

L = −m(1− ẋiẋi)1/2 − eQ

r
, (5.48)

where ẋi = dxi

dt , and r2 = xixi. The charges occur in the combination eQ throughout the

calculation, and so for convenience we shall define

κ ≡ eQ . (5.49)
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Note that if κ > 0 the force between the charges will be repulsive, while if κ < 0 it will be

attractive.

It is convenient to introduce spherical polar coordinates in the standard way,

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ , (5.50)

and then the Lagrangian becomes

L = −m(1− ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2)1/2 − κ

r
. (5.51)

The Lagrangian is of the form L = L(qi, q̇i) for coordinates qi and velocities q̇i. The Euler-

Lagrange equations are
∂L

∂qi
− d

dt

(∂L
∂q̇i

)
= 0 . (5.52)

Note that if the Lagrangian is independent of a particular coordinate, say qj for some

particular value j, then there is an associated conserved quantity ∂L/∂q̇j :

d

dt

∂L

∂q̇j
= 0 . (5.53)

(A coordinate that enters the Lagrangian only through its velocity is sometimes known as

an ignorable coordinate.)

The Euler-Lagrange equation for θ gives

r2 sin θ cos θϕ̇2(1− ṙ2−r2θ̇2−r2 sin2 θϕ̇2)−1/2− d

dt

(
r2θ̇(1− ṙ2−r2θ̇2−r2 sin2 θϕ̇2)−1/2

)
= 0 ,

(5.54)

which can be written as

θ̈ = sin θ cos θ ϕ̇2 − 2ṙ θ̇

r
− θ̇ γ̇

γ
, (5.55)

where γ = (1− ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2)−1/2. It can be seen that if we set θ = 1
2π and θ̇ = 0

at some given time t = t0, then θ̈ will also be zero at t = t0. That is to say, if we set

θ = 1
2π and θ̇ = 0 as initial conditions at t = t0, then the second-order differential equation

(5.55) for θ implies that θ will remain at this same value θ = 1
2π for all later times. In

other words, if the particle starts out moving in the θ = π
2 plane (i.e. the (x, y) plane at

z = 0), it will remain in this plane. This is a familiar result in the case of non-relativistic

motion of a particle moving in a central force; that the motion lies in a plane. Here, we

have just derived the analogous result for relativistic motion. We may therefore assume

now, without loss of generality, that θ = π
2 for all time. We are left with just r and ϕ as
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polar coordinates in the (x, y) plane, with x = r cosϕ and y = r sinϕ. The Lagrangian for

the reduced system, where we consistently can set θ = π
2 , is then simply

L = −m(1− ṙ2 − r2ϕ̇2)1/2 − κ

r
. (5.56)

We note that ∂L
∂ϕ = 0, and so there is a conserved quantity

∂L

∂ϕ̇
= mr2ϕ̇(1− ṙ2 − r2ϕ̇2)−1/2 = ` , (5.57)

where ` is a constant. Since (1− ṙ2 − r2ϕ̇2)−1/2 = (1− ẋi ẋi)−1/2 = γ, we simply have

mγr2ϕ̇ = ` . (5.58)

In fact ` is the angular momentum of the particle, measured with respect to the origin.

Note that we can also write (5.57 as

mr2dϕ

dτ
= ` , (5.59)

since coordinate time t and proper time τ are related by dτ = dt/γ.

Since the Lagrangian does not depend explicitly on t, the Hamiltonian H is conserved,

and is equal to the total energy E . Thus we have that

E = H =
√
~p 2 +m2 +

κ

r
(5.60)

is a constant. Here,

~p 2 = m2γ2~v2 = m2γ2ṙ2 +m2γ2r2ϕ̇2 ,

= m2
(dr
dτ

)2
+m2r2

(dϕ
dτ

)2
, (5.61)

since, as usual, coordinate time and proper time are related by dτ = dt/γ.

We therefore have(
E − κ

r

)2
= ~p 2 +m2 = m2

(dr
dτ

)2
+m2r2

(dϕ
dτ

)2
+m2 . (5.62)

We now perform the standard change of variables in orbit calculations, and let

r =
1

u
. (5.63)

This implies
dr

dτ
= − 1

u2

du

dτ
= − 1

u2

du

dϕ

dϕ

dτ
= − `

m
u′ , (5.64)
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where we have used (5.59) and also we have defined

u′ ≡ du

dϕ
. (5.65)

It now follows that (5.62) becomes

(E − κu)2 = `2u′
2

+ `2u2 +m2 , (5.66)

which can be rewritten as

`2 u′
2

= (κ2 − `2)u2 − 2κE u+ E2 −m2 . (5.67)

This ordinary differential equation can be solved in order to find u as a function of ϕ, and

hence r as a function of ϕ. The solution determines the shape of the orbit of the particle

around the fixed charge Q.

Suppose first we consider the case where |`| < |κ|. We can complete the square in eqn

(5.67) by rewriting it as

`2 u′
2

=
(
u
√
κ2 − `2 − κE√

κ2 − `2
)2
−m2 − E2 `2

κ2 − `2
. (5.68)

It is then convenient to make a change of variable from u to w, defined by

u
√
κ2 − `2 − κE√

κ2 − `2
= ±

√
m2 +

E2`2

κ2 − `2
coshw , (5.69)

where the + sign is chosen if κ < 0 (attractive potential, since κ = eQ), and the − sign if

κ > 0 (repulsive potential). Equation (5.68) becomes simply

w′
2

=
κ2 − `2

`2
, (5.70)

and hence,

w =
(κ2

`2
− 1
)1/2

ϕ . (5.71)

Here, we have made a convenient choice, without loss of generality, for the additive constant

of integration, by absorbing it into a choice of origin for the azimuthal angle ϕ. Thus we

have √
κ2 − `2 u = ±

√
m2 +

E2`2

κ2 − `2
cosh

[(κ2

`2
− 1
)1/2

ϕ
]

+
κE√
κ2 − `2

. (5.72)

In other words, the orbit is given, in terms of r = r(ϕ) = 1/u(ϕ), by

κ2 − `2

r
= ±

√
E2`2 +m2(κ2 − `2) cosh

[(κ2

`2
− 1
)1/2

ϕ
]

+ κE . (5.73)
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The solution (5.73) is presented for the case where |`| < |κ|. If instead |`| > |κ|, we can

go back to eqn (5.67) and complete the square in the form

`2u′
2

= −
(
u
√
`2 − κ2 +

κE√
`2 − κ2

)2
−m2 +

E2`2

`2 − κ2
. (5.74)

leading us to make a cosine substitution rather than a hyperbolic cosine:

u
√
`2 − κ2 +

κE√
`2 − κ2

=

√
E2 `2

`2 − κ2
−m2 cosw . (5.75)

Equation (5.74) then becomes

w′
2

=
`2 − κ2

`2
, implying w =

(
1− κ2

`2

)1/2
ϕ , (5.76)

and so the solution for r(ϕ) becomes

`2 − κ2

r
=
√
E2`2 −m2(`2 − κ2) cos

[(
1− κ2

`2

)1/2
ϕ
]
− κE . (5.77)

Finally, if |`| = |κ|, we see that equation (5.67) leads to the solution

2κE
r

= E2 −m2 − E2 ϕ2 . (5.78)

The situation described above for relativistic orbits should be contrasted with what

happens in the non-relativistic case. In this limit, the Lagrangian (after restricting to

motion in the (x, y) plane again) is simply given by

L = 1
2m(ṙ2 + r2ϕ̇2)− κ

r
. (5.79)

Note that this can be obtained from the relativisitic Lagrangian (5.56) we studied above,

by taking ṙ and rϕ̇ to be small compared to 1 (the speed of light), and then expanding the

square root to quadratic order in velocities. As discussed previously, one can ignore the

leading-order term −m in the expansion, since m is just a constant (the rest-mass energy

of the particle) and so it does not enter in the Euler-Lagrange equations. The analysis of

the Euler-Lagrange equations for the non-relativistic Lagrangian (5.79) is a standard one.

There energy E and angular momentum ` are conserved, and given by

E = 1
2m(ṙ2 + r2ϕ̇2) +

κ

r
, ` = mr2ϕ̇ . (5.80)

Substituting the latter into the former give the standard radial equation, whose solution

implies orbits given by

1

r
= −mκ

`2

(√
1 +

2E`2

mκ2
cosϕ+ 1

)
. (5.81)
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If κ ≡ eQ < 0 (attractive potential), solutions exist for E ≥ −mκ2

2`2
. Closed orbits occur

when −mκ2

2`2
≤ E < 0; these are elliptical generically, and circular if the lower bound is

saturated. The orbits are parabolic if E = 0 and hyperbolic if E > 0. If κ > 0 (repulsive

potential), solutions exist if E > 0 and they are all hyperbolic.

The key difference in the relativistic case is that the orbits do not have a 2π periodicity

in ϕ, even when |`| > |κ|, as in (5.77), for which the inverse radius r is a trigonometric

function of ϕ. The reason for this is that the argument of the trigonometric function is(
1− κ2

`2

)1/2
ϕ , (5.82)

and so ϕ has to increase through an angle ∆ϕ given by

∆ϕ = 2π
(

1− κ2

`2

)−1/2
(5.83)

before the cosine completes one cycle. If we assume that |κ/`| is small compared with 1,

then the shape of the orbit is still approximately like an ellipse, except that the “perihelion”

of the ellipse advances by an angle

δϕ ≡ ∆ϕ− 2π = 2π
[(

1− κ2

`2

)−1/2
− 1
]
≈ πκ2

`2
(5.84)

per orbit. Generically, the orbits are not closed, although they will be in the special case

that
(

1− κ2

`2

)−1/2
is rational.

The fact that the major axis of the ellipse remains fixed in the non-relativistic case is a

reflection of the fact that there is an additional “hidden” symmetry in the non-relativistic

system, which is broken by the relativistic corrections. Specifically, there is a conserved

quantity called the Runge-Lenz vector in the non-relativistic theory of a particle of mass m

moving in a central 1/r2 force ~F = κ~r/r3. It is given by

~W = ~p× ~L+
mκ~r

r
, (5.85)

where ~L = ~r × ~p is the angular momentum of the particle about the force centre. It is

straightforward to verify that the equations of motion following from the non-relativistic

Lagrangian L = 1
2mẋ

2
i + κ/r imply that d ~W/dt = 0. In the case of an elliptical orbit (i.e.

κ < 0 and −mκ2

2`2
< E < 0), the Runge-Lenz vector points along the major axis of the

ellipse.

Going back to the full relativistic discussion, if |`| ≤ |κ| and if κ < 0 (which means

eQ < 0 and hence an attractive force between the charges), we see from the solution (5.73)

that the particle spirals inwards and eventually reaches r = 0 within a finite time. This
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can never happen in the non-relativisitic case; the orbit of the particle can never reach the

origin at r = 0, unless the angular momentum ` is exactly zero. The reason for this is that

in the non-relativistic case the centrifugal potential term `2/r2 always tends to throw the

particle away from the origin if r tries to get too small. By contrast, in the relativisitic case

the effect of the centrifugal term is reduced at small r, and it cannot prevent the collapse

of the orbit to r = 0. This can be seen by looking at the conserved quantity E in the fully

relativisitic analysis, which, from our discussion above, can be written as

E =
(
m2 +m2

(dr
dτ

)2
+
`2

r2

)1/2
+
κ

r
. (5.86)

First, consider the non-relativistic limit, for which the rest-mass term dominates inside

the square root:

E ≈ m+ 1
2m
(dr
dt

)2
+

`2

2mr2
+
κ

r
. (5.87)

In other words, written in terms of the non-relativistic energy E of eqn (5.80) we have

E = 1
2m ṙ2 +

`2

2mr2
+
κ

r
. (5.88)

Here, we see that even if κ < 0 (an attractive force), the repulsive centrifugal term always

wins over the attractive charge term κ/r at small enough r.

On the other hand, if we keep the full relativistic expression (5.86), then at small

enough r the competition between the centrifugal term and the charge term becomes evenly

matched, in the sense that each has the same 1/r power-law behaviour

E ≈ |`|
r

+
κ

r
, (5.89)

and clearly if κ < −|`| the attraction between the charges wins the contest.

6 Electromagnetic Waves

6.1 Wave equation

As discussed at the beginning of the course (see section 1.1), Maxwell’s equations admit

wave-like solutions. These solutions can esist in free space, in a region where there are no

source currents, for which the equations take the form

~∇ · ~E = 0 , ~∇× ~B − ∂ ~E

∂t
= 0 ,

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 . (6.1)
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As discussed in section 1.1, taking the curl of the ~∇ × ~E equation, and using the ~∇ × ~B

equation, one finds

∇2 ~E − ∂2 ~E

∂t2
= 0 , (6.2)

and similarly,

∇2 ~B − ∂2 ~B

∂t2
= 0 . (6.3)

Thus each component of ~E and each component of ~B satisfies D’Alembert’s equation

∇2f − ∂2f

∂t2
= 0 . (6.4)

This can, of course, be written as

f ≡ ∂µ∂µf = 0 , (6.5)

which shows that D’Alembert’s operator is Lorentz invariant.

The wave equation (6.4) admits plane-wave solutions, where f depends on t and on a

single linear combination of the x, y and z coordinates. By choosing the orientation of the

axes appropriately, we can make this linear combination become simply x. Thus we may

seek solutions of (6.4) of the form f = f(t, x). The function f will then satisfy

∂2f

∂x2
− ∂2f

∂t2
= 0 , (6.6)

which can be written in the factorised form( ∂
∂x
− ∂

∂t

)( ∂
∂x

+
∂

∂t

)
f(t, x) = 0 . (6.7)

Now introduce “light-cone coordinates”

u = x− t , v = x+ t . (6.8)

We see that
∂

∂x
=

∂

∂u
+

∂

∂v
,

∂

∂t
= − ∂

∂u
+

∂

∂v
, (6.9)

and so (6.7) becomes
∂2f

∂u∂v
= 0 . (6.10)

The general solution to this is

f = f+(u) + f−(v) = f+(x− t) + f−(x+ t) , (6.11)

where f+ and f− are arbitrary functions.
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The functions f± determine the profile of a wave-like disturbance that propagates at the

speed of light (i.e. at speed 1). In the case of a wave described by f+(x− t), the disturbance

propagates at the speed of light in the positive x direction. This can be seen from the

fact that if we sit at a given point on the profile (i.e. at a fixed value of the argument of

the function f+), then as t increases the x value must increase too. This means that the

disturbance moves, with speed 1, along the positive x direction. Likewise, a wave described

by f−(x+ t) moves in the negative x direction as time increases.

More generally, we can consider a plane-wave disturbance moving along the direction of

a unit 3-vector ~n:

f(t, ~r) = f+(~n · ~r − t) + f−(~n · ~r + t) . (6.12)

The f+ wave moves in the direction of ~n as t increases, while the f− wave moves in the

direction of −~n. The previous case of propagation along the x axis, corresponds to taking

~n = (1, 0, 0).

Let us now return to the discussion of electromagnetic waves. Following the discussion

above, there will exist plane-wave solutions of (6.2), propagating along the ~n direction, of

the form

~E(~r, t) = ~E(~n · ~r − t) . (6.13)

That is, ~E is a function of the single argument (~n · ~r − t).

From the Maxwell equation ∂ ~B/∂t = −~∇× ~E, we shall therefore have

∂Bi
∂t

= −εijk∂j Ek(n`x` − t) ,

= −εijknj E′(n`x` − t) , (6.14)

where E′k denotes the derivative of Ek with respect to its argument. We also have that

∂Ek(n`x` − t)/∂t = −E′k(n`x` − t), and so we can write (6.14) as

∂Bi
∂t

= εijk nj
∂

∂t
Ek(n`x` − t) . (6.15)

This can be integrated with respect to t, dropping “the constant of integration” (that is,

an arbitrary static ~B field, say ~B0(~r )), since such an additional static ~B field term is of no

interest to us when discussing electromagnetic waves. Thus we have

Bi = εijknjEk , i.e. ~B = ~n× ~E . (6.16)

The source-free Maxwell equation ~∇ · ~E = 0 implies

∂iEi(njxj − t) = niE
′
i(njxj − t) = − ∂

∂t
~n · ~E = 0 . (6.17)
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Again, we can drop a “constant of integration” ~E0(~r ), since we are not interested in includ-

ing static electric fields in this discussion about electromagnetic waves, and conclude that

for the plane wave

~n · ~E = 0 . (6.18)

Since ~B = ~n× ~E, it immediately follows that ~n · ~B = 0 and ~E · ~B = 0 also. Thus we see that

for a plane electromagnetic wave propagating along the ~n direction, the ~E and ~B vectors

are orthogonal to ~n and also orthogonal to each other:

~n · ~E = 0 , ~n · ~B = 0 , ~E · ~B = 0 . (6.19)

It then follows from ~B = ~n× ~E that

| ~E| = | ~B| , i.e. E = B . (6.20)

Thus we find that the energy density W is given by

W =
1

8π
(E2 +B2) =

1

4π
E2 . (6.21)

The Poynting flux ~S = ( ~E × ~B)/(4π) is given by

Si =
1

4π
εijkEjεk`mn`Em =

1

4π
niEjEj −

1

4π
EinjEj ,

=
1

4π
niEjEj , (6.22)

and so we have

W =
1

4π
E2 , ~S =

1

4π
~nE2 = ~nW . (6.23)

Note that the argument ~n · ~r − t can be written as

~n · ~r − t = nµ x
µ , (6.24)

where we have defined nµ = (−1, ~n ) and hence

nµ = (1, ~n ) . (6.25)

Since the 3-vector ~n is a unit vector, ~n · ~n = 1, we have

nµnµ = ηµν n
µnν = −1 + ~n · ~n = 0 . (6.26)

nµ is called a Null Vector. This is a non-vanishing vector whose norm nµnµ vanishes.

Such vectors can arise because of the minus sign in the η00 component of the 4-metric.
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By contrast, in a metric of positive-definite signature, such as the 3-dimensional Euclidean

metric δij , a vector whose norm vanishes is itself necessarily zero.

We can now evaluate the various components of the energy-momentum tensor, which

are given by (4.116) and the equations that follow it. Thus we have

T 00 = W =
1

4π
E2 =

1

4π
B2 ,

T 0i = T i0 = Si = niW ,

T ij =
1

4π
(−EiEj −BiBj + 1

2(E2 +B2)δij) ,

=
1

4π
(−EiEj − εik`εjmnnknmE`En + E2δij) ,

=
1

4π
(−EiEj − δijE2 − ninkEkEj − njn`E`Ei + δijnkn`EkE`

+ninjE`E` + nknkEiEj + E2δij) ,

=
1

4π
ninjE

2 = ninjW . (6.27)

Note that in deriving this last result, we have used the identity

εik`εjmn = δijδkmδ`n + δimδknδ`j + δinδkjδ`m − δimδkjδ`n − δijδknδ`m − δinδkmδ`j . (6.28)

The expressions for T 00, T 0i and T ij can be combined into the single Lorentz-covariant

expression

Tµν = nµ nνW . (6.29)

From this, we can compute the conserved 4-momentum

Pµ =

∫
t=const.

TµνdΣν =

∫
t=const.

Tµ0d3x ,

=

∫
t=const.

nµWd3x = nµ
∫
t=const.

Wd3x , (6.30)

and hence we have

Pµ = nµ E , (6.31)

where

E =

∫
t=const.

Wd3x , (6.32)

the total energy of the electromagnetic field. Note that Pµ is also a null vector,

PµPµ = E2 nµnµ = 0 . (6.33)
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6.2 Monochromatic plane waves

In the discussion above, we considered plane electromagnetic waves with an arbitrary profile.

A special case is to consider the situation when the plane wave has a definite frequency ω,

so that its time dependence is of the form cosωt. Thus we can write

~E = ~E0 e
i(~k·~r−ωt) , ~B = ~B0 e

i(~k·~r−ωt) , (6.34)

where ~E0 and ~B0 are (possibly complex) constants. The physical ~E and ~B fields are obtained

by taking the real parts of ~E and ~B. (Since the Maxwell equations are linear, we can always

choose to work in such a complex notation, with the understanding that we take the real

parts to get the physical quantities.) It is customary to use the same symbols ~E and ~B

both for the complex fields and for the physical fields obtained by taking their real parts.

There is usually no risk of confusion, since it should be clear from the context which fields

are intended.

As we shall discuss in some detail later, more general electromagnetic wave solutions,

including the plane wave with arbitrary profile discussed previously, can be built up as linear

combinations of the monochromatic plane-wave solutions. The most general wave solutions

correspond to superpositions of monochromatic plane waves summed over all wavevectors

and frequencies.

Of course, for the fields in (6.34) to solve the Maxwell equations, there must be relations

among the constants ~k, ω, ~E0 and ~B0. Specifically, since ~E and ~B must satisfy the wave

equations (6.2) and (6.3), we must have

~k2 = ω2 , (6.35)

and since ~∇ · ~E = 0 and ~∇ · ~B = 0, we must have

~k · ~E0 = 0 , ~k · ~B0 = 0 . (6.36)

Finally, following the discussion in the more general case above, it follows from ~∇ × ~E +

∂ ~B/∂t = 0 and ~∇× ~B − ∂ ~E/∂t = 0 that

~B =
~k × ~E

ω
. (6.37)

It is natural, therefore, to introduce the 4-vector

kµ = (ω,~k) = ω nµ , (6.38)
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where nµ = (1, ~n) and ~n = ~k/|~k| = ~k/ω. Equation (6.35) then becomes simply the statement

that kµ is a null vector,

kµkµ = 0 . (6.39)

Note that the argument of the exponentials in (6.34) can now be written as

~k · ~r − ωt = kµx
µ , (6.40)

which we shall commonly write as k · x. Thus we may rewrite (6.34) more briefly as

~E = ~E0 e
i k·x , ~B = ~B0 e

i k·x . (6.41)

As usual, we have a plane transverse wave, propagating in the direction of the unit 3-vector

~n = ~k/ω. The term “transverse” here signifies that ~E and ~B are perpendicular to the

direction in which the wave is propagating. In fact, we have

~n · ~E = ~n · ~B = 0 , ~B = ~n× ~E , (6.42)

and so we have also that ~E and ~B are perpendicular to each other, and that | ~E| = ~B|.

Consider the case where ~E0 is taken to be real, which means that ~B0 is real too. Then

the physical fields (obtained by taking the real parts of the fields given in (6.34)), are given

by

~E = ~E0 cos(~k · ~r − ωt) , ~B = ~B0 cos(~k · ~r − ωt) . (6.43)

The energy density is then given by

W =
1

8π
(E2 +B2) =

1

4π
E2

0 cos2(~k · ~r − ωt) . (6.44)

If we define the time average of W by

〈W 〉 ≡ 1

T

∫ T

0
Wdt , (6.45)

where T = 2π/ω is the period of the oscillation, then we shall have

〈W 〉 =
1

8π
E2

0 =
1

8π
B2

0 . (6.46)

Note that in terms of the complex expressions (6.34), we can write this as

〈W 〉 =
1

16π
( ~E · ~E∗ + ~B · ~B∗) , (6.47)

where the ∗ denotes complex conjugation, since the time and position dependence of ~E or

~B is cancelled when multiplied by the complex conjugate field.19

19This “trick,” of expressing the time-averaged energy density in terms of the dot product of the complex

field with its complex conjugate, is rather specific to this situation, where the quantity being time-averaged

is quadratic in the electric and magnetic fields.
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In general, when ~E0 and ~B0 are not real, we shall also have the same expressions (6.47)

for the time-averaged energy density.

In a similar manner, we can evaluate the time average of the Poynting flux vector

~S = ( ~E × ~B)/(4π). If we first consider the case where ~E0 is real, we shall have

~S =
1

4π
~E × ~B =

1

4π
~E0 × ~B0 cos2(~n · ~r − ωt) =

1

4π
~nE2

0 cos2(~n · ~r − ωt) , (6.48)

and so

〈~S〉 =
1

8π
~E0 × ~B0 =

1

8π
~nE2

0 . (6.49)

In general, even if ~E0 and ~B0 are not real, we can write 〈~S〉 in terms of the complex ~E and

~B fields as20

〈~S〉 =
1

8π
~E × ~B∗ =

1

8π
~n ~E · ~E∗ . (6.51)

Note that we have

〈~S〉 = ~n 〈W 〉 . (6.52)

6.3 Motion of a point charge in a linearly-polarised E.M. wave

Consider a plane wave propagating in the z direction, with

~E = (E0 cosω(z − t), 0, 0) , ~B = (0, E0 cosω(z − t), 0) . (6.53)

(Recall that |~k | = ω.) Suppose now that there is a particle of mass m and charge e in this

field. By the Lorentz force equation we shall have

d~p

dt
= e ~E + e~v × ~B . (6.54)

For simplicity, we shall make the assumption that the motion of the particle can be treated

non-relativistically, and so

~p = m~v = m
d~r

dt
. (6.55)

Let us suppose that the particle is initially located at the point z = 0, and that it moves

only by a small amount in comparison to the wavelength 2π/ω of the electromagnetic

20Note that in general, the formula giving the time average of the Poynting vector for complex monochro-

matic ~E and ~B fields is

〈~S〉 =
1

8π
<( ~E × ~B∗) , (6.50)

where <(X) denotes the real part of X. In the particular example discussed above, because ~B = ~n× ~E and

~n · ~E = 0, it follows that ~E × ~B∗ = ~n ( ~E · ~E∗) and hence in this case ~E × ~B∗ is purely real. In more general

situations, such as in waveguides (see later), ~E× ~B∗ is not purely real, and so it is necessary to take the real

part.

100



wave. Therefore, to a good approximation, we can assume that the particle is sitting in

the uniform, although time-dependent, electromagnetic field obtained by setting z = 0 in

(6.53). Thus

~E = (E0 cosωt, 0, 0) , ~B = (0, E0 cosωt, 0) , (6.56)

and so the Lorentz force equation gives

mẍ = eE0 cosωt− eżE0 cosωt ≈ eE0 cosωt ,

mÿ = 0 ,

mz̈ = eẋE0 cosωt . (6.57)

Note that the approximation in the first line follows from our assumption that the motion

of the particle is non-relativistic, so |ż| << 1.

With convenient and inessential choices for the constants of integration, we first obtain

ẋ =
eE0

mω
sinωt , x = − eE0

mω2
cosωt , (6.58)

Substituting into the z equation then gives

z̈ =
e2E2

0

m2ω
sinωt cosωt =

e2E2
0

2m2ω
sin 2ωt , (6.59)

which integrates to give (dropping inessential constants of integration)

z = − e2E2
0

8m2ω3
sin 2ωt . (6.60)

The motion in the y direction is purely linear, and since we are not interested in the case

where the particle drifts uniformly through space, we can just focus on the solution where

y is constant, say y = 0.

Thus the interesting motion of the particle in the electromagnetic field is of the form

x = α cosωt , z = β sin 2ωt = 2β sinωt cosωt , (6.61)

where

α = − eE0

mω2
, β = − e2E2

0

8m2ω3
. (6.62)

Thus we find

z =
2β

α
x

√
1− x2

α2
. (6.63)

This describes a “figure of eight” lying on its side in the (x, z) plane. The assumptions we

made in deriving this, namely non-relativistic motion and a small z displacement relative

to the wavelength of the electromagnetic wave, can be seen to be satisfied provided the
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amplitude E0 of the wave is sufficiently small. Note that the displacement in the z direction

is small compared with the displacement in the x direction, since the dimensionless ratio

2β/α is given by
2β

α
=

eE0

4mω
, (6.64)

and we see from the expression for ẋ in (6.58) that this ratio is small since ẋ is assumed

small compared to the speed of light (i.e. 1).

The response of the charge particle to electromagnetic wave provides a model for how

the electrons in a receiving antenna behave in the presence of an electromagnetic wave.

This shows how the wave is converted into oscilliatory currents in the antenna, which are

then amplified and processed into the final output signal in a radio receiver.

6.4 Circular and elliptical polarisation

The electromagnetic wave described in section 6.2 is linearly polarised. For example, we

could consider the solution with

~E0 = (E0, 0, 0) , ~B0 = (0, B0, 0) , ~n = (0, 0, 1) . (6.65)

This corresponds to a linearly polarised electromagnetic wave propagating along the z di-

rection.

By taking a linear superposition of waves propagating along a given direction ~n, we can

obtain circularly polarised, or more generally, elliptically polarised, waves. Let ~e and ~f be

two orthogonal unit vectors, that are also both orthogonal to ~n:

~e · ~e = 1 , ~f · ~f = 1 , ~n · ~n = 1 ,

~e · ~f = 0 , ~n · ~e = 0 , ~n · ~f = 0 . (6.66)

Suppose now we consider a plane wave given by

~E = (E0 ~e+ Ẽ0
~f) ei (~k·~r−ωt) , ~B = ~n× ~E , ~n =

~k

|~k |
=
~k

ω
, (6.67)

where E0 and Ẽ0 are complex constants. If E0 and Ẽ0 both have the same phase (i.e. Ẽ0/E0

is real), then we again have a linearly-polarised electromagnetic wave. If instead the phases

of E0 and Ẽ0 are different, then the wave is in general elliptically polarised.

Consider as an example the case where

Ẽ0 = ±iE0 , (6.68)
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(with E0 taken to be real, without loss of generality), for which the electric field will be

given by

~E = E0(~e± i ~f) ei (~k·~r−ωt) . (6.69)

Taking the real part, to get the physical electric field, we obtain

~E = E0~e cos(~k · ~r − ωt)∓ E0
~f sin(~k · ~r − ωt) . (6.70)

For example, if we choose

~n = (0, 0, 1) , ~e = (1, 0, 0) , ~f = (0, 1, 0) , (6.71)

then the electric field is given by

Ex = E0 cosω(z − t) , Ey = ∓E0 sinω(z − t) . (6.72)

It is clear from this that the magnitude of the electric field is constant,

| ~E| = E0 . (6.73)

If we fix a value of z, then the ~E vector can be seen to be rotating around the z axis (the

direction of motion of the wave), with angular frequency ω. This rotation is anticlockwise

in the (x, y) plane if we choose the plus sign in (6.68), and clockwise if we choose the minus

sign instead. These two choices correspond to having a circularly polarised wave of positive

or negative helicity respectively. (Positive helicity means the rotation is parallel to the

direction of propagation, while negative helicity means the rotation is anti-parallel to the

direction of propagation.)

In more general cases, where the magnitudes of E0 and Ẽ0 are unequal, or where the

phase angle between them is not equal to 0 (linear polarisation) or 90 degrees, the elec-

tromagnetic wave will be elliptically polarised. Consider, for example, the case where the

electric field is given by

~E = (a1e
i δ1 , a2e

i δ2 , 0) eiω(z−t) , (6.74)

with the propagtion direction being ~n = (0, 0, 1). Then we shall have

~B = ~n× ~E = (−a2e
i δ2 , a1e

i δ1 , 0) eiω(z−t) . (6.75)

The real constants a1, a2, δ1 and δ2 determine the nature of this plane wave propagating

along the z direction. Of course the overall phase is unimportant, so really it is only the

difference δ2 − δ1 between the phase angles that is important.
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The magnitude and phase information is sometimes expressed in terms of the Stokes

Parameters (s0, s1, s2, s3), which are defined by

s0 = ExE
∗
x + EyE

∗
y = a2

1 + a2
2 , s1 = ExE

∗
x − EyE∗y = a2

1 − a2
2 , (6.76)

s2 = 2<(E∗xEy) = 2a1a2 cos(δ2 − δ1) , s3 = 2=(E∗xEy) = 2a1a2 sin(δ2 − δ1) .

(The last two involve the real and imaginary parts of (E∗xEy) respectively.) The four Stokes

parameters are not independent:

s2
0 = s2

1 + s2
2 + s2

3 . (6.77)

The parameter s0 characterises the intensity of the electromagnetic wave, while s1 charac-

terises the amount of x polarisation versus y polarisation, with

−s0 ≤ s1 ≤ s0 . (6.78)

The third independent parameter, which could be taken to be s2, characterises the phase

difference between the x and the y polarised waves. Circular polaristion with ± helicity

corresponds to

s1 = 0 , s2 = 0 , s3 = ±s0 . (6.79)

6.5 General superposition of plane waves

So far in the discussion of electromagnetic waves, we have considered the case where there is

a single direction of propagation (i.e. a plane wave), and a single frequency (monochromatic).

The most general wave-like solutions of the Maxwell equations can be expressed as linear

combinations of these basic monochromatic plane-wave solutions.

In order to discuss the general wave solutions, it is helpful to work with the gauge

potential Aµ = (φ, ~A). Recall that we have the freedom to make gauge transformations

Aµ → Aµ + ∂µλ, where λ is an arbitrary function. For the present purposes, of describing

wave solutions, a convenient choice of gauge is to set φ = 0. Such a gauge choice would not

be very natural for describing solutions in electrostatics, but in the present case, where we

know that the wave solutions are necessarily time-dependent, it is quite helpful. It is know

as the Radiation Gauge.

Thus, we shall first write a single monochromatic plane wave in terms of the 3-vector

potential, as

~A = a~e ei (~k·~r−ωt) , (6.80)
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where ~e is a unit polarisation vector, and a is a constant. As usual, we must have |~k|2 = ω2.

With φ = 0, the electric and magnetic fields will be given by

~E = −∂
~A

∂t
= i aω ~e ei (~k·~r−ωt) ,

~B = ~∇× ~A = i a~k × ~e ei (~k·~r−ωt) =
~k × ~E

ω
. (6.81)

We can immediately see that ~E and ~B satisfy the wave equation, and that we must impose

~e · ~k = 0 in order to satisfy ~∇ · ~E = 0.

We have established, therefore, that (6.80) describes a monochromatic plane wave prop-

agating along the ~k direction, with electric field along ~e, provided that ~e ·~k = 0 and |~k| = ω.

More precisely, the gauge potential that gives the physical (i.e. real) electric and magnetic

fields is given by taking the real part of ~A in (6.80). Thus, when we want to describe the

actual physical quantities, we shall write

~A = a~e ei (~k·~r−ωt) + a∗ ~e e−i (~k·~r−ωt) . (6.82)

(We have absorbed a factor of 1
2 here into a rescaling of a, in order to avoid carrying 1

2

factors around in all the subsequent equations.) For brevity, we shall usually write the

“physical” ~A as

~A = a~e ei (~k·~r−ωt) + c.c. , (6.83)

where c.c stands for “complex conjugate.”

Now consider a general linear superposition of monochromatic plane waves, with differ-

ent wave-vectors ~k, different polarisation vectors ~e, and different amplitudes a. We shall

therefore label the polarisation vectors and amplitudes as follows:

~e −→ ~eλ(~k) , a −→ aλ(~k) . (6.84)

Here λ is an index which ranges over the values 1 and 2, which labels 2 real orthonormal

vectors ~e1(~k) and ~e2(~k) that span the 2-plane perpendicular to ~k. The general wave solution

can then be written as the sum over all such monochromatic plane waves of the form (6.83).

Since a continuous range of wave-vectors is allowed, the summation over these will be a

3-dimensional integral. Thus we can write

~A =

2∑
λ=1

∫
d3~k

(2π)3

[
~eλ(~k) aλ(~k) ei (~k·~r−ωt) + c.c.

]
, (6.85)

where ω = |~k|, and

~k · ~eλ(~k) = 0 , ~eλ(~k) · ~eλ′(~k) = δλλ′ . (6.86)
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For many purposes, it will be convenient to expand ~A in a basis of circularly-polarised

monochromatic plane waves, rather than linearly-polarised waves. In this case, we should

choose the 2-dimensional basis of polarisation vectors ~ε±, related to the previous basis by

~ε± =
1√
2

(~e1 ± i~e2) . (6.87)

Since we have ~ei · ~ej = δij , it follows that

~ε+ · ~ε+ = 0 , ~ε− · ~ε− = 0 , ~ε+ · ~ε− = 1 . (6.88)

Note that ~ε±
∗ = ~ε∓. We can label the ~ε± basis vectors by ~ελ, where λ is now understood

to take the two “values” + and −. We then write the general wave solution as

~A =
∑
λ=±

∫
d3~k

(2π)3

[
~ελ(~k) aλ(~k) ei (~k·~r−ωt) + c.c.

]
, (6.89)

Of course, we also have ~k · ~ελ = 0, and ω = |~k|.

6.5.1 Helicity and energy of circularly-polarised waves

The angular-momentum tensor Mµν for the electromagnetic field is defined by

Mµν =

∫
t=const

(xµT νρ − xνTµρ)dΣρ , (6.90)

and so the three-dimensional components M ij are

M ij =

∫
t=const

(xiT jρ − xjT iρ)dΣρ =

∫
(xiT j0 − xjT i0)d3x ,

=

∫
(xiSj − xjSi)d3x . (6.91)

Thus, since ~S = ( ~E × ~B)/(4π), the three-dimensional angular momentum Li = 1
2εijkM

jk is

given by

Li =

∫
εijkx

jSk d3x , (6.92)

i.e.

~L =
1

4π

∫
~r × ( ~E × ~B) d3x . (6.93)

Now, since ~B = ~∇× ~A, we have

[~r × ( ~E × ~B)]i = εijkεk`m xjE`Bm ,

= εijkεk`mεmpq xjE`∂pAq ,

= εijk(δkpδ`q − δkqδ`p)xjE`∂pAq ,

= εijk xjE`∂kA` − εijk xjE`∂`Ak , (6.94)

106



and so

Li =
1

4π

∫
(εijk xjE`∂kA` − εijk xjE`∂`Ak)d3x ,

=
1

4π

∫ (
− εijk ∂k(xjE`)A` + ∂`(xjE`)Ak

)
d3x ,

=
1

4π

∫ (
− εijk xj(∂kE`)A` + εijk EjAk

)
d3x . (6.95)

Note that in performing the integrations by parts here, we have, as usual, assumed that

the fields fall off fast enough at infinity that the surface term can be dropped. We have

also used the source-free Maxwell equation ∂`E` = 0 in getting to the final line. Thus, we

conclude that the angular momentum 3-vector can be expressed as

~L =
1

4π

∫
( ~E × ~A−Ai (~r × ~∇)Ei)d

3x . (6.96)

The two terms in (6.96) can be interpreted as follows. The second term can be viewed

as an “orbital angular momentum,” since it clearly depends on the choice of origin. It is

rather analogous to an ~r×~p contribution to the angular momentum of a system of particles.

On the other hand, the first term in (6.96) can be viewed as an “intrinsic spin” term, since

it is constructed purely from the electromagnetic fields themselves, and is independent of

the choice of origin. We shall calculate this spin contribution,

~Lspin =
1

4π

∫
~E × ~Ad3x (6.97)

to the angular momentum in the case of the sum over circularly-polarised waves that we

introduced in the previous section. Recall that for this sum, the 3-vector potential is given

by

~A =
∑
λ′=±

∫
d3~k ′

(2π)3

[
~ελ′(~k

′) aλ′(~k
′) ei (~k ′·~r−ω′t) + c.c.

]
, (6.98)

The electric field is then given by

~E = −∂
~A

∂t
=
∑
λ=±

∫
d3~k

(2π)3

[
iω~ελ(~k) aλ(~k) ei (~k·~r−ωt) + c.c.

]
, (6.99)

Note that we have put primes on the summation and integration variables λ and ~k in the

expression for ~A. This is so that we can take the product ~E × ~A and not have a clash

of “dummy” summation variables, in what will follow below. We have also written the

frequency as ω′ ≡ |~k ′| in the expression for ~A.

Our interest will be to calculate the time average

〈~Lspin〉 ≡
1

T

∫ T

0

~Lspindt . (6.100)
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Since we are considering a wave solution with an entire “chorus” of frequencies now, we

define the time average by taking T to infinity. (It is easily seen that this coincides with

the previous definition of the time average for a monochromatic wave of frequency ω, where

T was taken to be 2π/ω.) Note that the time average will be zero for any quantity whose

time dependence is of the oscilliatory form ei νt, because we would have

1

T

∫ T

0
ei νtdt =

1

i νT
(ei νT − 1) , (6.101)

which clearly goes to zero as T goes to infinity. Since the time dependence of all the

quantities we shall consider is precisely of the form eiνt, it follows that in order to survive

the time averaging, it must be that ν = 0. Thus we have 〈ei νt〉 = 0 if ν 6= 0 and 〈ei νt〉 = 1

if ν = 0.

We are interested in calculating the time average of ~E × ~A, where ~A and ~E are given

by (6.98) and (6.99). The quantities ω appearing there are, by definition, positive, since

we have defined ω ≡ |~k|. The only way that we shall get terms in ~E × ~A that have zero

frequency (i.e. ν = 0) is from the product of one of the terms that is explicitly written times

one of the “c.c.” terms, since these, of course, have the opposite sign for their frequency

dependence.

The upshot of this discussion is that when we evaluate the time average of ~E × ~A, with

~A and ~E given by (6.98) and (6.99), the only terms that survive will be coming from the

product of the explicitly-written term for ~E times the “c.c.” term for ~A, plus the “c.c.”

term for ~E times the explicitly-written term for ~A. Furthermore, in order for the products

to have zero frequency, and therefore survive the time averaging, it must be that ω′ = ω.

We therefore find

〈 ~E × ~A〉 =
∑
λλ′

∫
d3~k

(2π)3

d3~k ′

(2π)3
iω
[
~ελ(~k)× ~ε ∗λ′(~k ′)aλ(~k)a∗λ′(

~k ′) ei(~k−~k ′)·~r

−~ε ∗λ(~k)× ~ελ′(~k ′)a∗λ(~k)aλ′(~k
′) e−i(~k−~k ′)·~r

]
.(6.102)

We now need to integrate 〈 ~E × ~A〉 over all 3-space, which we shall write as∫
〈 ~E × ~A〉 d3~r . (6.103)

We now make use of the result from the theory of delta functions that∫
ei(~k−~k ′)·~r d3~r = (2π)3 δ3(~k − ~k ′) . (6.104)
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Therefore, from (6.102) we find∫
〈 ~E × ~A〉 d3~r =

∑
λλ′

∫
d3~k

(2π)3
iω
[
~ελ(~k)× ~ε ∗λ′(~k)aλ(~k)a∗λ′(

~k)

−~ε ∗λ(~k)× ~ελ′(~k)a∗λ(~k)aλ′(~k)
]
. (6.105)

Finally, we recall that the polarization vectors ~ε±(~k) span the 2-dimensional space or-

thogonal to the wave-vector ~k. In terms of the original real basis unit vectors ~e1(~k) and

~e2(~k) we have

~e1(~k)× ~e2(~k) =
~k

ω
, (6.106)

and so it follows from (6.87) that

~ε+(~k)× ~ε ∗+(~k) = − i~k

ω
, ~ε−(~k)× ~ε ∗−(~k) =

i~k

ω
. (6.107)

From this, it follows that (6.105) becomes∫
〈 ~E × ~A〉 d3~r = 2

∫
d3~k

(2π)3
~k [a+(~k)a∗+(~k)− a−(~k)a∗−(~k)] , (6.108)

and so we have

〈~Lspin〉 =
1

2π

∫
d3~k

(2π)3
~k
(
|a+(~k)|2 − |a−(~k)|2

)
. (6.109)

It can be seen from this result that the modes associated with the coefficients a+(~k)

correspond to circularly-polarised waves of positive helicity; i.e. their spin is parallel to

the wave-vector ~k. Conversely, the modes with coefficients a−(~k) correspond to circularly-

polarised waves of negative helicity; i.e. with spin that is anti-parallel to the wave-vector

~k.

In a similar fashion, we may evaluate the energy of the general wave solution as a sum

over the individual modes. The total energy E is given by21

E =
1

8π

∫
(E2 +B2)d3x −→ 1

4π

∫
E2d3x . (6.110)

21We are being a little bit sloppy here, in invoking the result, shown earlier for a single monochromatic

plane wave, that the electric and magnetic fields give equal contributions to the energy. It is certainly not

true any longer that ~E2 = ~B2 for a general superposition of plane waves. However, after integrating over

all space and performing a time averaging, as we shall do below, the contribution of the electric field to the

final result will just be a sum over the contributions of all the individual modes. Likewise, the contribution

of the magnetic field will be a sum over all the individual modes. It is now true that the electric and

magnetic contributions of each mode will be equal, and so one does indeed get the correct answer by simply

doubling the result for the electric field alone. Any reader who has doubts about this is invited to perform

the somewhat more complicated direct calculation of the contribution from the magnetic field, to confirm

that it is true.
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Since ~E = −∂ ~A/∂t here, we have

〈E2〉 =
∑
λ,λ′

∫
d3~k

(2π)3

d3~k ′

(2π)3
ω2
[
~ελ(~k) · ~ε ∗λ′(~k ′) aλ(~k)a∗λ′(

~k ′) ei (~k−~k ′)·~r

+~ε ∗λ(~k) · ~ελ′(~k ′) a∗λ(~k)aλ′(~k
′) e−i (~k−~k ′)·~r

]
, (6.111)

where again, the time-averaging has picked out only the terms whose total frequency adds

to zero. The integration over all space then again gives a three-dimensional delta function

δ3(~k − ~k ′), and so we find∫
〈E2〉d3~r =

∑
λ,λ′

∫
d3~k

(2π)3
ω2
[
~ελ(~k) · ~ε ∗λ′(~k) aλ(~k)a∗λ′(

~k)

+~ε ∗λ(~k) · ~ελ′(~k) a∗λ(~k)aλ′(~k)
]
, (6.112)

Finally, using the orthogonality relations (6.88), and the conjugation identity ~ε± = ~ε ∗∓, we

obtain

〈E〉 =
1

2π

∫
d3~k

(2π)3
ω2
(
|a+(~k)|2 + |a−(~k)|2

)
. (6.113)

From the two results (6.109) and (6.113), we see that for a given mode characterised by

helicity λ and wave-vector ~k, we have

〈~Lspin〉~k,λ =
1

2π
~k |aλ(~k)|2 (signλ) ,

〈E〉~k,λ =
1

2π
ω2 |aλ(~k)|2 , (6.114)

where (signλ) is +1 for λ = + and −1 for λ = −. The helicity σ, which is the component

of spin along the direction of the wave-vector ~k, is therefore given by

σ =
1

2π
|~k| |aλ(~k)|2 (signλ) ,

=
1

2π
ω |aλ(~k)|2 (signλ) ,

=
1

ω
〈E〉~k,λ (signλ) . (6.115)

In other words, we have that

energy = ±(helicity)ω , (6.116)

and so we can write

E = |σ|ω . (6.117)

This can be compared with the result in quantum mechanics, that

E = ~ω . (6.118)
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Planck’s constant ~ has the units of angular momentum, and in fact the basic “unit” of

angular momentum for the photon is one unit of ~. In the transition from classical to

quantum physics, the helicity of the electromagnetic field becomes the spin of the photon.

6.6 Gauge invariance and electromagnetic fields

In the previous discussion, we described electromagnetic waves in terms of the gauge po-

tential Aµ = (−φ, ~A), working in the radiation gauge where φ = 0, i.e. A0 = 0. Since the

gauge symmetry of Maxwell’s equations is

Aµ −→ Aµ + ∂µλ , (6.119)

one might think that all the gauge freedom had been used up when we imposed the condition

φ = 0, on the grounds that one arbitrary function (the gauge parameter λ) has been used

in order to set one function (the scalar potential φ) to zero. This is, in fact, not the case.

To see this, recall that for the electromagnetic wave we wrote ~A as a superposition of terms

of the form

~A = ~c ei (~k·~r−ωt) , (6.120)

which implied that

~E = −∂
~A

∂t
= iω~c ei (~k·~r−ωt) . (6.121)

From this we have

~∇ · ~E = −ω~k · ~c ei (~k·~r−ωt) , (6.122)

and so the Maxwell equation ~∇ · ~E = 0 implies that ~k · ~c = 0, and hence

~k · ~A = 0 . (6.123)

This means that as well as having A0 = −φ = 0, we also have a component of ~A vanishing,

namely the projection along ~k.

To see how this can happen, it is helpful to go back to a Lorentz-covariant gauge choice

instead. First, consider the Maxwell field equation, in the absence of source currents:

∂µFµν = 0 . (6.124)

Since Fµν = ∂µAν − ∂νAµ, this implies

∂µ∂µAν − ∂µ∂νAµ = 0 . (6.125)
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We now choose the Lorenz gauge condition,

∂µAµ = 0 . (6.126)

The field equation (6.125) then reduces to

∂µ∂µAν = 0 , i.e. Aµ = 0 . (6.127)

One might again think that all the gauge symmetry had been “used up” in imposing the

Lorenz gauge condition (6.126), on the grounds that the arbitrary function λ in the gauge

transformation

Aµ −→ Aµ + ∂µλ (6.128)

that allowed one to impose (6.126) would no longer allow any freedom to impose further

conditions on Aµ. This is not quite true, however.

To see this, let us suppose we are already in Lorenz gauge, and then try performing a

further gauge transformation, as in (6.128), insisting that we must remain in the Lorenz

gauge. This means that λ should satisfy

∂µ∂µλ = 0 , i.e. λ = 0 . (6.129)

Non-trivial such functions λ can of course exist; any solution of the wave equation will work.

So the upshot is that even after having imposed the Lorenz gauge condition ∂µA
µ = 0 we

can still make a restricted class of further gauge transformations Aµ → Aµ + ∂µλ, where λ

is any solution of λ = 0, and this will not upset the Lorenz gauge condition.

To see what this implies, let us begin with a general solution of the wave equation

(6.127), working in the Lorenz gauge (6.126). We can decompose this solution as a sum

over plane waves, where a typical mode in the sum is

Aµ = aµ e
i (~k·~r−ωt) = aµ e

i kνxν = aµ e
i k·x , (6.130)

where aµ and kν are constant. Substituting into the wave equation (6.127) we find

0 = Aµ = ∂σ∂σ(aµ e
i k·x) = −kσkσ aµ ei k·x , (6.131)

whilst the Lorenz gauge condition (6.126) implies

0 = ∂µAµ = ∂µ(aµ e
i k·x) = i kµaµ e

i k·x . (6.132)

In other words, kµ and aµ must satisfy

kµkµ = 0 , kµaµ = 0 . (6.133)
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The first of these equations implies that kµ is a null vector, as we had seen earlier. The sec-

ond equation implies that 1 of the 4 independent components that a 4-vector aµ generically

has is restricted in this case, so that aµ has only 3 independent components.

Now we perform the further gauge transformation Aµ → Aµ + ∂µλ, where, as discussed

above, λ = 0 so that we keep the gauge-transformed Aµ in Lorenz gauge. Specifically, we

shall choose

λ = ih ei k·x , (6.134)

where h is a constant. (The factor of i is there for later convenience.) Thus we shall have

Aµ −→ Aµ − h kµ ei k·x . (6.135)

With Aµ given by (6.130) this means we shall have

aµ e
i k·x −→ aµ e

i k·x − h kµ ei k·x , (6.136)

which implies

aµ −→ aµ − h kµ . (6.137)

As a check, we can see that the redefined aµ indeed still satisfies kµaµ = 0, as it should,

since kµ is a null vector.

The upshot of this discussion is that the freedom to take the constant h to be anything we

like allows us to place a second restriction on the components of aµ. Thus not merely are its

ostensible 4 components reduced to 3 by virtue of kµaµ = 0, but a further component can be

eliminated by means of the residual gauge freedom, leaving just 2 independent components

in the polarisation vector aµ. Since the physical degrees of freedom are, by definition, the

independent quantities that cannot be changed by making gauge transformations, we see

that there are 2 degrees of freedom in the electromagnetic wave, and not 3 as one might

naively have supposed.

These 2 physical degrees of freedom can be organised as the + and − helicity states,

just as we did in our earlier discussion. These are the circularly-polarised waves rotating

anti-clockwise and clockwise, respectively. In other words, these are the states whose spin is

either parallel, or anti-parallel, to the direction of propagation. One way of understanding

why we have only 2, and not 3, allowed states is that the wave is travelling at the speed of

light, and so it is not possible for it to have a helicity that projects other than fully parallel

or anti-parallel to its direction of propagation.

We can make contact with the φ = 0 gauge choice that we made in our previous

discussion of electromagnetic waves. Starting in Lorenz gauge, we make use of the residual
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gauge transformation (6.137) by choosing h so that

a0 − h k0 = 0 , i.e. h = −a0

ω
. (6.138)

this means that after performing the residual gauge transformation we shall have

a0 = 0 , (6.139)

and so, from (6.130), we shall have

A0 = 0 , i.e. φ = 0 . (6.140)

The original Lorenz gauge condition (6.126) then reduces to

∂iAi = 0 , i.e. ~∇ · ~A = 0 . (6.141)

This implies ~k · ~A = 0, and so we have reproduced precisely the φ = 0, ~k · ~A = 0 gauge

conditions that we used previously in our analysis of the general electromagnetic wave

solutions.

In D spacetime dimensions, the analogous result can easily be seen to be that the

electromagnetic wave has (D − 2) degrees of freedom.

6.7 Fourier decomposition of electrostatic fields

We saw earlier in 6.5 that an electromagnetic wave, expressed in the radiation gauge in

terms of the 3-vector potential ~A, could be decomposed into Fourier modes as in (6.89).

For each mode ~A
(~k,λ)

in the sum, we have ~ελ(~k) · ~k = 0, and so each mode of the electric

field ~E
(~k,λ)

= −∂ ~A
(~k,λ)

/∂t satisfies the transversality condition

~k · ~E
(~k,λ)

= 0 . (6.142)

By constrast, an electrostatic field ~E is longitudinal. Consider, for example, a point

charge at the origin, whose potential therefore satisfies

∇2φ = −4πe δ3(~r) . (6.143)

We can express φ(~r) in terms of its Fourier transform Φ(~k) as

φ(~r) =

∫
d3~k

(2π)3
Φ(~k) ei~k·~r . (6.144)

This is clearly a sum over zero-frequency waves, as one would expect since the fields are

static.
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It follows from (6.144) that

∇2φ(~r) = −
∫

d3~k

(2π)3
~k 2 Φ(~k) ei~k·~r . (6.145)

We also note that the delta-function in (6.143) can be written as

δ3(~r) =

∫
d3~k

(2π)3
ei~k·~r . (6.146)

It follows that if we substitute (6.144) into (6.143) we shall obtain −~k 2Φ(~k) = −4πe, and

hence

Φ(~k) =
4πe

k2
. (6.147)

The electric field is given by ~E = −~∇φ, and so

~E = −i

∫
d3~k

(2π)3
~kΦ(~k) ei~k·~r . (6.148)

If we define ~G(~k) to be the Fourier transform of ~E, so that

~E(~r) =

∫
d3~k

(2π)3
~G(~k) ei~k·~r , (6.149)

then we see that

~G(~k) = −i~kΦ(~k) = −4π i e

k2
~k . (6.150)

Thus we see that ~G(~k) is parallel to ~k, which proves that the electrostatic field is Longitu-

dinal.

6.8 Waveguides

For our purposes, we shall define a waveguide to be a hollow, perfectly conducting, cylinder,

essentially of infinite length. For convenience we shall take the axis of the cylinder to lie

along the z direction. The cross-section of the cylinder, in the (x, y) plane, can for now be

arbitrary, but it is the same for all values of z. Thus, the cross-section through the cylinder

is a closed curve.

We shall consider an electromagnetic wave propagating down the cylinder, with angular

frequency ω. It will therefore have z and t dependence of the form22

ei (kz−ωt) . (6.151)

22One way to see this is to note that since the Maxwell equations and the physical set-up are invariant

under time translations and under spatial translations along z, it follows that the solutions can be organised

as being simultaneously eigenfunctions of the time-translation operator ∂
∂t

and the z-translation operator

∂
∂z

.
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Note that unlike the situation for a monochromatic plane wave in infinite free space, the

constants k and ω will not in general be equal here. In other words, the electromagnetic

wave propagating down the waveguide does not travel at the speed of light. Note also that

with all fields having z and t dependence of the form (6.151), we may make the replacements

∂

∂t
−→ −iω ,

∂

∂z
−→ i k . (6.152)

The source-free Maxwell equations (which hold inside the waveguide), therefore imply

~∇ · ~E = 0 , ~∇× ~E = iω ~B ,

~∇ · ~B = 0 , ~∇× ~B = −iω ~E . (6.153)

Because of the assumed form of the t and z dependence in (6.151), we may write

~E(x, y, z, t) = ~E(x, y) ei (kz−ωt) , ~B(x, y, z, t) = ~B(x, y) ei (kz−ωt) . (6.154)

(It should always be clear from the context, if we just write ~E, whether it is ~E(x, y) or

~E(x, y, z, t) that is intended. Likewise for ~B.)

It is convenient also to define the unit vector ~m in the z direction (the axis of the

waveguide),

~m = (0, 0, 1) , (6.155)

and certain transverse quantities, denoted with a ⊥ subscript, as follows:

~∇⊥ ≡
( ∂
∂x
,
∂

∂y
, 0
)
,

~E ≡ ~E⊥ + ~mEz , ~B ≡ ~B⊥ + ~mBz . (6.156)

(Note that therefore ~E⊥ = (Ex, Ey, 0) and ~B⊥ = (Bx, By, 0).) From (6.153), the Maxwell

equations become

~∇ · ~E = 0 =⇒ ~∇⊥ · ~E⊥ = −i k Ez ,

~∇ · ~B = 0 =⇒ ~∇⊥ · ~B⊥ = −i k Bz ,

~∇× ~E = iω ~B =⇒ i k ~E⊥ + iω ~m× ~B⊥ = ~∇⊥Ez ,

~m · (~∇⊥ × ~E⊥) = iωBz ,

~∇× ~B = −iω ~E =⇒ i k ~B⊥ − iω ~m× ~E⊥ = ~∇⊥Bz ,

~m · (~∇⊥ × ~B⊥) = −iωEz . (6.157)
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Note that the cross product of any pair of transverse vectors, ~U⊥ × ~V⊥, lies purely in the z

direction, i.e. parallel to ~m. In components, the last four lines in (6.157) are:

i kEx − iωBy = ∂xEz , i kEy + iωBx = ∂yEz ,

∂xEy − ∂yEx = iωBz ,

i kBx + iωEy = ∂xBz , i kBy − iωEx = ∂yBz ,

∂xBy − ∂yBx = −iωEz , (6.158)

where ∂x = ∂/∂x and ∂y = ∂/∂y. Note that the four equations comprising lines 1 and 3

can be solved algebraically for Ex, Ey, Bx and By in terms of the first derivatives of Ez and

Bz. We shall come back to this later.

6.8.1 TEM modes

There are various types of modes that can be considered. First, we may dispose of an

“uninteresting” possibility, called TEM modes. The acronym stands for “transverse electric

and magnetic,” meaning that both ~E and ~B have only transverse components, with no

longitudinal component along z:

Ez = 0 , Bz = 0 . (6.159)

From the equations in (6.157) for ~E⊥, we see that

~∇⊥ · ~E⊥ = 0 , ~∇⊥ × ~E⊥ = 0 . (6.160)

These are the equations for electrostatics in the 2-dimensional (x, y) plane. The second

equation implies we can write ~E⊥ = −~∇⊥φ, and then the first equation implies that the

electrostatic potential φ satisfies the 2-dimensional Laplace equation

∇2
⊥φ =

∂2φ

∂x2
+
∂2φ

∂y2
= 0 . (6.161)

Since the area cross-section Σ of the waveguide in the (x, y) plane is bounded a closed curve

C, at a fixed potential φ0 (since it is a conductor), we can deduce that Φ ≡ φ − φ0 is zero

everywhere inside the conductor:

0 =

∫
Σ
dxdy ψ∇2

⊥Φ =

∫
Σ
dxdy

(
~∇⊥ · (Φ ~∇⊥Φ)− |~∇⊥Φ|2

)
=

∫
C

Φ ~∇⊥Φ · d~̀−
∫

Σ
dxdy |~∇⊥Φ|2

= −
∫

Σ
dxdy |~∇⊥Φ|2 (6.162)
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which implies ~∇⊥Φ = 0 in Σ, and hence Φ = 0, implying φ = φ0 everywhere in Σ, and so

~E⊥ = −~∇⊥φ = 0. Similar considerations imply ~B = 0 for the TEM mode also.23

6.8.2 TE and TM modes

In order to have non-trivial modes propagating in the waveguide, we must relax the TEM

assumption. There are two basic types of non-trivial modes we may consider, where either

~E or ~B (but not both) are taken to be transverse. These are called TE modes and TM

modes respectively. A general electromagnetic wave propagating in a waveguide can be

decomposed as a sum of such modes.

To analyse these modes, we first need to consider the boundary conditions at the con-

ducting surface of the cylinder. The component of ~E parallel to the surface must vanish

(seen as usual by integrating ~E around a loop comprising a line segment just inside the

waveguide, and closed by a line segment just inside the conductor, where ~E = 0 by def-

inition). Then, if we define ~n to be the unit normal vector at the surface, we may say

that

~n× ~E = 0 on the surface S . (6.163)

Next, taking the scalar product of ~n with the ~∇× ~E = iω ~B Maxwell equation, we get

that on the surface of the waveguide,

iω ~n · ~B = ~n · (~∇× ~E) = −~∇ · (~n× ~E) = 0 on the surface , (6.164)

where we have made use of the previous conclusion that ~n × ~E = 0 on the surface of the

waveguide.

Actually, we should be a little careful here. Just because we have ~n × ~E = 0 on the

surface of the waveguide, it is not immediately obvious that ~∇ · (~n× ~E) = 0 on the surface,

since ~n × ~E will be non-zero away from the surface, and hence the derivative might be

non-zero when evaluated on the surface. (Just because a function vanishes at a point, it

does not necessarily mean that the derivative of the function vanishes at that point also!)

However, if we consider the electric field at the surface, it must necessarily be parallel to

the unit normal ~n (since ~n × ~E = 0 at the surface). Close to the surface, may think of

introducing a coordinate system (y1, y2, ρ), where ρ is the perpendicular distance from the

surface (i.e. in the direction of ~n), and y1 and y2 are coordinates spanning the 2-dimensional

23If the waveguide were replaced by coaxial conducting cylinders then TEM modes could exist in the gap

between the innner and outer cylinder, since the potentials on the two cylinder need not be equal.
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space orthogonal to ~n. Thus Taylor expanding the electric field near the surface in powers

of ρ, we must have

~E = E0(y1, y2)~n+ ρ ~E1(y1, y2) + ρ2 ~E2(y1, y2) + · · · , (6.165)

It then follows from eqn (6.165) that

~n× ~E = ρ~n× ~E1 +O(ρ2) . (6.166)

Now, we wish to evaluate ~∇·(~n× ~E) on the surface S. Clearly any term that is proportional

to at least one power of ρ after the differentiation will necessarily give zero when we restrict

to the surface (which is at ρ = 0). Therefore,

~∇ · (~n× ~E)
∣∣∣
S

=
(
~∇ρ · (~n× ~E1)

)∣∣∣
S
. (6.167)

Now since ρ measures the perpendicular distance away from the surface, it follows that

(~∇ρ)
∣∣∣
S

= ~n . (6.168)

We therefore find

~∇ · (~n× ~E)
∣∣∣
S

= ~n · (~n× ~E1)

= 0 , (6.169)

(recall ~n · (~n× ~V ) = 0 for any vector ~V ). Finally, therefore, we can conclude that

~∇ · (~n× ~E)
∣∣∣
S

= 0 , (6.170)

and hence from eqn (6.164) that

~n · ~B = 0 on the surface S . (6.171)

To summarise, we have

~n× ~E = 0 , ~n · ~B = 0 (6.172)

on the surface of the waveguide. We may restate these boundary conditions as

Ez

∣∣∣
S

= 0 , ~n · ~B⊥
∣∣∣
S

= 0 , (6.173)

where S denotes the surface of the cylindrical waveguide.

The two boundary conditions above imply also that

~n · ~∇⊥Bz
∣∣∣
S

= 0 . (6.174)
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This follows by taking the scalar product of ~n with the penultimate equation in (6.157):

~n · ~∇⊥Bz = i k ~n · ~B⊥ − iω~n · (~m× ~E⊥) ,

= i k ~n · ~B⊥ + iω~m · (~n× ~E⊥) , (6.175)

and then restricting to the surface S of the cylinder. The condition (6.174) may be rewritten

as
∂Bz
∂n

∣∣∣
S

= 0 , (6.176)

where ∂/∂n ≡ ~n · ~∇ is the normal derivative.

With the assumption (6.151), the wave equations for ~E and ~B (i.e. (∇2− ∂2/∂t2) ~E = 0

and (∇2 − ∂2/∂t2) ~B = 0) become

∇2
⊥
~E + (ω2 − k2) ~E = 0 , ∇2

⊥
~B + (ω2 − k2) ~B = 0 , (6.177)

where ∇2
⊥ = ∂2/∂x2 +∂2/∂y2 is the 2-dimensional Laplacian. The four equations appearing

in the first and third lines of (6.158) can be solved for Ex, Ey, Bx and By in terms of Ez

and Bz, giving

Ex =
i

ω2 − k2
(ω ∂yBz + k ∂xEz) ,

Ey =
i

ω2 − k2
(−ω ∂xBz + k ∂yEz) ,

Bx =
i

ω2 − k2
(−ω ∂yEz + k ∂xBz) ,

By =
i

ω2 − k2
(ω ∂xEz + k ∂yBz) . (6.178)

This means that we can concentrate on solving for Ez(x, y) and Bz(x, y), which must satisfy

(see (6.177))

∇2
⊥Ez + (ω2 − k2)Ez = 0 , ∇2

⊥Bz + (ω2 − k2)Bz = 0 . (6.179)

Having solved for Ez and Bz, substitution into (6.178) gives the expressions for the remain-

ing field components Ex, Ey, Bx and By.

As mentioned earlier, we can divide the discussion into a consideration of two different

categories of wave solution in the waveguide. These are

TE waves : Ez = 0 , and
∂Bz
∂n

∣∣∣
S

= 0 ,

~B⊥ =
i k

ω2 − k2
~∇Bz , ~E = ~E⊥ = −ω

k
~m× ~B⊥ , (6.180)

TM waves : Bz = 0 , and Ez

∣∣∣
S

= 0 ,

~E⊥ =
i k

ω2 − k2
~∇Ez , ~B = ~B⊥ =

ω

k
~m× ~E⊥ . (6.181)
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Note that the vanishing of Ez or Bz in the two cases means by definition that this field com-

ponent vanishes everywhere inside the waveguide, and not just on the cylindrical conductor.

Note also that the second condition in each case is just the residual content of the boundary

conditions in (6.173) and (6.174), after having imposed the transversality condition Ez = 0

or Bz = 0 respectively. The second line in each of the TE and TM cases gives the results

from (6.178), written now in a slightly more compact way. In each case, the basic wave

solution is given by solving the 2-dimensional Helmholtz equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+ Ω2ψ = 0 , (6.182)

where

Ω2 ≡ ω2 − k2 , (6.183)

and ψ(x, y) is equal to Bz(x, y) or Ez(x, y) in the case of TE or TM waves respectively. We

also have the boundary conditions:

TE waves (Ez = 0 , Bz = ψ) :
∂ψ

∂n

∣∣∣
S

= 0 , (6.184)

TM waves (Bz = 0 , Ez = ψ) : ψ
∣∣∣
S

= 0 . (6.185)

Equation (6.182), together with the boundary condition (6.184) or (6.185), defines an

eigenfunction/eigenvalue problem. Since the the cross-section of the waveguide is a finite

area Σ in the (x, y) plane, and the eigenvalue equation (6.182) is to be solved in this compact

closed region, it follows that the eigenvalue spectrum for Ω2 will be discrete; there will be a

semi-infinite number of eigenvalues, unbounded above, discretely separated from each other.

Notice that for each of the allowed eigenvalues Ω2, there is a corresponding minimum

angular frequency of wave that can propagate down the waveguide. This follows from eqn

(6.183), which shows that we must have

ω2 ≥ Ω2 (6.186)

in order for k to be real. If ω2 is less than Ω2 then k is imaginary, which means that the

“wave” dies off exponentially, like e−|k| z, as it travels down the waveguide. Such waves are

called evanescent waves.

Consider, as an example, TM waves propagating down a waveguide with rectangular

cross-section:

0 ≤ x ≤ a , 0 ≤ y ≤ b . (6.187)
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For TM waves, we must satisfy the boundary condition that ψ vanishes on the edges of

the rectangle. It follows from an elementary calculation, in which one separates variables

in (6.182) by writing ψ(x, y) = X(x)Y (y), that the eigenfunctions and eigenvalues, labelled

by integers (m,n), are given by24

ψmn = emn sin
(mπx

a

)
sin
(nπy

b

)
, m ≥ 1 , n ≥ 1 ,

Ω2
mn =

m2π2

a2
+
n2π2

b2
. (6.188)

The wave-number k and the angular frequency ω for the (m,n) mode are then related by

k2 = ω2 − Ω2
mn . (6.189)

The absolute lowest bound on the angular frequency that can propagate down the

waveguide is clearly given, in this example, by Ω1,1. In other words, the lowest angular

frequency of TM wave that can propagate down the rectangular waveguide is given by

ωmin = π

√
1

a2
+

1

b2
. (6.190)

In view of the relation (6.183) between the angular frequency and the wave-number, we

see that the phase velocity vph and the group velocity vgr are given by

vph ≡ ω

k
=
(

1− Ω2

ω2

)−1/2
,

vgr ≡
dω

dk
=
(

1− Ω2

ω2

)1/2
. (6.191)

Note that because of the particular form of the dispersion relation, i.e. the equation (6.183)

relating ω to k, it is the case here that

vph vgr = 1 . (6.192)

Since we must have ω ≥ Ω for wave propagation, we see that while the group velocity

satisfies

vgr =
(

1− Ω2

ω2

)1/2
≤ 1 , (6.193)

the phase velocity satisfies

vph =
(

1− Ω2

ω2

)−1/2
≥ 1 . (6.194)

24If we were instead solving for TE modes, we would have the boundary condition ∂ψ/∂n = 0 on the

edges of the rectangle, rather than ψ = 0 on the edges. This would give different eigenfunctions, involving

cosines rather than sines.
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There is nothing wrong with this, even though it means the phase velocity exceeds the

speed of light, since nothing material, and no signal, is transferred faster than the speed of

light. In fact, as we shall now verify, energy and information travel at the group velocity

vgr, which is always less than or equal to the speed of light.

Note that the group velocity approaches the speed of light (from below) as ω goes

to infinity. To be more precise, the group velocity approaches the speed of light as ω

becomes large compared to the eigenvalue Ω associated with the mode of propagation under

discussion. An example where this limit is (easily) approached is if you look through a length

of metal drainpipe. Electromagnetic waves in the visible spectrum have a frequency vastly

greater than the lowest TM or TE modes of the drainpipe, and they propagate through the

pipe as if it wasn’t there. The story would be different if one tried to channel waves from

the magnetron in a microwave oven down the drainpipe.

Let us now investigate the flow of energy down the waveguide. This is obtained by

working out the time average of the Poynting flux,

〈~S〉 =
1

8π
<( ~E × ~B ∗) . (6.195)

Note that here the fields ~E and ~B are taken to be complex, and we are using the result

discussed earlier about taking time averages of quadratic products of the physical ~E and ~B

fields. (See, especially, eqn (6.50) and the associated discussion in the footnote.)

If we consider TM modes, then we shall have

~E⊥ =
i k

Ω2
~∇ψ , Ez = ψ ,

~B⊥ =
ω

k
~m× ~E⊥ =

iω

Ω2
~m× ~∇ψ , Bz = 0 . (6.196)

(Recall that ~m = (0, 0, 1).) Note that the expressions for ~E and ~B can be condensed down

to

~E =
i k

Ω2
~∇ψ + ~mψ , ~B =

iω

Ω2
~m× ~∇ψ . (6.197)

Using the vector identity ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C, we therefore have

~E × ~B ∗ =
( i k

Ω2
~∇ψ + ~mψ

)
×
(
− iω

Ω2
~m× ~∇ψ∗

)
,

=
ωk

8πΩ4
(~∇ψ · ~∇ψ∗) ~m+

iω

Ω2
ψ ~∇ψ∗ , (6.198)

since ~m · ~∇ψ = 0. Note that in this case ~E × ~B ∗ is complex, and so the formula (6.195) for

the time-average of the Poynting vector gives

〈~S〉 =
1

8π
<( ~E × ~B ∗) =

ωk

8πΩ4
(~∇ψ · ~∇ψ∗) ~m+

iω

16πΩ2
(ψ ~∇ψ∗ − ψ∗ ~∇ψ) . (6.199)
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Along the z direction (i.e. along ~m), we therefore have

〈Sz〉 =
ωk

8πΩ4
(~∇ψ · ~∇ψ∗) =

ωk

8πΩ4
|~∇ψ|2 . (6.200)

(The second term in (6.199) describes the circulation of energy within the cross-sectional

plane of the waveguide. This can be seen from the fact that ~∇ψ(x, y) lies purely in the

(x, y) plane, with no projection along the z direction.)

The total transmitted power P is obtained by integrating 〈Sz〉 over the cross-sectional

area Σ of the waveguide. This gives

P =

∫
Σ
dxdy 〈Sz〉 =

ωk

8πΩ4

∫
Σ
dxdy ~∇ψ∗ · ~∇ψ ,

=
ωk

8πΩ4

∫
Σ
dxdy

(
~∇ · (ψ∗ ~∇ψ)− ψ∗∇2ψ

)
,

=
ωk

8πΩ4

∮
C
ψ∗
∂ψ

∂n
d`− ωk

8πΩ4

∫
Σ
dxdy ψ∗∇2ψ ,

= − ωk

8πΩ4

∫
Σ
dxdy ψ∗∇2ψ =

ωk

8πΩ2

∫
Σ
dxdy ψ∗ ψ , (6.201)

and so we have

P =
ωk

8πΩ2

∫
Σ
dxdy |ψ|2 . (6.202)

Note that in (6.201), the boundary term over the closed loop C that forms the boundary of

the waveguide in the (x, y) plane gives zero because ψ vanishes everywhere on the cylinder.

(Recall that we are considering the example of TM modes here.) The remaining term was

then simplified by using (6.182).

We may also work out the total energy per unit length of the waveguide. The total

time-averaged energy density is given by

〈W 〉 =
1

16π
( ~E · ~E ∗ + ~B · ~B ∗)

=
1

16π

( i k

Ω2
~∇ψ + ~mψ

)
·
(
− i k

Ω2
~∇ψ∗ + ~mψ∗

)
+

ω2

16πΩ4
(~m× ~∇ψ) · (~m× ~∇ψ∗) ,

=
k2

16πΩ4
~∇ψ∗ · ~∇ψ +

1

16π
ψψ∗ +

ω2

16πΩ4
~∇ψ∗ · ~∇ψ ,

=
k2 + ω2

16πΩ4
|~∇ψ|2 +

1

16π
|ψ|2 . (6.203)

The energy per unit length U is then obtained by integrating 〈W 〉 over the cross-sectional

area, which gives

U =

∫
Σ
dxdy 〈W 〉 =

k2 + ω2

16πΩ4

∫
Σ
dxdy ~∇ψ∗ · ~∇ψ +

1

16π

∫
Σ
dxdy |ψ|2 ,

=
k2 + ω2

16πΩ2

∫
Σ
dxdy |ψ|2 +

1

16π

∫
Σ
dxdy |ψ|2 ,

=
k2 + ω2 + Ω2

16πΩ2

∫
Σ
dxdy |ψ|2 , (6.204)
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where we have again integrated by parts in the first term, dropped the boundary term

because ψ vanishes on the cylinder, and used (6.182) to simplify the result. Thus we find

U =
ω2

8πΩ2

∫
Σ
dxdy |ψ|2 . (6.205)

Having obtained the expression (6.202) for the power P passing through the waveguide,

and the expression (6.205) for the energy per unit length in the waveguide, we may note

that

P =
k

ω
U =

1

vph
U = vgr U . (6.206)

This demonstrates that the energy flows down the waveguide at the group velocity vgr.

Since the group velocity is given in terms of the eigenvalue Ω2 of the particular mode

of propagation, and the angular frequency ω of the wave by the expression in (6.191), this

means that if a given frequency is able to propagate in more than one mode (with different

values of Ω2), then the travel time for the signal in the waveguide will be different depending

upon which of the modes is excited. In practice, this means that the size and geometry of

the waveguide cross-section is usually chosen so that the frequency that is to be propagated

is only capable of exciting the lowest mode. Otherwise, if two or more modes can be excited,

one is liable to end up with a jumbled-up mess coming out of the far end of the waveguide,

with the same signal arriving multiple times as the faster or slower propagating versions in

different modes make it through to the far end. If we label the eigenvalues for the various

modes by Ω2
1, Ω2

2, Ω2
3, etc., and order them so that

Ω2
1 ≤ Ω2

2 ≤ Ω2
3 ≤ · · · , (6.207)

then the size and geometry of the waveguide should be chosen so that the angular frequency

ω that one wants to propagate down the waveguide is such that

Ω2
1 < ω2 < Ω2

2 ≤ Ω2
3 ≤ · · · . (6.208)

This then ensures that the signal can only propagate in what is called the Dominant Mode,

namely the one with the lowest eigenvalue, Ω2
1.

We gave an explicit example previously of a waveguide with a rectangular cross section.

Other examples where one can solving explicitly for the eigenfunctions and eigenvalues are

rather few and far between. A simple example that does admit explicit solutions is when the

cross section is an isosceles right triangle, that is, a triangle with one internal angle being 90◦

and the other two each being 45◦. This case can be understood by first taking the square-

section specialisation of the previous rectangular waveguide by setting b = a. Consider TM
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modes. The eigenvalues Ω2
mn in (6.188) now have the property that Ω2

mn = Ω2
nm, and so

this means that we can construct eigenfunctions of the form

Ψmn = sin
(mπx

a

)
sin
(nπy

a

)
− sin

(nπx
a

)
sin
(mπy

a

)
(6.209)

which have the property of vanishing on the diagonal line x = y as well as on the sides

of the square. (The sum of any two eigenfunctions with the same eigenvalue is also an

eigenfunction.) These are eigenfunctions of the Helmholtz equation

∇2
⊥Ψmn + Ω2

mn Ψmn = 0 , Ω2
mn =

π2 (m2 + n2)

a2
. (6.210)

Since these Ψmn obey the Dirichlet boundary condition Ψmn = 0 on the three sides y = 0;

x = a; and x = y of the isosceles right triangle, they provide the solutions for the TM

modes in this triangular geometry. Note that it is essential, for this construction, that the

sides a and b of the original rectangle be equal: The combinations ψmn−ψnm of the original

rectangular wavefunctions in (6.188) would certainly vanish on the diagonal ay = bx even

if b 6= a, but these would not be eigenfunctions, since ψmn and ψnm are eigenfunctons with

different eigenvalues.

As far as I am aware, the only other case of a triangular-section waveguide that is

explicitly solvable is that of an equilateral triangle. The solutions for the wavefunctions

are rather elegant symmetric functions with a discrete 120◦ rotational symmetry. (See

homeworks for an example.) There is also a minor variant of this case, where the waveguide

has a cross-section which is the triangle formed by bisecting the equilateral triangle with a

line from one vertex to the midpoint of the opposite side.

One other explicitly solvable example arises when the cross-section of the waveguide is

circular, with radius a. In this case one uses polar coordinates in the (x, y) plane, writing

x = r cos θ , y = r sin θ . (6.211)

The Helmholtz equation (6.182) is now

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+ Ω2 ψ = 0 . (6.212)

This can be solved by looking for separated solutions of the form

ψ(r, θ) = R(r) Θ(θ) , (6.213)

leading to

r2R′′(r) + r R′(r) + (Ω2 r2 − λ)R(r) = 0 , Θ′′(θ) + λΘ(θ) = 0 . (6.214)
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The periodicity requirement Θ(θ + 2π) = Θ(θ) for the angular functions means that the

separation constant λ, which arises in the solutions Θ(θ) = exp(i
√
λ θ), must be of the form

λ = m2 where m is an integer. The radial equation is the Bessel equation, with solutions

Jm(Ω r) and Ym(Ω r). (See, for example, my PHYS 603 lecture notes for a discussion of

some relevant properties of the Bessel functions.) Only the Jm(Ω r) Bessel functions provide

acceptable solutions, since the Ym(Ω r) Bessel functions are singular on the axis r = 0. Thus

the wavefunctions for the circular waveguide have the form

ψ ∝ Jm(Ω r) eimθ . (6.215)

For TM modes, we require ψ(a, θ) = 0, which implies that Ω a must be equal to one of

the zeros of the Jm Bessel function. Thus we have

Ωmn =
αmn
a

, ψmn = cmn Jm
(αmn r

a

)
eimθ , (6.216)

where αmn is the n’th zero of Jm, so Jm(αmn) = 0.

For TE modes, where the wavefunction ψ must instead satisfy ∂ψ/∂n = 0 at r = a, the

eigenvalues Ω2 and wavefunctions are now given by

Ωmn =
βmn
a

, ψmn = cmn Jm
(βmn r

a

)
eimθ , (6.217)

where βmn is the n’th zero of J ′m, the derivative of Jm. The values of the first few zeros of

Jm(x) and J ′m(x) are listed in the table below, for Jm(x) with m = 0, 1, 2 and 3.

n = 1 2 3 4

α0n = 2.405 5.520 8.654 11.79

α1n = 3.832 7.016 10.17 13.32

α2n = 5.136 8.417 11.62 14.80

α3n = 6.380 9.761 13.02 16.22

n = 1 2 3 4

β0n = 3.832 7.016 10.174 13.32

β1n = 1.841 5.331 8.536 11.71

β2n = 3.054 6.706 9.969 13.17

β3n = 4.201 8.015 14.586 17.789

The values for the αmn and βmn increase monotonically, both horizontally and vertically,

if the tables are extended beyond the m and n ranges listed here. In those cases where the

same approximate value is appearing in both tables, the corresponding α and β are in fact

exactly equal (this is because J ′0(x) = −J1(x)).

The plots of the first few Jm(x) Bessel functions are displayed in Figure 1 below.

The first few Ym(x) Bessel functions are shown in Figure 2. They are all singular at

x = 0, so as mentioned above, they would not play a role in constructing the Helmholtz
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Figure 1: The Bessel functions J0(x), J1(x), J2(x) and J3(x).

eigenfunctions in a hollow cylindrical waveguide. However, if one were instead wanting to

construct the eigenfunctions in a coaxial waveguide, where the waves travel in the hollow

region between two concentric cylinders of radii a and b, then both the Jm and Ym Bessel

functions would be involved. There would now be two boundary conditions to be satisfied,

at r = a (the radius of the inner cylinder) and at r = b (the radius of the outer cylinder).

The Ym and the Jm Bessel functions are all non-singular in this region between the two

cyclinders; hence both sets now enter in the solutions for the wavefunctions.

6.9 Resonant cavities

A resonant cavity is a hollow, closed conducting “container,” inside which is an electromag-

netic wave. A simple example would be to take a length of waveguide of the sort we have

considered in section 6.8, and turn it into a closed cavity by attaching conducting plates at

each end of the cylinder. Let us suppose that the length of the cavity is d.

Consider, as an example, TM modes in the cavity. We solve the same 2-dimensional

Helmholtz equation (6.182) as before,

∂2ψ

∂x2
+
∂2ψ

∂y2
+ Ω2 ψ = 0 , (6.218)
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Figure 2: The Bessel functions Y0(x), Y1(x), Y2(x) and Y3(x).

subject again to the TM boundary condition that ψ must vanish on the surface of the

cylinder. The ~E and ~B fields are given, as before, by

~E⊥ =
i k

Ω2
ei (κz−ωt) ~∇ψ , Ez = ψ ei (κz−ωt) ,

~B⊥ =
ω

k
~m× ~E⊥ , (6.219)

where ~m = (0, 0, 1). Now, however, we have the additional boundary conditions that ~E⊥

must vanish on the two conducting plates, which we shall take to be at z = 0 and z = d.

This is because the component of ~E parallel to a conductor must vanish at the conducting

surface.

In order to arrange that ~E⊥ vanish, for all t, at z = 0 and z = d, it must be that there

is a superposition of right-moving and left-moving waves. (These correspond to z and t

dependences ei (±κz−ωt) respectively.) Thus we need to take the combination that makes a

standing wave,

~E⊥ = − k

Ω2
sin kz e−iωt ~∇ψ , (6.220)

in order to have ~E⊥ = 0 at z = 0. Furthermore, in order to have also that ~E⊥ = 0 at z = d,

it must be that the wave-number k is now quantised, according to

k =
pπ

d
, (6.221)
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where p is an integer. Note that we also have

Ez = ψ cos kz e−iωt . (6.222)

Recall that in the waveguide, we had already found that Ω2 ≡ ω2−k2 was quantised, be-

ing restricted to a semi-infinite discrete set of eigenvalues for the 2-dimensional Helmoholtz

equation. This still allowed k and ω to take continuous values, subject to the constraint

(dispersion relation)

ω2 = Ω2 + k2 . (6.223)

In the resonant cavity we now have the further restriction that k is quantised, according to

(6.221). This means that the spectrum of allowed frequencies ω is now discrete, and given

by

ω2 = Ω2 +
p2π2

d2
. (6.224)

If, for example, we consider the previous example of TM modes in a rectangular waveg-

uide whose cross-section has sides of lengths a and b, but now with the added end-caps at

z = 0 and z = d, then Ω2 is given by (6.188), and so the resonant frequencies in the cavity

are given by

ω2 = π2
(m2

a2
+
n2

b2
+
p2

d2

)
, (6.225)

for positive integers (m,n, p).

A cylindrical resonant cavity with circular cross-section can be analysed in an analogous

way, starting from the circular cross-section wavguide discussed earlier, and capping it off

at z = 0 and z = d with conducting end-plates.

One can also look at resonant cavities that are not simply obtained by capping off a

length of waveguide. A classic example is a spherical resonator, formed by the interior of

a hollow conducting sphere. Simple examples of resonant modes in the spherical cavity

are explored in one of the forthcoming homework problems. Variants of the spherical

cavity, such as a cavity formed between two conducting spherical shells, are also of interest

physically. Such a set-up provides a model for the behaviour of radio waves trapped between

the surface of the earth and the ionosphere, and it gives rise to the intriguing Schumann

Resonances, which are extremely low frequency radio waves that encircle the earth.
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7 Fields Due to Accelerating Charges

7.1 Retarded potentials

If we solve the Bianchi identity by writing Fµν = ∂µAν − ∂νAµ, the remaining Maxwell

equation (i.e. the field equation)

∂µF
µν = −4πJν (7.1)

becomes

∂µ∂
µAν − ∂µ∂νAµ = −4πJν . (7.2)

If we choose to work in the Lorenz gauge,

∂µA
µ = 0 , (7.3)

then (7.2) becomes simply

Aµ = −4πJµ . (7.4)

Since Aµ = (φ, ~A ) and Jµ = (ρ, ~J ), this means we shall have

φ = −4π ρ , ~A = −4π ~J , (7.5)

or, in the three-dimensional language,

∇2φ− ∂2φ

∂t2
= −4π ρ , ∇2 ~A− ∂2 ~A

∂t2
= −4π ~J . (7.6)

(We are assuming here, when writing the equation for |vac〉A, that Cartesian coordinates

and vectors are being used.)

In general, we can write the solutions to (7.6) as the sums of a particular integral of

the inhomogeneous equation (i.e. the one with the source term on the right-hand side) plus

the general solution of the homogeneous equation (the one with the right-hand side set to

zero). Our interest now will be in finding the particular integral. Solving this problem in the

case of static sources and fields will be very familiar from electrostatics and magnetostatics.

Now, however, we wish to solve for the particular integral in the case where there is time

dependence too. Consider the equation for φ first.

First consider the situation where there is just an infinitesimal amount of charge δe(t)

in an infinitesimal volume located at the origin. Note that we are allowing it to be time

dependent. Of course it would not be possible to have a single element of charge in isolation

that varied with time, since this would be forbidden by charge conservation. However, one

should think of this charge element as being part of a charge distribution, whose total charge
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remains fixed but where the individual charge elements can vary within it as a function of

time. We shall superpose the contributions from the distinct charge elements later on in

the calculation. The charge density for our time-dependent charge δe(t) at the origin will

be

ρ(~r, t) = δe(t) δ3(~r ) , (7.7)

where ~r is the position vector from the origin to the observation point. We therefore wish

to solve

∇2φ− ∂2φ

∂t2
= −4π δe(t) δ3(~r ) . (7.8)

(It would probably be better, logically speaking, to use δφ rather than φ here, since we are

working for now with the infinitesimal potential due to the infinitesimal charge element δe.

It would be a bit cumbersome to use δφ in all the formulae below, so we shall just use φ,

hoping that it is clear what is intended.) When ~r 6= 0, we have simply ∇2φ− ∂2φ
∂t2

= 0.

Clearly, because of the spherical symmetry around the origin, φ depends on ~r only

through its magnitude r ≡ |~r |, and so φ = φ(r, t). Now, with ~r = (x1, x2, x3), we have

r2 = xixi and so ∂ir = xi/r. Consequently, we shall have

∂iφ =
xi
r
φ′ , (7.9)

where φ′ ≡ ∂φ/∂r, and then

∇2φ = ∂i∂iφ = φ′′ +
2

r
φ′ . (7.10)

Letting Φ = r φ, we have

φ′ =
1

r
Φ′ − 1

r2
Φ , φ′′ =

1

r
Φ′′ − 2

r2
Φ′ +

2

r3
Φ . (7.11)

This means that for ~r 6= 0, we shall have

∂2Φ

∂r2
− ∂2Φ

∂t2
= 0 , i.e.

( ∂
∂t
− ∂

∂r

)( ∂
∂t

+
∂

∂r

)
Φ = 0 . (7.12)

The general solution to this equation is

Φ(r, t) = f1(t− r) + f2(t+ r) , (7.13)

where f1 and f2 are arbitrary functions.

The solution with f1 is called the retarded solution, and the solution with f2 is called

the advanced solution. The reason for this terminology is that in the retarded solution, the

“effect” occurs after the “cause,” in the sense that the profile of the function f1 propagates
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outwards from the origin where the charge de(t) is located. By contrast, in the advanced

solution the effect precedes the cause; the disturbance propagates inwards as time increases.

The advanced solution is acausal, and therefore unphysical, and so we shall keep only the

causal solution, i.e. the retarded solution. The upshot is that for r 6= 0, the solution is

φ(r, t) =
1

r
Φ(t− r) , (7.14)

where Φ is an as-yet arbitrary function of its argument, which we shall determine shortly.

We clearly expect that φ will go to infinity as r approaches zero, since the charge (albeit

infinitesimal) is located there. Consequently, it will be the case that the derivatives ∂/∂r

will dominate over the time derivatives ∂/∂t near to r = 0, and so in that region we can

write

∇2φ ≈ −4πδe(t) δ3(~r ) . (7.15)

This therefore has the usual solution that is familiar from electrostatics, namely

φ ≈ δe(t)

r
, (7.16)

or, in other words,

Φ(t− r) ≈ δe(t) (7.17)

when r is negligibly small. In the limit as r → 0 we therefore have the exact statement

Φ(t) = δe(t). Thus the function Φ is fully, and exactly, determined. Since Φ is already

established, in general, to depend on t and r only through the combination t − r, we can

therefore immediately write down the exact solution valid for all r, namely

Φ(t− r) = δe(t− r) . (7.18)

From (7.14), we therefore have that

φ(~r, t) =
δe(t− r)

r
. (7.19)

At this point, having completed the discussion of the potential due to the infinitesimal

charge element δe(t) at the origin, it might be helpful to rewrite (7.19) as

δφ(~r, t) =
δe(t− r)

r
, (7.20)

to emphasise that so far we have found the infinitesimal contribution to the total potential

φ coming just from δe(t) at the origin.

This solution (7.20) is valid for the particular case of an infinitesimal charge δe(t) located

at r = 0. For a general time-dependent charge distribution ρ(~r, t), we just exploit the
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linearity of the Maxwell equations and sum up the contributions from all the charges in the

distribution. This therefore gives

φ(~r, t) =

∫
ρ(~r ′, t−R)

R
d3~r ′ , (7.21)

where ~R ≡ ~r − ~r ′ and R = |~R| = |~r − ~r ′|. We leave it as an elementary exercise to check

that if one just takes ρ(~r, t) = δe(t) δ(~r ) as in (7.7), eqn (7.21) gives back (7.19).

The solution (7.21) of the inhomogeneous equation is the one that is “forced” by the

source term, in the sense that it vanishes if the source charge density ρ vanishes. The general

solution is given by this particular integral plus an arbitrary solution of the homogeneous

equation φ = 0. The solution (7.21) can be written as

φ(~r, t) =

∫
ρ(~r ′, t− |~r − ~r ′|)

|~r − ~r ′|
d3~r ′ . (7.22)

In an identical fashion, we can see that the solution for the 3-vector potential ~A in the

presence of a 3-vector current source ~J(~r, t) will be

~A(~r, t) =

∫ ~J(~r ′, t− |~r − ~r ′|)
|~r − ~r ′|

d3~r ′ , (7.23)

where we are assuming that Cartesian coordinates and vectors are being used.

The solutions for φ(~r, t) and ~A(~r, t) that we have obtained here are called the Retarded

Potentials. The analogous “advanced potentials” would correspond to having t + |~r − ~r ′|

instead of t − |~r − ~r ′| as the time argument of the charge and current densities inside the

integrals. It is clear that the retarded potentials are the physically sensible ones, in that

the potentials at the present time t depend upon the charge and current densities at times

≤ t. In the advanced potentials, by contrast, the potentials at the current time t would be

influenced by what the charge and current densities will be in the future. This would be

unphysical, since it would violate causality.

Since the procedure by which we arrived at the retarded potential solutions(7.22) and

(7.23) may have seemed slightly “handwaving,” it is perhaps worthwhile to go back and

check that they are indeed correct. This can be done straightforwardly, simply by substi-

tuting them into the original wave equations (7.6). One finds that they do indeed yield

exact solutions of the equations. We leave this as an exercise for the reader.

7.2 Liénard-Wiechert potentials

We now turn to a discussion of the electromagnetic fields produced by a point charge e

moving along an arbitrary path ~r = ~r0(t). We already considered a special case of this in
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section 5.3, where we worked out the fields produced by a charge in uniform motion (i.e.

moving at constant velocity). In that case, we could work out the electromagnetic fields by

using the trick of transforming to the Lorentz frame in which the particle was at rest, doing

the very simple calculation of the fields in that frame, and then transforming back to the

frame where the particle was in uniform motion.

Now, we are going to study the more general case where the particle can be accelerating;

i.e. where its velocity is not uniform. This means that there does not exist an inertial frame

in which the particle is at rest for all time, and so we cannot use the previous trick.

It is worth emphasising that even though the particle is accelerating, this does not mean

that we cannot solve the problem using special relativity. The point is that we shall only

ever study the fields from the viewpoint of an observer who is in an inertial frame, and

so for this observer, the laws of special relativity apply. Only if we wanted to study the

problem from the viewpoint of an observer in an accelerating frame, such as the rest-frame

of the particle, would we need to use the laws of general relativity.

One way to obtain the potentials due to the moving charge is to make use of the expres-

sions for the retarded potentials that we derived in the previous subsection, substituting in

the appropriate functions for the charge density and current density of the point charge.

We shall carry out that calculation shortly. Since this is essentially just an exercise in

mathematics we shall first present a different derivation, based more on the application of

physical principles. This derivation highlights some interesting points about causality.

Note that although we cannot use special relativity to study the problem in the rest frame

of the accelerating particle, we can, and sometimes will, make use of an instantaneous rest

frame. This is an inertial frame whose velocity just happens to match exactly the velocity

of the particle at a particular instant of time. Since the particle is accelerating, then a

moment later the particle will no longer be at rest in this frame. We could, if we wished,

then choose an “updated” instantaneous rest frame, and use special relativity to study the

problem (for an instant) in the new inertial frame. We shall find it expedient at times to

make use of the concept of an instantaneous rest frame, in order to simply intermediate

calculations. Ultimately, of course, we do not want to restrict ourselves to having to hop

onto a new instantaneous rest frame every time we discuss the problem, and so the goal is

to obtain results that are valid in any inertial frame.

Now, on with the problem. We can expect, on the grounds of causality, that the electro-

magnetic fields we observe at the spacetime point P specified by the cordinates (~r, t) should

depend only on the the position and state of motion of the particle at earlier points in its
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path that are causally connected to the observation point. That is to say, that only those

points on the path for which information could reach the observation point P by travelling

at less than or equal to the speed of light should influence the fields observed at (~r, t).

In fact, it turns out that a much stronger statement is true: for each spacetime observa-

tion point (~r, t) there is only one point on the particle’s path that influences the observed

fields, namely the point whose distance from P is such that a light beam emitted at the

so-called “retarded time” time t′ when the particle was there reaches the observation point

exactly at the observation time t. In other words, the information governing the fields at

the observation point P propagates there at exactly the speed of light; no faster (obviously),

but also no slower. This feature can in fact be seen from the form of the retarded potential

derived previously, as we shall see later. It is worth remarking that it is a feature that

depends upon the spacetime dimension. In particular, and by contrast, in an odd spacetime

dimension the potential due to a moving charge depends upon the entire causally-connected

past history of the particle’s motion.

We begin by defining the retarded time t′, as measured in the chosen inertial frame. It

is useful to define

~R(t′) ≡ ~r − ~r0(t′) . (7.24)

This is the radius vector from the location ~r0(t′) of the charge at the time t′ to the obser-

vation point r. The time t′ is then determined by

t− t′ = R(t′) , where R(t′) = |~R(t′)| . (7.25)

It can be shown that there is one solution for t′, for each choice of t, provided that the

particle is moving (as it must) with a velocity ~v(t′) = d~r0(t′)/dt′ that is less than the speed

of light, i.e. |~v| < 1.

In the Lorentz frame where the particle is at rest at the particular instant t′ (it would be

more precise to say that our observer at (~r, t) is using a Lorentz frame in which the particle

was at rest at the retarded time t′ = t−R(t′)), the potential at ~r at time t will, according
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to the claim above, be given by25

φ =
e

R(t′)
, ~A = 0 . (7.26)

We can determine the 4-vector potential Aµ in an arbitrary Lorentz frame simply by invent-

ing a 4-vector expression that reduces to (7.26) under the specialisation that the velocity

~v ≡ d~r ′/dt′ of the charge is zero at time t′. (This is just a quick way of getting to the

answer that we could alternatively and equivalently work out by explicitly performing the

Lorentz transformation to the new inertial frame.)

Let the 4-velocity of the charge, in the observer’s inertial frame, be Uµ. If the charge is

at rest, its 4-velocity will be

Uµ = (1,~0) . (7.27)

Thus to write a 4-vector expression for Aµ = (φ, ~A) that reduces to (7.26) if Uµ is given by

(7.27), we just have to find a scalar f such that

Aµ = f Uµ , (7.28)

with f becoming e/R(t′) in the special case above. Let us define the 4-vector

Rµ =
(
t− t′, ~r − ~r0(t′)

)
=
(
t− t′, ~R(t′)

)
=
(
R(t′), ~R(t′)

)
. (7.29)

(This is clearly a 4-vector, because (t, ~r) is a 4-vector, and (t′, ~r0(t′)), the spacetime coordi-

nates of the particle, is a 4-vector.) Then, we can write f as the scalar

f =
e

(−Uν Rν)
, and so Aµ = − eUµ

(UνRν)
, (7.30)

since clearly if Uµ is given by (7.27), we shall have −Uν Rν = −R0 = R0 = t− t′ = R(t′).

Having written Aµ as a 4-vector expression that reduces to (7.26) under the specialisation

(7.27), we know that it must be the correct expression in any Lorentz frame. Now, we have

Uµ = (γ, γ ~v) , where γ =
1√

1− v2
, (7.31)

25The assumption that the potentials will take the form in eqn (7.26) in the instantaneous rest frame is

in fact correct, but there are reasons why one should be cautious. As will be seen in a homework example

later on, in higher even-dimensional spacetimes, even though again the observed potentials will depend only

on what happened a light-travel time ago, things are more complicated and the potentials will depend also

the acceleration, and possibly yet-higher derivatives. In Landau and Lifshitz Classical Theory of Fields it is

simply asserted that the potentials in the instantaneous rest frame will be given by eqn (7.26). They were

lucky, and got away with it only because of being in four dimensions! The proof that in four dimensions the

potentials in the instantaneous rest frame really do take the form in eqns (7.26) will follow shortly.
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and so we see that

φ(~r, t) = A0 =
eγ

(t− t′)γ − γ ~v · ~R
=

e

t− t′ − ~v · ~R
=

e

R− ~v · ~R
,

~A(~r, t) =
eγ ~v

(t− t′)γ − γ ~v · ~R
=

e~v

R− ~v · ~R
= φ(~r, t)~v . (7.32)

To summarise, we have concluded that the gauge potentials for a charge e moving along

the path ~r = ~r0(t′), as seen from the point ~r at time t, are given by

φ(~r, t) =
e

R− ~v · ~R
, ~A(~r, t) =

e~v

R− ~v · ~R
, (7.33)

where all quantities on the right-hand sides are evaluated at the time t′, i.e. ~R means ~R(t′)

and ~v means d~r0(t′)/dt′, with

~R(t′) = ~r − ~r0(t′) , (7.34)

and t′ is determined by solving the equation

R(t′) = t− t′ , where R(t′) ≡ |~R(t′)| . (7.35)

These potentials are known as the Liénard-Wiechert potentials.

The next step will be to calculate the electric and magnetic fields from the Liénard-

Wiechert potentials. However, before doing so, it is worthwhile to pause to justify the

argument we used above, in which we assumed that the potentials at the observation point

~r at time t are determined by the state of the particle at the earlier point on its path that

was exactly a light travel time earlier. As mentioned previously, causality can be used to

argue that the potentials at (~r, t) could, a priori, depend on the entire past history of the

particle that is in causal contact with the spacetime point (~r, t). Thus, although one can

certainly say that any part of its history that lies “outside the light cone” cannot affect the

potentials at (~r, t), one cannot say, based on causality alone, that only the instant when the

particle was a light-travel distance away could be relevant for determining the potentials at

(~r, t). As a matter of fact if one repeats the analogous calculation in a general D-dimensional

spacetime, then it turns out that only when D is even (such as our familiar 4-dimensional

world) does the effect propagate only “on the light-cone.” In an odd spacetime dimension,

the analogous Liénard-Wiechert potentials really do depend on the entire previous causally-

connected history of the particle.

A complete derivation of the Liénard-Wiechert potentials can be given as follows. We

take as the starting point the expressions (7.22) and (7.23) for the retarded potentials due to

a time-dependent charge and current source. These expressions can themselves be regarded
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as solid and rigorous, since one only has to verify by direct substitution into (7.6) that they

are indeed correct. Consider first the retarded potential for φ, given in (7.22). We can

rewrite this as a 4-dimensional integral by introducing a delta-function in the time variable,

so that

φ(~r, t) =

∫ ∫
ρ(~r ′, t′′)

|~r − ~r ′|
δ(t′′ − t+ |~r − ~r ′|) dt′′ d3~r ′ . (7.36)

If you carry out the t′′ integration you immediately get back to the expression (7.22); instead,

we shall be performing the three spatial integrations first.

The charge density for a point charge e moving along the path ~r = ~r0(t) is given by

ρ(~r, t) = e δ3(~r − ~r0(t)) . (7.37)

This means that we shall have

φ(~r, t) =

∫ ∫
e δ3(~r ′ − ~r0(t′′))

|~r − ~r ′|
δ(t′′ − t+ |~r − ~r ′|) dt′′ d3~r ′ . (7.38)

We now make use of the 3-dimensional spatial delta function in order to perform the spatial

integrations, giving

φ(~r, t) =

∫
e

|~r − ~r0(t′′)|
δ(t′′ − t+ |~r − ~r0(t′′)|) dt′′ . (7.39)

To evaluate the time integral, we need to make use of a basic result about the Dirac

delta-function, namely that if a function f(x) has a zero at x = x0, then26

δ(f(x)) = δ(x− x0)
∣∣∣ df
dx

∣∣∣−1

x=x0

, (7.40)

where df/dx is evaluated at x = x0.27

26To prove this, consider the integral I =
∫
dxh(x)δ(f(x)) for an arbitrary function h(x). Next, change

variable to z = f(x), so dx = dz/(df/dx). Then we have

I =

∫
dzh(x)

δ(z)

|df/dx| = h(x0)/|df/dx|
∫
δ(z)dz = h(x0)/|df/dx| ,

where df/dx is evaluated at x = x0. Thus we have

I = h(x0)/|df/dx|x0 =

∫
dxh(x)

δ(x− x0)

|df/dx|x0
,

which proves (7.40). (The reason for the absolute-value on |df/dz| is that it is to be understood that the

direction of the limits of the z integration should be the standard one (negative to positive). If the gradient

of f is negative at x = x0 then one has to insert a minus sign to achieve this. This is therefore handled by

the absolute-value sign.)
27The result given here is valid if f(x) vanishes only at the point x = x0. If f(x) has more than one zero,

then there will be a sum of terms of the type given in (7.40). In our case, there is in fact only one zero, as

was mentioned earlier when it was stated that once the path of the particle is specified, there exists a unique

retarded time t′ associated with every spacetime observation point (~r, t).
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To evaluate (7.39), we note that

∂

∂t′′

(
t′′ − t+ |~r − ~r0(t′′)|

)
= 1 +

∂

∂t′′

(
(~r − ~r0(t′′)) · (~r − ~r0(t′′))

)1/2
,

= 1 +
(

(~r − ~r0(t′′)) · (~r − ~r0(t′′))
)−1/2

(~r − ~r0(t′′)) · ∂(−~r0(t′′))

∂t′′
,

= 1− ~v · (~r − ~r0(t′′))

|~r − ~r0(t′′)|
,

= 1− ~v · ~R(t′′)

R(t′′)
, (7.41)

where ~v = d~r0(t′′)/dt′′. Following the rule (7.40) for handling a “delta-function of a func-

tion,” we therefore take the function in the integrand of (7.39) that multiplies the delta-

function, evaluate it at the time t′′ for which the argument of the delta-function vanishes,

and divide by the absolute value of the derivative of the argument of the delta-function.

Now, the time t′′ at which the argument of the delta function vanishes is t′′ = t−|~r−~r0(t′)|;

that is, it is at the retarded time t′ that we defined previously in eqn (7.25). Furthermore,

we observe that the quantity 1− ~v·~R(t′′)
R(t′′) obtained in eqn (7.41) is in fact always greater than

or equal to zero, since ~R(t′′)/R(t′′) is a unit vector and |~v | is always less than or equal to

1. Thus we can omit the absolute value when using eqn (7.40), finding

φ(~r, t) =

∫
e

|~r − ~r0(t′′)|
1(

1− ~v·~R(t′′)
R(t′′)

) δ(t′′ − t′) dt′′ ,
=

∫
e

R(t′′)

1(
1− ~v·~R(t′′)

R(t′′)

) δ(t′′ − t′) dt′′ ,
=

e

R(t′)− ~v · ~R(t′)
, (7.42)

where t′ is the solution of t− t′ = R(t′), and so we have reproduced the previous expression

for the Liénard-Wiechert potential for φ in (7.33). The derivation for ~A is very similar.

As mentioned previously, in higher even-dimensional spacetimes the analogous Liénard-

Wiechert potentials again depend only on what was happening to the charged particle at

the retarded time t′. However, the form of the potentials is more complicated in higher

even-dimensional spacetimes, and instead of depending only on the position and velocity of

the particle, as in eqns (7.33), they now depend also on higher derivatives of the velocity.

For example, as will be explored in a later homework, in six spacetime dimensions the

Liénard-Wiechert potential φ(~r, t) takes the form

φ(~r, t) =
e (1− v2)[

R(t′)− ~v · ~R(t′)
]3 +

e~a · ~R(t′)[
R(t′)− ~v · ~R(t′)

]3 , (7.43)
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where the quantities t′, ~R(t′), R(t′) and ~v have the same meanings as in 4 spacetime di-

mensions except that now ~R(t′) and ~v are vectors in the 5 spatial dimensions instead of

3. The acceleration ~a = d~v(t′)/dt′ of the particle also enters in the expression for the

Liénard-Wiechert potential. Notice that in this example in six-dimensional spacetime, in

the instantaneous rest frame the potential in eqn (7.43) becomes

φ(~r, t) =
e

R3(t′)
+
e~a · ~R(t′)

R3(t′)
. (7.44)

Landau and Lifshitz would not have got away with their argument about the form of the

potential φ(~r, t) in the IRF in this case! Their logic would have said that it should be given

just by the first term in eqn (7.44).

An example of a retarded potential in an odd-dimensional spacetime arises in homework

9, where the potential due to an instantaneous charge at the origin in 3 = 2 + 1 spacetime

dimensions is constructed. It can be seen that the potential resulting from this pulse of

charge lingers indefinitely, gradually decaying but remaining non-zero at all finite future

times.

7.3 Electric and magnetic fields of a moving charge

Having obtained the Liénard-Wiechert potentials φ and ~A of a moving charge, the next step

is to calculate the associated electric and magnetic fields,

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A . (7.45)

To do this, we shall need the following results. First, we note that

∂R

∂t
=
∂R

∂t′
∂t′

∂t
, (7.46)

and so, since R2 = RiRi we have

∂R

∂t′
=
Ri
R

∂Ri
∂t′

= −vi(t
′)Ri
R

= −~v ·
~R

R
, (7.47)

where ~v = ∂~r0(t′)
∂t′ . (Recall that ~R means ~R(t′), and that it is given by (7.34), i.e. ~R(t′) =

~r − ~r0(t′).) Equation (7.46) therefore becomes

∂R

∂t
= −~v ·

~R

R

∂t′

∂t
, (7.48)

and so, since we have from (7.35) that R(t′) = t− t′, it follows that

1− ∂t′

∂t
= −~v ·

~R

R

∂t′

∂t
. (7.49)
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Solving for ∂t′/∂t, we therefore have the results that

∂t′

∂t
=

(
1− ~v · ~R

R

)−1
, (7.50)

∂R

∂t
= − ~v · ~R

R− ~v · ~R
. (7.51)

Some other expressions we shall also need are as follows. First, from t − t′ = R(t′) it

follows that ∂it
′ = −∂iR(t′). Now ~R(t′) = ~r − ~r0(t′), and so

R2 = (xj − x0
j (t
′))(xj − x0

j (t
′)) . (7.52)

From this, by acting with ∂i, we obtain

2R∂iR = 2(δij − ∂ix0
j (t
′))(xj − x0

j (t
′)) ,

= 2Ri − 2
∂x0

j (t
′)

∂t′
∂t′

∂xi
(xj − x0

j (t
′)) ,

= 2Ri − 2~v · ~R∂it′ . (7.53)

From this and ∂it
′ = −∂iR(t′) it follows that

∂it
′ = − Ri

R− ~v · ~R
, ∂iR =

Ri

R− ~v · ~R
. (7.54)

Further results that follow straightforwardly are

∂iRj = ∂i(xj − x0
j (t
′)) = δij −

∂x0
j (t
′)

∂t′
∂it
′ = δij +

vjRi

R− ~v · ~R
,

∂ivj =
∂vj
∂t′

∂it
′ = − v̇j Ri

R− ~v · ~R
,

∂vi
∂t

=
∂vi
∂t′

∂t′

∂t
=

v̇iR

R− ~v · ~R
,

∂R

∂t
= − ~v · ~R

R− ~v · ~R
,

∂ ~R

∂t
=

∂ ~R

∂t′
∂t′

∂t
= −~v ∂t

′

∂t
= − ~v R

R− ~v · ~R
. (7.55)

Note that v̇i means ∂vi/∂t
′; we shall define the acceleration ~a of the particle by

~a ≡ ∂~v

∂t′
. (7.56)

We are now ready to evaluate the electric and magnetic fields. From (7.33) and the
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results above, we have

Ei = −∂iφ−
∂Ai
∂t

,

=
e

(R− ~v · ~R)2
(∂iR− ∂i(vjRj))−

e

R− ~v · ~R
∂vi
∂t

+
evi

(R− ~v · ~R)2

(∂R
∂t
− ∂(~v · ~R)

∂t

)
,

=
e

(R− ~v · ~R)3

{
Ri − vi(R− ~v · ~R)− v2Ri + ~a · ~RRi − aiR (R− ~v · ~R)

−vi~v · ~R− vi~a · ~RR+ v2viR
}
,

=
e(1− v2)(Ri − viR)

(R− ~v · ~R)3
+
e[~a · ~R (Ri − viR)− ai(R− ~v · ~R)R]

(R− ~v · ~R)3
. (7.57)

This can be rewritten as

~E =
e(1− v2)(~R− ~v R)

(R− ~v · ~R)3
+
e~R× [(~R− ~v R)× ~a]

(R− ~v · ~R)3
. (7.58)

An analogous calculation of ~B shows that it can be written as

~B =
~R× ~E

R
. (7.59)

Note that this means that ~B is perpendicular to ~E.

The first term in (7.58) is independent of the acceleration ~a, and so it represents a

contribution that is present even if the charge is in uniform motion. It is easily seen that

at large distance, where R→∞, it falls off like 1/R2.

Consider first the case where the charge is moving with uniform velocity ~v. We shall

then have have

~r0(t) = ~r0(t′) + (t− t′)~v , (7.60)

and so, since R(t′) = t− t′ (this is the equation that defines the retarded time t′), we have

~R(t′)− ~v R(t′) = ~r − ~r0(t′)− (t− t′)~v ,

= ~r − ~r0(t) ≡ ~Rt . (7.61)

In other words, in this case of uniform motion, ~R(t′) − ~v R(t′) is equal to the vector ~Rt ≡

~r − ~r0(t) that gives the line joining the location of the charge, at the time the observation

is made, to the location of the observation point. We shall also then have

R(t′)− ~v · ~R(t′) = R(t′)− v2R(t′)− ~v · ~Rt ,

= (1− v2)R(t′)− ~v · ~Rt . (7.62)
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If we now introduce the angle θ between ~v and ~Rt, we shall have ~v · ~Rt = v Rt cos θ.

Since, as we saw above, ~R(t′) = ~v R(t′) + ~Rt, we obtain, by squaring,

R2(t′) = v2R2(t′) + 2vRtR(t′) cos θ +R2
t , (7.63)

and this quadratic equation for R(t′) can be solved to give

R(t′) =
vRt cos θ +Rt

√
1− v2 sin2 θ

1− v2
. (7.64)

Equation (7.62) then gives

R(t′)− ~v · ~R(t′) = vRt cos θ +Rt
√

1− v2 sin2 θ − vRt cos θ = Rt
√

1− v2 sin2 θ . (7.65)

For a uniformly moving charge we therefore obtain the result

~E =
e~Rt
R3
t

1− v2

(1− v2 sin2 θ)3/2
, (7.66)

which has reproduced the result (5.41) that we had previously obtained by boosting from

the rest frame of the charged particle.

The second term in (7.58) is proportional to ~a, and so it occurs only for an accelerating

charge. At large distance, this term falls off like 1/R, in other words, much less rapidly

than the 1/R2 fall-off of the first term in (7.58). In fact the 1/R fall-off of the acceleration

term is characteristic of electromagnetic radiation, as we shall now discuss.

7.4 Radiation by accelerated charges

A charge at rest generates a purely electric field, and if it is in uniform motion it generates

both ~E and ~B fields. In neither case, of course, does it radiate any energy. However, if the

charge is accelerating, then it actually emits electromagnetic radiation.

The easiest case to consider is when the velocity of the charge is small compared with

the speed of light. In this case the acceleration term in (7.58) is approximated by

~E =
e~R× (~R× ~a)

R3
=
e~n× (~n× ~a)

R
, (7.67)

where

~n ≡
~R

R
. (7.68)

Recall that as usual ~R means ~R(t′), that is, ~R(t′) = ~r − ~r0(t′). Note that ~n · ~E = 0, and

that ~E is also perpendicular to ~n× ~a.
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From (7.59) we shall also have

~B = ~n× ~E . (7.69)

As usual, all quantities here on the right-hand sides of the expressions for ~E and ~B are

evaluated at the retarded time t′.

The energy flux, given by the Poynting vector, is given by

~S =
1

4π
~E × ~B =

1

4π
~E × (~n× ~E) =

1

4π
E2 ~n− 1

4π
(~n · ~E) ~E , (7.70)

and so, since ~n · ~E = 0 we have

~S =
1

4π
E2 ~n . (7.71)

Let us define θ to be the angle between the unit vector ~n and the acceleration ~a. Then

we shall have

~E =
e~n× (~n× ~a)

R
=

e

R

(
(~n · ~a)~n− ~a

)
=

e

R
(a~n cos θ − ~a) , (7.72)

and so

E2 =
e2

R2
(a2 cos2 θ − 2a2 cos2 θ + a2) =

e2a2 sin2 θ

R2
, (7.73)

implying that the energy flux is

~S =
e2a2 sin2 θ

4πR2
~n . (7.74)

The area element d~Σ can be written as

d~Σ = R2 ~n dΩ , (7.75)

where dΩ = sin θ dθdϕ is the area element on the unit-radius sphere (i.e. the solid angle

element). The power radiated into the area element d~Σ is dP = ~S · d~Σ = R2~n · ~S dΩ, and

so we find that
dP

dΩ
=
e2a2

4π
sin2 θ (7.76)

is the power radiated per unit solid angle.

The total power radiated in all directions is given by

P =

∫
dP

dΩ
dΩ =

e2a2

4π

∫ π

0
sin3 θ dθ

∫ 2π

0
dϕ ,

= 1
2e

2a2

∫ π

0
sin3 θ dθ = 1

2e
2a2

∫ 1

−1
(1− c2)dc = 2

3e
2a2 , (7.77)

where, to evaluate the θ integral we change variable to c = cos θ. The expression

P = 2
3e

2a2 (7.78)
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is known as the Larmor Formula for a non-relativistic accelerating charge.

The Larmor formula can be generalised to the relativistic result fairly easily. In principle,

we could simply repeat the argument given above, but without making the approximation

that v is small compared to 1 (the speed of light). Note that in terms of the unit vector

~n = ~R/R, the expression (7.58) for the electric field becomes

~E =
e(1− v2)(~n− ~v)

R2 (1− ~n · ~v)3
+
e~n× [(~n− ~v)× ~a]

R (1− ~n · ~v)3
. (7.79)

We are concerned just with the second term here, namely the one involving the acceleration

~a. We can, in fact, obtain the relativisitic Larmor formula by a simple trick. First, we

note from (7.79) that since ~S = ( ~E × ~B)/(4π) and ~B = ~n × ~E, the energy flux from the

acceleration term must be quadratic in the acceleration ~a. We can also note that the total

radiated power P is a Lorentz scalar (since it is energy per unit time, and each of these

quantities transforms as the 0 component of a 4-vector). Thus, the task is to find a Lorentz-

invariant expression for P that reduces to the non-relativisitic Larmor result (7.78) in the

limit when v goes to zero.

First, we note that the non-relativistic Larmor formula (7.78) can be written as

P = 2
3e

2a2 =
2e2

3m2

(d~p
dt

)2
, (7.80)

since in this non-relativistic limit we have ~p = m~v. There is only one Lorentz-invariant

quantity, quadratic in ~a, that reduces to (7.80) in the limit that v goes to zero. It is given

by

P =
2e2

3m2

dpµ

dτ

dpµ
dτ

, (7.81)

where pµ is the 4-momentum of the particle and τ is the proper time along its path. Noting

that pµ = m(γ, γ~v ), we see that

dpµ

dτ
= γ

dpµ

dt
= mγ

(
γ3~v · ~a, γ3(~v · ~a)~v + γ~a

)
, (7.82)

and so

dpµ

dτ

dpµ
dτ

= m2γ2[−γ6(~v · ~a)2 + γ6v2(~v · ~a)2 + 2γ4(~v · ~a)2 + γ2a2] ,

= m2γ2[γ4(~v · ~a)2 + γ2a2)] . (7.83)

Now consider the quantity

a2 − (~v × ~a)2 = a2 − εijkεi`mvjakv`am ,

= a2 − v2a2 + (~v · ~a)2 =
a2

γ2
+ (~v · ~a)2 , (7.84)
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which shows that we can write

dpµ

dτ

dpµ
dτ

= m2γ6
(a2

γ2
+ (~v · ~a)2

)
= m2γ6 [a2 − (~v × ~a)2] . (7.85)

Thus we see that the scalar P given in (7.81) is given by

P = 2
3e

2γ6[a2 − (~v × ~a)2] . (7.86)

This indeed reduces to the non-relativistic Larmor formula (7.78) if the velocity ~v is sent to

zero. For the reasons we described above, it must therefore be the correct fully-relativistic

Larmor result for the total power radiated by an accelerating charge.

7.5 Applications of the Larmor formula

7.5.1 Linear accelerator

In a linear accelerator, a charged massive particlei, typically an electron, is accelerated along

a straight-line trajectory, and so its velocity ~v and acceleration ~a are parallel. Defining

p = |~p | = mγ|~v | = mγ v, where γ = (1− v2)−1/2, we have

dp

dt
= mγ

dv

dt
+mv

dγ

dt
. (7.87)

Now

v
dv

dt
= ~v · d~v

dt
= ~v · ~a = va ,

dγ

dt
= γ3~v · d~v

dt
= γ3va , (7.88)

and so
dp

dt
= mγ a+mv2 γ3 a = mγ3a . (7.89)

With ~v and ~a parallel, the relativisitic Larmor formula (7.86) gives P = 2
3e

2γ6a2, and so we

have

P =
2e2

3m2

(dp
dt

)2
. (7.90)

The expression (7.90) gives the power that is radiated by the charge as it is accelerated

along a straight line trajectory. In a particle accelerator, the goal, obviously, is to accelerate

the particles to as high a velocity as possible. Equation (7.90) describes the the power that

is lost through radiation when the particle is being accelerated. The energy E of the particle

is related to its rest mass m and 3-momentum ~p by the standard formula

E2 = p2 +m2 , (7.91)
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(which follows from pµ = (mγ,mγ ~v ) = (E , ~p ) and pµ pµ = −m2). The rate of change of

energy with distance x travelled, dE/dx, is therefore given by differentiating (7.91) with

respect to x, giving

E dE
dx

= p
dp

dx
, (7.92)

and so we have
dE
dx

=
p

E
dp

dx
=
mγv

mγ

dp

dx
= v

dp

dx
=
dx

dt

dp

dx
=
dp

dt
. (7.93)

This means that (7.90) can be rewritten as

P =
2e2

3m2

(dE
dx

)2
. (7.94)

The “energy-loss factor” of the accelerator can be judged by taking the ratio of the

power radiated divided by the power supplied. By energy conservation, the power supplied

is equal to the rate of change of energy of the particle, dE/dt. Thus we have

Power radiated

Power supplied
=

P

(dE/dt)
=

P

(dE/dx)

dt

dx
=

P

v (dE/dx)
,

=
2e2

3m2v

dE
dx

, (7.95)

where eqn (7.94) was used in getting to the last line. In the relativistic limit, where v is

very close to the speed of light (as is typically achieved in a powerful linear accelerator), we

therefore have
Power radiated

Power supplied
≈ 2e2

3m2

dE
dx

. (7.96)

A typical electron linear accelerator achieves an energy input of about 10 MeV per metre,

and this translates into an energy-loss factor of about 10−13. In other words, very little of

the applied power being used to accelerate the electron is lost through Larmor radiation.

7.5.2 Circular accelerator

The situation is very different in the case of a circular accelerator, since the transverse ac-

celeration necessary to keep the particle in a circular orbit is typically very much larger than

the linear acceleration discussed above. In other words, the direction of the 3-momemtum

~p is changing rapidly, while, by contrast, the energy, and hence the magnitude of ~p, is rela-

tively slowly-changing. In fact the change in |~p | per revolution is rather small, and we can

study the power loss by assuming that the particle is in an orbit of fixed angular frequency

ω. This means that we shall have ∣∣∣d~p
dt

∣∣∣ = ω |~p | , (7.97)

148



and so ∣∣∣d~p
dτ

∣∣∣ = γω |~p | , (7.98)

where dτ = dt/γ is the proper-time interval. Since the energy is constant in this approxi-

mation, we therefore have

dp0

dτ
= 0 , and so

dpµ

dτ

dpµ
dτ

=
(d~p
dτ

)2
= γ2ω2p2 . (7.99)

Using equation (7.81) for the Larmor power radiation, we therefore have

P =
2e2

3m2
γ2ω2p2 = 2

3e
2γ4ω2v2 . (7.100)

If the radius of the accelerator is R then the angular and linear velocities of the particle are

related by ω = v/R and so the power loss is given by

P =
2e2γ4v4

3R2
. (7.101)

The radiative energy loss per revolution, ∆E , is given by the product of P with the

period of the orbit, namely

∆E =
2πRP

v
=

4πe2γ4v3

3R
. (7.102)

Consider as an example a 10 GeV electron synchrotron, for which the radius R is about 100

metres. Since the rest mass of the electron is about 0.5 MeV, this means that γ = (1−v2)−1/2

for the 10 GeV electron is about γ = 20000. Plugging in the numbers, this implies an energy

loss of about 10 MeV per revolution, or about 0.1% of the energy of the particle. Bearing in

mind that the time taken to complete an orbit is very small, namely about 1 microsecond

(the electron is travelling at nearly the speed of light), it is necessary to supply energy at

a very high rate in order to replenish the radiative loss. It also implies that there will be a

considerable amount of radiation being emitted by the accelerator.

The losses due to this synchrotron radiation are much less dramatic for a proton acceler-

ator such as the LHC at CERN. This is in part because the radius of the accelerator is much

larger (about 4.3 Km), and also because the energy carried by the accelerated proton is very

much larger. At the LHC the protons acquire an energy of about 7 TeV, and since their

rest mass is about 1 GeV this means γ ≈ 7000. According to a rough estimate (numbers

need to be checked!) this would implies an energy loss of about 35 MeV per revolution,

which is only about 0.0005% of the proton energy. Even so, since each orbit takes about

45 microseconds that still means that if additional power were not fed into the system to

maintain the energy of the proton, it would lose about 11% of its energy after one second.
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7.6 Angular distribution of the radiated power

We saw previously that for a non-relativistic charged particle whose acceleration ~a makes

an angle θ with respect to the position vector ~R, the angular distribution of the radiated

power is given by (see (7.76))
dP

dΩ
=
e2a2

4π
sin2 θ . (7.103)

In the general (i.e. relativistic) case, where the velocity ~v is not small, we have, from (7.79),

that the large-R radiation-field term is

~E =
e~n× [(~n− ~v )× ~a ]

R (1− ~n · ~v)3
, ~B = ~n× ~E . (7.104)

The Poynting vector is therefore given by

~S =
1

4π
( ~E × ~B) =

1

4π
[ ~E × (~n× ~E)] ,

=
1

4π
~nE2 , (7.105)

since ~n · ~E = 0. Thus ~S is in the radial direction (parallel to ~R(t′)), and we have

~n · ~S =
e2

4πR2

∣∣∣~n× [(~n− ~v )× ~a ]

(1− ~n · ~v)3

∣∣∣2 ≡ [~n · ~S ]ret. , (7.106)

where as usual all quantities on the right-hand side are evaluated at the retarded time t′

calculated from the equation t − t′ = R(t′), with ~R(t′) = ~r − ~r0(t′). It is conventional to

denote the quantity in (7.106) by [~n · ~S]ret., to indicate that it is evaluated at the retarded

time t′. Since dΣ = ~nR2 dΩ, we shall have

dP (t)

dΩ
= [~n · ~SR2]ret . (7.107)

As a reminder, the right-hand sides of the expressions for ~E and ~B are given in terms of

the quantities ~R(t′), ~v = ∂~r0(t′)/∂t′ and ~a = ∂2~r0(t′)/∂t′2, all of which are evaluated at the

retarded time t′. But ~E and ~B themselves are ~E(~r, t) and ~B(~r, t), and so dP/dΩ, calculated

from the Poynting flux, is the flux per unit solid angle at the observer’s current time t.

Thus we write it as dP (t)/dΩ.

The associated energy radiated during the time interval from t = T1 to t = T2 is therefore

given by
dE
dΩ

=

∫ T2

T1

[R2 ~n · ~S ]ret.dt , (7.108)

150



Defining the corresponding retarded times t′ = T ′i , the integral can therefore be rewritten

as28

dE
dΩ

=

∫ T ′2

T ′1

[R2 ~n · ~S ]ret.
dt

dt′
dt′ . (7.109)

The quantity [R2 ~n · ~S ]ret.(dt/dt
′) is the power radiated per unit solid angle, as measured

with respect to the charge’s retarded time t′, and so we have the result that29

dP (t′)

dΩ
= [R2 ~n · ~S ]ret.

dt

dt′
= (1− ~n · ~v )[R2 ~n · ~S ]ret. . (7.110)

(Note that we used the result (7.50) here.)

7.6.1 Angular power distribution for linear acceleration

As an example, consider the situation when the charge is accelerated uniformly for only a

short time, so that ~v as well as ~a are approximately constant during the time interval of

the acceleration. This means that ~n and R are approximately constant. From (7.106) and

(7.110) we obtain the angular distribution

dP (t′)

dΩ
=
e2

4π

|~n× [(~n− ~v )× ~a ]|2

(1− ~n · ~v )5
. (7.111)

If we now suppose that the acceleration is linear, i.e. that ~v and ~a are parallel, then we

obtain
dP (t′)

dΩ
=
e2a2

4π

sin2 θ

(1− v cos θ)5
, (7.112)

where as before we define θ to be the angle between ~a and ~n.

When |v| << 1, the expression (7.112) clearly reduces to the non-relativistic result given

in (7.76). In this limit, the angular radiated power distribution is described by a figure-of-

eight, oriented perpendicularly to the direction of the acceleration. As the velocity becomes

larger, the two lobes of the figure-of-eight start to tilt forwards, along the direction of the

28All that is really being said here is that we can relate the previously-defined quantity dP (t)/dΩ (power

per unit solid angle as measured by the observer at time t) to dP (t′)/dΩ (power per unit solid angle as

measured at the particle, at retarded time t′) by dP/dΩ dt = dP/dΩ (dt/dt′) dt′ ≡ dP (t′)/dΩ dt′.
29At the risk of creating a confusion where none existed, note that although we are adopting Jackson’s

notation of using dP (t)/dΩ to denote the power per unit solid angle at the observer’s current time t (i.e.

energy per time interval dt per unit solid angle), and dP (t′)/dΩ to denote the power per unit solid angle

in the retarded time t′ (i.e. energy per time interval dt′ per unit solid angle), this notation is a little bit

misleading. Namely, it is not the case that dP/dΩ is a function of a single time argument, say dP (T )/dΩ,

into which one feeds either T = t, to give dP (t)/dΩ, or else T = t′, to give dP (t′)/dΩ. The definitions of

dP (t)/dΩ and dP (t′)/dΩ have been spelled out in the text and equations (7.107) and (7.110), and these are

precisely what is meant here when the symbols dP (t)/dΩ and dP (t′)/dΩ are used.
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acceleration. This is illustrated for the non-relativistic and relativisitic cases in Figures 1

and 2 below. In each case, the acceleration is to the right along the horizontal axis.

-0.4 -0.2 0.2 0.4
a

-1

-0.5

0.5

1

Figure 3: The angular power distribution in the non-relativistic case

The angle at which the radiated power is largest is found by solving d(dP (t′)/dΩ)/dθ =

0. This gives

2(1− v cos θ) cos θ − 5v sin2 θ = 0 , (7.113)

and hence

θmax. = arccos
(√1 + 15v2 − 1

3v

)
. (7.114)

In the case of a highly relativistic particle, for which v is very close to the speed of light,

the velocity itself is not a very convenient parameter, and instead we can more usefully

characterise it by γ = (1−v2)−1/2, which becomes very large in the relativistic limit. Thus,

substituting v =
√

1− γ−2 into (7.114), we obtain

θmax. = arccos
(4
√

1− 15
16γ
−2 − 1

3
√

1− γ−2

)
. (7.115)
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Figure 4: The angular power distribution in the relativistic case (v = 4/5)

At large γ we can expand the argument as a power series in γ−2, finding that

θmax. ≈ arccos(1− 1
8γ
−2) . (7.116)

This implies that θmax. is close to 0 when γ is very large. In this regime we have cos θmax. ≈

1− 1
2θ

2
max., and so in the highly relativistic case we have

θmax. ≈
1

2γ
. (7.117)

We see that the lobes of the angular power distribution tilt forward sharply, so that they

are directed nearly parallel to the direction of acceleration of the particle.

Continuing with the highly-relativistic limit, we may consider the profile of the angular

power distribution for all small angles θ. Substituting

v =
√

1− γ−2 , sin θ ≈ θ , cos θ ≈ 1− 1
2θ

2 (7.118)

into (7.112), and expanding in inverse powers of γ, we find that

dP (t′)

dΩ
≈ e2a2θ2

4π
(

1−
√

1− γ−2(1− 1
2θ

2)
)5 ≈

8e2a2θ2

π(γ−2 + θ2)5
, (7.119)

which can be written as
dP (t′)

dΩ
≈ 8e2a2γ8

π

(γθ)2

[1 + (γθ)2]5
. (7.120)

This shows that indeed there are two lobes, of characteristic width ∆θ ∼ 1/γ, on each side

of θ = 0. The radiated power is zero in the exactly forward direction θ = 0.

We can straightforwardly integrate our result (7.112) for the angular power distribution

for a linearly-accelerated particle, to find the total radiated power. We obtain

P =

∫
dP (t′)

dΩ
dΩ =

e2a2

4π
2π

∫ π

0

sin2 θ

(1− v cos θ)5
sin θ dθ = 1

2e
2a2

∫ 1

−1

(1− c2)dc

(1− vc)5
, (7.121)
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where c = cos θ. The integral is elementary, giving the result

P = 2
3e

2γ6a2 . (7.122)

This can be seen to be in agreement with our earlier result (7.86), under the specialisation

that ~a and ~v are parallel.

7.6.2 Angular power distribution for circular motion

For a second example, consider the situation of a charge that is in uniform circular motion.

For these purposes, we need only assume that it is instantaneously in such motion; the

complete path of the particle could be something more complicated than a circle, but such

that at some instant it can be described by a circular motion.

Circular motion implies that the velocity ~v and the acceleration ~a are perpendicular.

At the instant under consideration, we may choose a system of Cartesian axes oriented so

that the velocity ~v lies along the z direction, and the acceleration lies along the x direction.

The unit vector ~n = ~R/R can then be parameterised by spherical polar coordinates (θ, ϕ)

defined in the usual way; i.e. θ measures the angle between ~n and the z axis, and ϕ is the

azimuthal angle, measured from the x axis, of the projection of ~n onto the (x, y) plane.

Thus we shall have

~n = (sin θ cosϕ, sin θ sinϕ, cos θ) , ~v = (0, 0, v) , ~a = (a, 0, 0) . (7.123)

Of course, in particular, we have ~n · ~v = v cos θ.

From (7.106) and (7.110), we have the general expression

dP (t′)

dΩ
=
e2

4π

∣∣~n× [(~n− ~v )× ~a ]
∣∣2

(1− ~n · ~v )5
, (7.124)

for the angular distribution of the radiated power. Using the fact that ~v ·~a = 0 in the case

of circular motion, we have∣∣~n× [(~n− ~v )× ~a ]
∣∣2 =

∣∣(~n · ~a )(~n− ~v )− (1− ~n · ~v )~a
∣∣2 ,

= (~n · ~a )2(1− 2~n · ~v + v2) + (1− ~n · ~v )2a2 − 2(~n · ~a )2(1− ~n · ~v ) ,

= −(~n · ~a )2(1− v2) + (1− ~n · ~v )2a2 ,

= (1− v cos θ)2a2 − γ−2 a2 sin2 θ cos2 ϕ , (7.125)

and so for instantaneous circular motion we have

dP (t′)

dΩ
=

e2a2

4π(1− v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

]
. (7.126)
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We see that as v tends to 1, the angular distribution is peaked in the forward direction i.e.

in the direction of the velocity ~v, meaning that θ is close to 0. In fact, if we again write v

in terms of γ as v =
√

1− γ−2, then as γ becomes very large we have

dP (t′)

dΩ
−→ e2 a2

32π sin6 1
2θ

+O
( 1

γ2

)
. (7.127)

Returning to eqn (7.126), the total power is obtained by integrating dP (t′)
dΩ over all solid

angles:

P (t′) =

∫
dP (t′)

dΩ
dΩ =

∫ 2π

0
dϕ

∫ π

0
sin θdθ

dP (t′)

dΩ
,

=

∫ 2π

0
dϕ

∫ π

0
sin θdθ

e2a2

4π(1− v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

]
,

=

∫ π

0
sin θdθ

e2a2

2(1− v cos θ)3

[
1− sin2 θ

2γ2 (1− v cos θ)2

]
,

=

∫ 1

−1

e2a2

2(1− vc)3

[
1− 1− c2

2γ2(1− vc)2

]
dc , (7.128)

where c = cos θ. After performing the integration, we obtain

P (t′) = 2
3e

2γ4a2 . (7.129)

This expression can be compared with the general result (7.86), specialised to the case

where ~v and ~a are perpendicular. Noting that then

(~v × ~a)2 = εijkεi`mvjakv`am = vjvjakak − vjajvkak = vjvjakak = v2a2 , (7.130)

we see that (7.86) indeed agrees with (7.129) in this case.

The total power radiated in the case of linear acceleration, with its γ6 factor as in

(7.122), is larger by a factor of γ2 than the total power radiated in the case of circular

motion, provided we take the acceleration a to be the same in the two cases. However, this

is not always the most relevant comparison to make. Another way to make the comparison

is to take the magnitude of the applied force, |d~p/dt|, to be the same in the two cases. For

circular motion we have that v is constant, and so

d~p

dt
= mγ

d~v

dt
= mγ~a . (7.131)

Thus for circular motion, we have from (7.129) that

P (t′) =
2e2γ2

3m2

∣∣∣d~p
dt

∣∣∣2 . (7.132)
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By contrast, for linear acceleration, where ~v is parallel to ~a, we have

d~p

dt
= mγ~a+mγ3(~v · ~a)~v = mγ3~a , (7.133)

and so this gives

P (t′) =
2e2

3m2

∣∣∣d~p
dt

∣∣∣2 . (7.134)

Thus if we hold |d~p/dt| fixed when comparing the two, we see that it is the particle in circular

motion whose radiated power is larger than that of the linearly-accelerated particle, by a

factor of γ2.

7.7 Frequency distribution of radiated energy

In this section, we shall discuss the spectrum of frequencies of the electromagnetic radiation

emitted by an accelerating charge. The basic technique for doing this will be to perform a

Fourier transform of the time dependence of the radiated power.

In general, we have

dP (t)

dΩ
= [R2 ~n · ~S ]ret =

1

4π

∣∣∣[R~E]ret

∣∣∣2 . (7.135)

Let

~G(t) =
1√
4π

[R~E]ret , (7.136)

so that we shall have
dP (t)

dΩ
= |~G(t)|2 . (7.137)

Note that here dP (t)/dΩ is expressed in the observer’s time t, and not the retarded time t′.

This is because our goal here will be to determine the frequency spectrum of the electro-

magnetic radiation as measured by the observer, in the observer’s time t. Essentially, we

are asking the question “what will be seen if the observer turns on a spectrum analyser?”

Suppose that the acceleration of the charge occurs only for a finite period of time, so

that the total energy emitted is finite. We shall assume that the observation point is far

enough away from the charge that the distance travelled by the charge during the period

when it is accelerating subtends only a small angle as seen by the observer.

The total energy radiated per unit solid angle is given by

dW

dΩ
=

∫ ∞
−∞

dP (t)

dΩ
dt =

∫ ∞
−∞
|~G(t)|2dt . (7.138)

We now define the Fourier transform ~g(ω) of ~G(t):

~g(ω) =
1√
2π

∫ ∞
−∞

~G(t) eiωt dt . (7.139)

156



In the usual way, the inverse transform is then

~G(t) =
1√
2π

∫ ∞
−∞

~g(ω) e−iωt dω . (7.140)

It follows that

dW

dΩ
=

∫ ∞
−∞
|~G(t)|2dt =

1

2π

∫ ∞
−∞

dt

∫ ∞
−∞

dω

∫ ∞
−∞

dω′~g ∗(ω′) · ~g(ω) ei (ω′−ω)t . (7.141)

The t integration can be performed, using∫ ∞
−∞

dt ei (ω′−ω)t = 2πδ(ω′ − ω) , (7.142)

and so

dW

dΩ
=

∫ ∞
−∞

dω

∫ ∞
−∞

dω′~g ∗(ω′) · ~g(ω) δ(ω′ − ω) =

∫ ∞
−∞

dω~g ∗(ω) · ~g(ω) , (7.143)

i.e.
dW

dΩ
=

∫ ∞
−∞

dω|~g(ω)|2 . (7.144)

(The result that (7.138) can be expressed as (7.144) is known as Parseval’s Theorem in

Fourier transform theory.)

We can re-express (7.144) as

dW

dΩ
=

∫ ∞
0

dω
d2I(ω,~n)

dωdΩ
, (7.145)

where
d2I(ω,~n)

dωdΩ
= |~g(ω)|2 + |~g(−ω)|2 (7.146)

is the energy emitted per unit solid angle per unit frequency interval. If ~G(t) = [R~E]ret/
√

4π

is real, then

~g(−ω) =
1√
2π

∫ ∞
−∞

dt ~G(t) e−iωt = ~g ∗(ω) , (7.147)

and then
d2I(ω,~n)

dωdΩ
= 2|~g(ω)|2 . (7.148)

Using the expression for ~E in (7.104), the Fourier transform ~g(ω), given by (7.139) with

(7.136), is

~g(ω) =
e

2
√

2π

∫ ∞
−∞

eiωt
[~n× [(~n− ~v )× ~a ]

(1− ~n · ~v)3

]
ret
dt , (7.149)

where as usual, the subscript “ret” is a reminder that the quantity is evaluated at the

retarded time t′. Since

dt =
dt

dt′
dt′ = (1− ~n · ~v ) dt′ , (7.150)
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we therefore have

~g(ω) =
e

2
√

2π

∫ ∞
−∞

eiω
(
t′+R(t′)

)
~n× [(~n− ~v )× ~a ]

(1− ~n · ~v )2
dt′ . (7.151)

(We have now dropped the “ret” reminder, since everything inside the integrand now de-

pends on the retarded time t′.)

We are assuming that the observation point is far away from the accelerating charge,

and that the period over which the acceleration occurs is short enough that the the vector

~n = ~R(t′)/R(t′) is approximately constant during this time interval. It is convenient to

choose the origin to be near to the particle during its period of acceleration. With the

observer being far away, at position vector ~r, it follows from ~R(t′) = ~r − ~r0(t′) that to a

good approximation we have

R2(t′) ≈ r2 − 2~r · ~r0(t′) , (7.152)

and so

R(t′) ≈ r
(

1− 2~r · ~r0(t′)

r2

)1/2
≈ r − ~r · ~r0(t′)

r
. (7.153)

Furthermore, we can also approximate ~n ≡ ~R(t′)/R(t′) by ~r/r, and so

R(t′) ≈ r − ~n · ~r0(t′) . (7.154)

Substituting this into (7.151), there will be a phase factor eiωr that can be taken outside

the integral, since it is independent of t′. This overall phase factor is unimportant (it will

cancel out when we calculate |~g(ω)|2, and so we may drop it and write

~g(ω) =
e

2
√

2π

∫ ∞
−∞

eiω
(
t′−~n·~r0(t′)

)
~n× [(~n− ~v )× ~a ]

(1− ~n · ~v)2
dt′ . (7.155)

From (7.148) we therefore have

d2I(ω,~n)

dωdΩ
=

e2

4π2

∣∣∣ ∫ ∞
−∞

eiω
(
t′−~n·~r0(t′)

)
~n× [(~n− ~v )× ~a ]

(1− ~n · ~v)2
dt′
∣∣∣2 , (7.156)

as the energy per unit solid angle per unit frequency interval.

The integral can be neatened up by observing that we can write

~n× [(~n− ~v )× ~a ]

(1− ~n · ~v )2
=

d

dt′

[~n× (~n× ~v )

1− ~n · ~v

]
, (7.157)

under the assumption that ~n is a constant. This can be seen be distributing the derivative,
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to obtain

d

dt′

[~n× (~n× ~v )

1− ~n · ~v

]
=

~n× (~n× ~a )

1− ~n · ~v
+
~n× (~n× ~v ) (~n · ~a )

(1− ~n · ~v )2
,

=
(1− ~n · ~v )

(
~n (~n · ~a )− ~a

)
+ (~n (~n · ~v)− ~v )(~n · ~a )

(1− ~n · ~v )2
,

=
(~n · ~a )(~n− ~v )− (1− ~n · ~v )~a

(1− ~n · ~v )2
,

=
~n× [(~n− ~v )× ~a ]

(1− ~n · ~v )2
. (7.158)

This allows us to integrate (7.156) by parts, to give

d2I(ω,~n)

dωdΩ
=

e2

4π2

∣∣∣− ∫ ∞
−∞

~n× (~n× ~v )

1− ~n · ~v
d

dt′
eiω
(
t′−~n·~r0(t′)

)
dt′
∣∣∣2 , (7.159)

and hence
d2I(ω,~n)

dωdΩ
=
e2ω2

4π2

∣∣∣ ∫ ∞
−∞

~n× (~n× ~v ) eiω
(
t′−~n·~r0(t′)

)
dt′
∣∣∣2 , (7.160)

It should be remarked here that the effect of having integrated by parts is that the

acceleration ~a no longer appears in the expression (7.160). Prior to the integration by

parts, the fact that we were taking the acceleration to be non-zero for only a finite time

interval ensured that the integration over all t′ from −∞ to ∞ would be cut down to

an integration over only the finite time interval during which ~a was non-zero. After the

integration by parts, the integrand in (7.160) no longer vanishes outside the time interval

of the non-zero acceleration, and so one might worry about issues of convergence, and the

validity of having dropped the boundary terms at t′ = ±∞ coming from the integration by

parts. In fact, it can be verified that all is well, and any problem with convergence can be

handled by introducing a convergence factor e−ε|t
′|, and then sending ε to zero.

We shall make use of the result (7.160) in two applications. In the first, we shall calculate

the frequency spectrum for a relativistic particle in instantaneous circular motion.

7.8 Frequency spectrum for relativistic circular motion

Consider a particle which, at some instant, is following a circular arc of radius ρ. We shall

choose axes so that the arc lies in the (x, y) plane, and choose the origin so that at t = 0

the particle is located at the origin, x = y = 0. Without loss of generality, we may choose

the unit vector ~n (which points in the direction of the observation point) to lie in the (x, z)

plane. We shall, for notational convenience, drop the prime from the time t′, so from now

on t should be understood to mean the retarded time.
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In fact, we shall make the assumption that the particle is moving highly relativistically.

As we saw earlier, this means that the radiation is concentrated into very narrow beams

in the direction of the velocity vector, and hence we need only consider a small arc of the

trajectory.

The position vector of the particle at time t will be given by

~r0 =
(
ρ sin

vt

ρ
, ρ cos

vt

ρ
− ρ, 0

)
, (7.161)

where v = |~v | is its speed. Since ~v = d~r0(t)/dt, we shall have

~v =
(
v cos

vt

ρ
,−v sin

vt

ρ
, 0
)
. (7.162)

We may parameterise the unit vector ~n, which we are taking to lie in the (x, z) plane, in

terms of the angle θ between ~n and the x axis:

~n = (cos θ, 0, sin θ) . (7.163)

We then have

~n× (~n× ~vi ) = (~n · ~v )~n− ~v =
(
− v sin2 θ cos

vt

ρ
, v sin

vt

ρ
, v sin θ cos θ cos

vt

ρ

)
. (7.164)

We shall write this as

~n× (~n× ~v) = v sin
vt

ρ
~e‖ + v sin θ cos

vt

ρ
~e⊥ , (7.165)

where

~e‖ = (0, 1, 0) and ~e⊥ = ~n× ~e‖ = (− sin θ, 0, cos θ) . (7.166)

We shall consider a particle whose velocity is highly-relativistic. It will be recalled from

our earlier discussions that for such a particle, the electromagnetic radiation will be more

or less completely concentrated in the range of angles θ very close to 0. Thus, to a good

approximation we shall have ~e⊥ ≈ (0, 0, 1), which is the unit normal to the plane of the

circular motion. In what follows, we shall make approximations that are valid for small θ,

and also for small t. We shall also assume that v is very close to 1 (the speed of light).

From (7.161) and (7.163), we find

t− ~n · ~r0(t) = t− ρ cos θ sin
vt

ρ
≈ t− ρ(1− 1

2θ
2)
[vt
ρ
− 1

6

(vt
ρ

)3]
,

≈ (1− v)t+ 1
2θ

2vt+
v3t3

6ρ2
,

≈ 1
2(1 + v)(1− v)t+ 1

2θ
2 t+

t3

6ρ2
,

=
t

2γ2
+ 1

2θ
2 t+

t3

6ρ2
. (7.167)
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From (7.165), we find

~n× (~n× ~v ) ≈ t

ρ
~e‖ + θ ~e⊥ . (7.168)

We therefore find from (7.160) that

d2I

dωdΩ
≈ e2ω2

4π2

∣∣∣g‖(ω)~e‖ + g⊥(ω)~e⊥

∣∣∣2 ,
=

e2ω2

4π2

(
|g‖(ω)|2 + |g⊥(ω)|2

)
, (7.169)

where

g‖(ω) =
1

ρ

∫ ∞
−∞

t eiω[(γ−2+θ2)t+
1
3 t

3ρ−2]/2 dt ,

g⊥(ω) = θ

∫ ∞
−∞

eiω[(γ−2+θ2)t+
1
3 t

3ρ−2]/2 dt . (7.170)

Letting

u =
t

ρ
(γ−2 + θ2)−1/2 , ξ = 1

3ωρ(γ−2 + θ2)3/2 , (7.171)

leads to

g‖(ω) = ρ(γ−2 + θ2)

∫ ∞
−∞

ue3i ξ(u+u3/3)/2 du ,

g⊥(ω) = ρθ(γ−2 + θ2)1/2

∫ ∞
−∞

e3i ξ(u+u3/3)/2 du . (7.172)

These integrals are related to Airy integrals, or modified Bessel functions:∫ ∞
0

u sin[3ξ(u+u3/3)/2] du =
1√
3
K2/3(ξ) ,

∫ ∞
0

cos[3ξ(u+u3/3)/2] du =
1√
3
K1/3(ξ) ,

(7.173)

and so we have

d2I

dωdΩ
≈ e2ω2ρ2

3π2
(γ−2 + θ2)2

[(
K2/3(ξ)

)2
+

θ2

γ−2 + θ2

(
K1/3(ξ)

)2]
. (7.174)

The asymptotic forms of the modified Bessel functions Kν(x), for small x and large x,

are

Kν(x) −→ 1
2Γ(ν)

(2

x

)ν
; x −→ 0 ,

Kν(x) −→
√

π

2x
e−x ; x −→∞ . (7.175)

It therefore follows from (7.174) that d2I/(dωdΩ) falls off rapidly when ξ becomes large.

Bearing in mind that γ−2 is small (since the velocity of the particle is very near to the

speed of light), and that θ has been assumed to be small, we see from (7.171) that there is

a regime where ξ can be large, whilst still fulfilling our assumptions, if ωρ is large enough.
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The value of ξ can then become very large if θ increases sufficiently (whilst still being small

compared to 1), and so the radiation is indeed concentrated around very small angles θ.

If ω becomes sufficiently large that ωργ−3 is much greater than 1 then ξ will be very

large even if θ = 0. Thus, there is an effective high-frequency cut-off for all angles. It is

convenient to define a “cut-off” frequency ωc for which ξ = 1 at θ = 0:

ωc =
3γ3

ρ
=

3

ρ

( E
m

)3
. (7.176)

(E = mγ is the mechanical energy of the particle.) If the particle is following a uniform

periodic circular orbit, with angular frequency ω0 = v/ρ ≈ 1/ρ, then we shall have

ωc = 3ω0

( E
m

)3
. (7.177)

The radiation in this case of a charged particle in a highly relativistic circular orbit is known

as “Synchrotron Radiation.”

Consider the frequency spectrum of the radiation in the orbital plane, θ = 0. In the two

regimes ω << ωc and ω >> ωc we shall therefore have

ω << ωc :
d2I

dωdΩ

∣∣∣
θ=0
≈ e2

(Γ(2/3)

π

)2 (3

4

)1/3
(ωρ)2/3 ,

ω >> ωc :
d2I

dωdΩ

∣∣∣
θ=0
≈ 3e2γ2

2π

ω

ωc
e−2ω/ωc . (7.178)

This shows that the energy per unit solid angle per unit frequency increases from 0 like ω2/3

for small ω, reaches a peak around ω = ωc, and then falls off exponentially rapidly one ω is

significantly greater than ωc.

It is clear that one could continue with the investigation of the properties of the syn-

chrotron radiation in considerably more depth. For example, would could consider the

detailed angular distibution of the radiation as a function of θ, and one could consider the

total power per unit frequency interval, obtained by integrating over all solid angles:

dI

dω
=

∫
d2I

dωdΩ
dΩ . (7.179)

A discussion of further details along these lines can be found in almost any of the advanced

electrodynamics textbooks.

7.9 Frequency spectrum for periodic motion

Suppose that the motion of the charged particle is exactly periodic, with period T = 2π/ω0,

where ω0 is the angular frequency of the particle’s motion. This implies that the emitted
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radiation will have time dependence of the form

H(t) =

∞∑
n=−∞

bn e
−inω0 t , (7.180)

so its Fourier transform h(ω) is zero except when ω is an integer multiple of ω0, and for

these values it is proportional to a delta function:

h(ω) =
1√
2π

∫ ∞
−∞

eiωtH(t)dt =
1√
2π

∑
n

bn

∫ ∞
−∞

ei (ω−nω0)t dt ,

=
√

2π
∑
n

bn δ(ω − nω0) . (7.181)

(When unspecified, the summation will be assumed to be over all n, positive and negative.)

In fact, it is more appropriate to work with Fourier series, rather than Fourier transforms,

in this situation with a discrete frequency spectrum. Going back to section 7.7, we therefore

now expand ~G(t) = 1√
4π

[R ~E ]ret in the Fourier series

~G(t) =
∑
n

~an e
−inω0 t . (7.182)

Multiplying by eimω0 t and integrating over the period T = 2π/ω0 gives

1

T

∫ T

0
eimω0t ~G(t)dt =

1

T

∑
n≥1

~an

∫ T

0
ei (m−n)ω0 tdt = ~am , (7.183)

since the integral of ei (m−n)ω0t vanishes unless n = m:

1

T

∫ T

0
ei (m−n)ω0 tdt = δm,n . (7.184)

Thus the coefficients ~an in the Fourier series (7.182) are given by

~an =
1

T

∫ T

0
einω0 t ~G(t)dt . (7.185)

In our previous discussion of the spectrum in the case of a continuous distribution of

frequencies, we integrated the power over the whole time interval −∞ ≤ t ≤ ∞. Now that

we are instead considering the case of periodic motion, it is more appropriate to integrate

over just one fundamental period, i.e. over the time interval T = 2π/ω0. (Integrating

over −∞ ≤ t ≤ ∞ would thus pick up an infinite factor times the integral over a single

fundamental period.) The analogue of Parseval’s theorem for the case of the discrete Fourier

series is now given by considering

1

T

∫ T

0
|~G(t)|2dt =

1

T

∫ T

0

∑
m,n

~an · ~a ∗m ei (m−n)ω0 tdt =

∞∑
n=−∞

|~an|2 . (7.186)
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The time average of the power per unit solid angle is therefore given by〈dP
dΩ

〉
=

1

T

∫ T

0

dP

dΩ
dt =

1

T

∫ T

0
|~G(t)|2dt =

∞∑
n=−∞

|~an|2 . (7.187)

In a manner analogous to the earlier discussion of the continuum case, we may express this

as a sum of terms associated with frequencies ωn = nω0 for n ≥ 1 (i.e. fundamental plus

harmonics). Thus we write 〈dP
dΩ

〉
=
∑
n≥1

dPn
dΩ

, (7.188)

from which it follows that
dPn
dΩ

= |~an|2 + |~a−n|2 . (7.189)

(We do not need to consider the zero-frequency n = 0 mode in the sum, since this would

correspond to a static component to the field, which will not arise here.) If ~G(t) is real, it

follows that ~a∗n = ~a−n, and so
dPn
dΩ

= 2|~an|2 . (7.190)

The expression dPn/dΩ has the interpretation of being the time-averaged power per unit

solid angle in the n’th mode.

It is now a straightforward matter, using (7.185), to obtain an expression for |~an|2 in

terms of the integral of the retarded electric field. The steps follow exactly in parallel

with those we described in section 7.7, except that the integral
∫∞
−∞ dt is now replaced by

T−1
∫ T

0 dt. The upshot is that the expression (7.160) for d2I/(dωdΩ) is replaced by30

dPn
dΩ

=
e2n2ω4

0

(2π)3

∣∣∣ ∫ T

0
~n× (~n× ~v ) einω0

(
t′−~n·~r0(t′)

)
dt′
∣∣∣2 , (7.191)

where T = 2π/ω0. This gives the expression for the time-averaged power per unit solid

angle in the n’th Fourier mode.

Since we are assuming the observer (at ~r ) is far away from the particle, and since the

integral in (7.191) is taken over the finite time interval T = 2π/ω0, it follows that to a good

approximation we can freely take the unit vector ~n outside the integral. Thus we may make

the replacement∫ T

0
~n× (~n× ~v ) einω0

(
t′−~n·~r0(t′)

)
dt′ −→ ~n×

(
~n×

∫ T

0
~v einω0

(
t′−~n·~r0(t′)

))
dt′ . (7.192)

Now, for any vector ~V , we have that

|~n× (~n× ~V )|2 = |~n · ~V − ~V |2 = V 2 − (~n · ~V )2 , (7.193)

30The integer n labelling the modes is not to be confused with the unit vector ~n, of course!
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and on the other hand we also have

|~n× ~V |2 = (~n× ~V ) ·(~n× ~V ) = ~n · [~V ×(~n× ~V )] = ~n · [V 2~n−(~n · ~V )~V ] = V 2−(~n · ~V )2 . (7.194)

Thus |~n× (~n× ~V )|2 = |~n× ~V |2, and so we can re-express (7.191) as

dPn
dΩ

=
e2n2ω4

0

(2π)3

∣∣∣ ∫ T

0
~v × ~n einω0

(
t′−~n·~r0(t′)

)
dt′
∣∣∣2 , (7.195)

where T = 2π/ω0 and ω0 is the angular frequency of the periodic motion.

7.10 Cerenkov radiation

So far, all the situations we have considered have involved electromagnetic fields in a vac-

uum, i.e. in the absence of any dielectric or magnetically permeable media. In this section,

we shall take a brief foray into a situation where there is a dielectric medium.

It will be recalled that if a medium has permittivity ε and permeability µ, then electro-

magnetic waves in the medium will propagate with speed c̃ = 1/
√
ε µ. This means in general

that the “speed of light” in the medium will be less than the speed of light in vacuum. A

consequence of this is that a charged particle, such as an electron, can travel faster than

the local speed of light inside the medium. This leads to an interesting effect, known as

Cerenkov Radiation. In practice, the types of media of interest are those that are optically

transparent, such as glass or water, and these have magnetic permeability µ very nearly

equal to 1, while the electric permittivity ε can be quite significantly greater than 1. Thus

for the purposes of our discussion, we shall assume that µ = 1 and that the local speed of

light is reduced because ε is significantly greater than 1.

We shall make use of the result (7.160) for the radiated power spectrum, in order to

study the Cerenkov radiation. First, we shall need to introduce the dielectric constant into

the formula. This can be done by a simple scaling argument. We shall also, just for the

purposes of this section, restore the explicit symbol c for the speed of light. This can be

done by sending

t −→ ct , ω −→ ω

c
. (7.196)

(Of course any other quantity that involves time will also need to be rescaled appropriately

too. This is just dimensional analysis.)

Having first restored the explicit appearance of the speed of light, we shall next make

further rescalings of the fields in order to introduce a non-unit dielectric constant ε. Refer-

ring back to the discussion in section 2.1, it can be seen that this can be done by means of
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the rescalings

ρ −→ ρ√
ε
, ~E −→

√
ε ~E , ~B −→

~B√
ε
, c −→ c√

ε
. (7.197)

Of course the scaling of the charge density ρ implies that we must also rescale the charge e

of the particle, according to

e −→ e√
ε
. (7.198)

Note that c continues to mean the speed of light in vacuum. The speed of light inside the

dielectric medium is given by

c̃ =
c√
ε
. (7.199)

The expression (7.160) for the radiated power per unit solid angle per unit frequency

interval now becomes

d2I(ω,~n)

dωdΩ
=
e2ω2√ε
4π2c3

∣∣∣ ∫ ∞
−∞

~n× (~n× ~v ) eiω(t′−
√
ε ~n·~r0(t′)/c) dt′

∣∣∣2 , (7.200)

For a charge moving at constant velocity ~v, we shall have

~r0(t′) = ~v t′ , (7.201)

and so (7.200) gives

d2I(ω,~n)

dωdΩ
=
e2ω2√ε
4π2c3

|~n× ~v |2
∣∣∣ ∫ ∞
−∞

eiωt′(1−
√
ε ~n·~v/c) dt′

∣∣∣2 , (7.202)

since |~n× (~n× ~v )|2 = |(~n · ~v )~n− ~v |2 = v2 − (~n · ~v )2 = |~n× ~v |2.

The integration over t′ produces a delta-function.31 Defining θ to be the angle between

~n and ~v, so that ~n · ~v = v cos θ, we therefore have

d2I(ω,~n)

dωdΩ
=
e2ω2√ε
c3

v2 sin2 θ
∣∣∣δ(ω(1−

√
ε (v/c) cos θ)

)∣∣∣2 , (7.203)

and so (using δ(ax) = δ(x)/a))

d2I(ω,~n)

dωdΩ
=
e2√ε
c3

v2 sin2 θ
∣∣∣δ(1−√ε (v/c) cos θ

)∣∣∣2 . (7.204)

This expression shows that all the radiation is emitted at a single angle θc, known as the

Cerenkov Angle, given by

cos θc =
c

v
√
ε
. (7.205)

31The occurrence of the delta-function is because of the unphysical assumption that the particle has been

moving in the medium forever. Below, we shall obtain a more realistic expression by supposing that the

particle travels through a slab of medium of finite thickness.
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Note that in terms of c̃, the speed of light in the medium, as given in (7.199), we have

cos θc =
c̃

v
. (7.206)

This makes clear that the phenomenon of Cerenkov radiation occurs only if v > c̃, i.e. if

the charged particle is moving through the medium at a velocity that is greater than the

local velocity of light in the medium. In fact one can understand the Cerenkov radiation as

a kind of “shock wave,” very like the acoustic shock wave that occurs when an aircraft is

travelling faster than the speed of sound. The Cerenkov angle θc is given by a very simple

geometric construction, shown in Figure 3 below. The circles show the light-fronts of light

emmitted by the particle. Since the particle is travelling faster than the speed of light in

the medium, it “outruns” the circles, leaving a trail of light-fronts tangent to the angled

line in the figure. This is the light-front of the Cerenkov radiation.

c t
~

v t

Cerenkov angle

Figure 5: The Cerenkov angle θc is given by cos θc = (c̃t)/(vt) = c̃/v.

As mentioned above, the squared delta-function in (7.204) is the result of making the
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unrealistic assumption that the particle has been ploughing through the medium for ever,

at a speed greater than the local speed of light. A more realistic situation would be to

consider a charged particle entering a thin slab of dielectric medium, such that it enters at

time t′ = −T and exits at t′ = +T . The expression (7.202) is then replaced by

d2I(ω,~n)

dωdΩ
=
e2ω2√ε
4π2c3

|~n× ~v |2
∣∣∣ ∫ T

−T
eiωt′(1−

√
ε ~n·~v/c) dt′

∣∣∣2 , (7.207)

which, using
∫ T
−T dte

i bt = 2b−1 sin bT , therefore implies that

d2I(ω,~n)

dωdΩ
=
e2ω2√ε v2T 2 sin2 θ

π2c3

(sin[ωT (1−
√
ε (v/c) cos θ)]

ωT (1−
√
ε (v/c) cos θ

)2
. (7.208)

This is sharply peaked around the Cerenkov angle θc given by (7.205).

Integrating over all angles we obtain the total energy per unit frequency interval

dI

dω
=

∫
d2I

dωdΩ
dΩ ≈ 2e2ω2√ε v2T 2 sin2 θc

πc3

∫ π

0

(sin[ωT (1−
√
ε (v/c) cos θ)]

ωT (1−
√
ε (v/c) cos θ

)2
sin θ dθ .

(7.209)

(The integrand is peaked sharply around θ = θc, so to a good approximation we can take

the sin2 θ factor outside the integral, calling it sin2 θc.) Letting x = cos θ, the remaining

integral can be written as∫ 1

−1

(sin[ωT (1−
√
ε (v/c)x)]

ωT (1−
√
ε (v/c)x

)2
dx ≈

∫ ∞
−∞

(sin[ωT (1−
√
ε (v/c)x)]

ωT (1−
√
ε (v/c)x

)2
dx . (7.210)

(The limits of integration can, to a good approximation, be extended to ±∞ because the

integrand is peaked around x = cos θc.) Letting ωT −ωT
√
ε x/c = −y, the integral becomes

c

ωT
√
ε v

∫ ∞
−∞

sin2 y

y2
dy =

πc

ωT
√
ε v

, (7.211)

and so expression (7.209) for the total energy per unit frequency interval becomes

dI

dω
≈ 2e2vωT sin2 θc

c2
. (7.212)

The distance through the slab is given by 2vT , and so dividing by this, we obtain an

expression for the total energy of Cerenkov radiation per unit frequency interval per unit

path length:
d2I

dωd`
=
e2ω

c2
sin2 θc =

e2ω

c2

(
1− c2

v2ε

)
. (7.213)

This is known as the Frank-Tamm relation. Note that this expression grows linearly with

ω, which means that the bulk of the energy is concentrated in the higher frequencies of

electromagnetic radiation. Of course there must be some limit, which arises because the

168



dielectric constant will fall off with increasing frequency, and so the Cerenkov effect will cease

to operate at high enough frequencies.32 In practice, the peak of the frequency spectrum

for Cerenkov radiation is typically in the ultra-violet.

The bluish-green glow visible in pictures of nuclear fuel rods immersed in water is a

familiar example of Cerenkov radiation. Apart from looking nice, the Cerenkov effect is

also of practical use, for measuring the velocity of charged particles moving at relativistic

speeds. One can determine the velocity by allowing the particles to move through a slab of

suitably-chosen dielectric material, and measuring the Cerenkov angle.

7.11 Thompson scattering

Another application of the Larmor formula is in the phenomenon known as Thompson

scattering. Consider a plane electromagnetic wave incident on a particle of charge e and

mass m. The charge will oscillate back and forth in the electric field of the wave, and so

it will therefore emit electromagnetic radiation itself. The net effect is that the electron

“scatters” some of the incoming wave.

In most circumstances, we can assume that the induced oscillatory motion of the electron

will be non-relativistic. As we saw in (7.76), if Θ is the angle between the acceleration ~a

and the unit vector ~n (which lies along the line from the electron to the observation point),

then the power radiated per unit solid angle is

dP

dΩ
=
e2a2

4π
sin2 Θ . (7.214)

Let us suppose that the plane electromagnetic wave has electric field given by (the real

part of)

~E = E0~ε e
i (~k·~r−ωt) , (7.215)

and that the wave-vector ~k lies along the z axis. The unit polarisation vector ~ε, which must

therefore lie in the (x, y) plane, may be parameterised as

~ε = (cosψ, sinψ, 0) . (7.216)

Using standard spherical polar coordinates, the unit vector ~n will be given by

~n = (sin θ cosϕ, sin θ sinϕ, cos θ) . (7.217)

32At sufficiently high frequencies, which implies very small wavelengths, the approximation in which the

medium is viewed as a continuum with an effective dielectric constant breaks down, and it looks more and

more like empty space with isolated charges present. At such length scales the electron is more or less

propagating through a vacuum, and so there is no possibility of its exceeding the local speed of light. Thus

the Cerenkov effect tails off at sufficiently high frequencies.
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In particular, this means

~n · ~ε = sin θ (cosϕ cosψ + sinϕ sinψ) = sin θ cos(ϕ− ψ) . (7.218)

The acceleration of the electron will be given by

m~a = e ~E , so ~a =
e

m
E0~ε e

iω(z−t) . (7.219)

Note that this means

~n · ~a =
e

m
E0 ~n · ~ε eiω(z−t) =

e

m
E0 e

iω(z−t) sin θ cos(ϕ− ψ) . (7.220)

Since ~n · ~a = a cos Θ, it follows that (7.214) becomes

dP

dΩ
=
e2

4π

(
a2 − (~n · ~a )2

)
, (7.221)

and so the time average will be given by〈dP
dΩ

〉
=

e4

8πm2
|E0|2[1− (~n · ~ε )2] . (7.222)

Thus we find 〈dP
dΩ

〉
=

e4

8πm2
|E0|2 [1− sin2 θ cos2(ϕ− ψ)] . (7.223)

The direction of the polarisation (in the (x, y) plane) of the incoming electromagnetic

wave is parameterised by the angle ψ. For unpolarised incoming waves, we should average

over all angles ψ. Thus we obtain〈〈dP
dΩ

〉〉
ψ
≡ 1

2π

∫ 2π

0
dψ
〈dP
dΩ

〉
=

e4

8πm2
|E0|2 (1− 1

2 sin2 θ) ,

=
e4

16πm2
|E0|2 (1 + cos2 θ) . (7.224)

The scattering cross section dσ/dΩ is then defined by

dσ

dΩ
=

Energy radiated/unit time/unit solid angle

Incident energy flux/unit area/unit time
. (7.225)

The denominator here will just be |E0|2/(8π), which is the time average of the Poynting

flux for the incoming wave. Thus we arrive at the Thompson Formula for the cross section:

dσ

dΩ
=
e4(1 + cos2 θ)

2m2
. (7.226)

The total scattering cross section is obtained by integrating dσ/dΩ over all solid angles,

which gives

σ =

∫
dσ

dΩ
dΩ = 2π

∫ π

0

dσ

dΩ
sin θdθ ,

=
πe4

m2

∫ π

0
sin3 θdθ =

πe4

m2

∫ 1

−1
(1 + c2)dc , (7.227)

and so we find

σ =
8πe4

3m2
. (7.228)
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8 Radiating Systems

8.1 Fields due to localised oscillating sources

General time-dependent sources ρ(~r, t) and ~J(~r, t) can be written in terms of their Fourier

transforms ρω(~r ) and ~Tω(~r ) as

ρ(~r, t) =
1√
2π

∫ ∞
−∞

ρω(~r ) e−iωt dω , ~J(~r, t) =
1√
2π

∫ ∞
−∞

~Jω(~r ) e−iωt dω . (8.1)

Consider a localised system of oscillating charges, and focus just on a single frequency ω in

the Fourier integrals above. Thus, the charge density and current density can be written

as33

ρ(~r, t) = ρ(~r ) e−iωt , ~J(~r, t) = ~J(~r ) e−iωt . (8.2)

From the expressions (7.22) and (7.23) for the retarded potentials, we shall have

φ(~r, t) =

∫
ρ(~r ′, t− |~r − ~r ′|)

|~r − ~r ′|
d3~r ′ ,

= e−iωt

∫
ρ(~r ′)

|~r − ~r ′|
ei k|~r−~r ′| d3~r ′ . (8.3)

Note that here k is simply equal to ω, and we have switched to the symbol k in the

exponential inside the integral because it looks more conventional. In a similar fashion, we

shall have

~A(~r, t) = e−iωt

∫ ~J(~r ′)

|~r − ~r ′|
ei k|~r−~r ′| d3~r ′ . (8.4)

From these expressions for φ and ~A, we can calculate ~E = −~∇φ − ∂ ~A/∂t and ~B =

~∇ × ~A. In fact, because of the simple monochromatic nature of the time dependence, we

can calculate ~E easily, once we know ~B, from the Maxwell equation

~∇× ~B − ∂ ~E

∂t
= 4π ~J . (8.5)

Away from the localised source region we have ~J = 0. From the time dependence we have

∂ ~E/∂t = −iω ~E = −i k ~E, and so we shall have

~E =
i

k
~∇× ~B . (8.6)

Let us suppose that the region where the source charges and currents are non-zero is of

scale size d. The wavelength of the monochromatic waves that they generate will be given

33To be precise, since we have now switched to a complex notation for this discussion of monochromatic

oscillating fields, the physical charge and current densities are given by the real parts of the expressions in

eqn (8.2). See the paragraph below eqn (8.37) for more discussion about this point.
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by

λ =
2π

ω
=

2π

k
. (8.7)

We shall assume that d << λ, i.e. the scale size of the source region is very small compared

with the wavelength of the electromagnetic waves that are produced. It will be convenient

to choose the origin of the coordinate system to lie within the neighbourhood of the source

region, so that we may therefore assume

|~r ′| << λ (8.8)

for all integration points ~r ′ in the expressions (8.3) and (8.4).

The discussion of the electromagnetic fields generated by these sources can then be

divided, like all Gaul, into three parts:

Near zone, or Static zone : d << r << λ ,

Intermediate zone, or Induction zone : d << r ∼ λ ,

Far zone, or Radiation zone : d << λ << r . (8.9)

8.1.1 The static zone

First, let us consider the near zone, where r << λ. Equivalently, we may say that

Static zone : kr << 1 . (8.10)

Since we are also assuming d << λ, and that the origin of the coordinate system is located

in the neighbourhood of the source region, it follows that in the near zone, we can just

approximate ei k|~r−~r ′| by 1. Thus we shall have

~A(~r, t) ≈ e−iωt

∫ ~J(~r ′)

|~r − ~r ′|
d3~r ′ , (8.11)

in the near zone. Aside from the time-dependent factor e−iωt, this is just like the expression

for the magnetostatic case. We can make a standard expansion, in terms of spherical

harmonics:

1

|~r − ~r ′|
=
∞∑
`=0

∑̀
m=−`

4π

2`+ 1

r`<

r`+1
>

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ) , (8.12)

where r> is the larger of r = |~r| and r′ = |~r ′|, and r< is the smaller of r and r′, and (θ, ϕ)

and (θ′, ϕ′) are the spherical polar angles for ~r and ~r ′ respectively. Thus we shall have,

since in our case r′ << r,

~A(~r, t) = e−iωt
∞∑
`=0

∑̀
m=−`

4π

2`+ 1

1

r`+1
Y`m(θ, ϕ)

∫
~J(~r ′) r′

`
Y ∗`m(θ′, ϕ′) d3~r ′ . (8.13)
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In the near zone, therefore, the electromagnetic fields will just be like static fields, except

that they are oscillating in time.

8.1.2 The radiation zone

Next, we shall consider the far zone, or radiation zone. Here, we shall have kr >> 1, while

at the same time kr′ << 1. In other words, the source is (as always) small compared with

the wavelength, but that the fields are being observed from a large distance which is much

larger than the wavelength. This means that

|~r − ~r ′|2 = r2 − 2~r · ~r + r′
2 ≈ r2 − 2~r · ~r ′ , (8.14)

and so

|~r − ~r ′| ≈ r
(

1− 2~r · ~r ′

r2

)1/2
≈ r − ~r · ~r ′

r
, (8.15)

and hence

|~r − ~r ′| ≈ r − ~n · ~r ′ , (8.16)

where ~n is the unit vector along ~r:

~n =
~r

r
. (8.17)

For a more complete and comprehensive treatment, see section 8.3

From eqns (8.4) and (8.16) we shall have

~A(~r, t) ≈ ei (kr−ωt)
∫ ~J(~r ′)

r − ~n · ~r ′
e−i k~n·~r ′ d3~r ′ , (8.18)

in the far zone, and hence, to a very good approximation,

~A(~r, t) ≈ 1

r
ei (kr−ωt)

∫
~J(~r ′) e−i k~n·~r ′ d3~r ′ . (8.19)

(Recall that k and ω are just two names for the same quantity here.)

The magnetic field is given by ~B = ~∇ × ~A, or Bi = εijk∂jAk. We are interested in

the contribution that dominates at large distance, and this therefore comes from the term

where the derivative lands on the ei kr factor rather than the 1/r factor. Thus we shall have

Bi ≈ εijk
1

r
(∂je

i kr)e−iωt

∫
Jk(~r

′) e−i k~n·~r ′ d3~r ′ ,

= i k
xj
r
εijk

1

r
ei kre−iωt

∫
Jk(~r

′) e−i k~n·~r ′ d3~r ′ (8.20)

and so

~B ≈ i k ~n× ~A . (8.21)
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Note that the magnetic field in this leading-order approximation falls off like 1/r. This is

characteristic of electromagnetic radiation, as we have seen previously.

The electric field can be calculated from the magnetic field using (8.6), and again the

leading-order behaviour comes from the term where the gradient operator lands on the ei kr

factor. The rule again is therefore that ~∇ → i k ~n, and so we find

~E ≈ −k ~n× (~n× ~A) . (8.22)

Note that (8.21) and (8.22) imply

~n · ~B = 0 , ~n · ~E = 0 , ~E · ~B = 0 . (8.23)

Thus ~E and ~B are transverse and orthogonal. This is characteristic of radiation fields.

Since we are assuming that the characteristic size d of the source is very small compared

with the wavelength, d << λ = 2π/k, it follows that kd << 1 and so the quantity k|~n · ~r ′|

appearing in the exponential in the integrand in (8.19) is much smaller than 1. This means

that it is useful to expand the exponential in a Taylor series, giving

~A(~r, t) ≈ 1

r
ei (kr−ωt)

∑
m≥0

(−i k)m

m!

∫
~J(~r ′) (~n · ~r ′)m d3~r ′ , (8.24)

where the terms in the sum fall off rapidly with m.

8.1.3 The induction zone

This is the intermediate zone, where d << λ ∼ r, which means that the fields are being

observed from a distance that is comparable with the wavelength, and so kr ∼ 1. In this

case, we need to consider the exact expansion of ei k|~r−~r ′| |~r − ~r ′|−1. It turns out that this

can be written as

ei k|~r−~r ′|

|~r − ~r ′|
= 4πi k

∑
`≥0

j`(kr
′)h

(1)
` (kr)

∑̀
m=−`

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ) , (8.25)

where j`(x) are spherical Bessel functions and h
(1)
` (x) are spherical Hankel functions of the

first kind. We shall not pursue the investigation of the induction zone further.

8.2 Electric dipole radiation

In the radiation zone, we obtained (8.24)

~A(~r, t) =
1

r
ei (kr−ωt)

∑
m≥0

(−i k)m

m!

∫
~J(~r ′) (~n · ~r ′)m d3~r ′ , (8.26)
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The terms in this expansion correspond to the terms in a multipole expansion.

Consider first the m = 0 term, for which

~A(~r, t) =
1

r
ei (kr−ωt)

∫
~J(~r ′) d3~r ′ , (8.27)

This actually corresponds to an electric dipole term. To see this, consider the identity

∂i
(
xjJi(~r )

)
= δijJi(~r ) + xj∂iJi(~r ) = Jj(~r ) + xj ~∇ · ~J(~r ) . (8.28)

The integral of the left-hand side over all space gives zero, since it can be turned into a

boundary integral over the sphere at infinity (where the localised sources must vanish):∫
∂i
(
xjJi(~r )

)
d3~r =

∫
S
xjJi(~r ) dSi = 0 . (8.29)

We also have the charge conservation equation

~∇ · ~J(~r, t) +
∂ρ(~r, t)

∂t
= 0 , (8.30)

and so with the time dependence e−iωt that we are assuming, this gives

~∇ · ~J(~r ) = iω ρ(~r ) = i k ρ(~r ) . (8.31)

Thus by integrating eqn (8.28) over all space, we conclude that∫
~J(~r ) d3~r = −i k

∫
~r ρ(~r ) d3~r , (8.32)

and so in other words ∫
~J(~r ) d3~r = −i k ~p , (8.33)

where

~p =

∫
~r ρ(~r ) d3~r (8.34)

is the electric dipole moment of the charge configuration. Thus we have

~A(~r, t) = − i k ~p

r
ei (kr−ωt) . (8.35)

Note that this leading-order term in the expansion of the radiation field corresponds to

an electric dipole, and not an electric monopole. The reason for this is that a monopole term

would require that the total electric charge in the source region should oscillate in time.

This would be impossible, because the total charge in this isolated system must remain

constant, by charge conservation.
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It is convenient to factor out the time-dependence factor e−iωt that accompanies all the

expressions we shall be working with, and to write

~A(~r, t) = ~A(~r ) e−iωt , ~B(~r, t) = ~B(~r ) e−iωt , ~E(~r, t) = ~E(~r ) e−iωt . (8.36)

Thus for the electric dipole field we shall have

~A(~r ) = − i k~p

r
ei kr . (8.37)

It is worth emphasising at this point that the electric dipole moment ~p, which was defined

in eqn (8.34), could complex. Recall that at the start of this discussion, we expressed the

real, physical charge density ρ(~r, t) in terms of its Fourier transform ρω(~r ), as in eqn (8.1).

To make things clearer, let us use the symbol ρphys(~r, t) for the real, physical charge density.

Using Fourier’s theorem we then have

ρω(~r ) =
1√
2π

∫ ∞
−∞

ρphys(~r, t) e
iωt dt . (8.38)

It follows that the complex conjugate of ρω(~r ) is given by

ρ∗ω(~r ) =
1√
2π

∫ ∞
−∞

ρphys(~r, t) e
−iωt dt ,

=
1√
2π

∫ ∞
−∞

ρphys(~r,−t) eiωt dt , (8.39)

where, in getting to the second line here, we have changed integration variable by means of

the redefinition t −→ −t. Thus ρω(~r ) will be real if ρphys(~r, t) = ρphys(~r,−t), but in general

it will be complex. In our discussion we then focused on the single angular frequency ω,

and dropped the ω label on the Fourier mode ρω(~r ). Thus the quantity ρ(~r ) appearing in

the integral (8.34) defining the electric dipole moment ~p will, in general, be complex.

As we shall later show explicitly, although the expression (8.37) for the vector potential

of an electric dipole was obtained as the first term in an expansion where only the leading-

order 1/r terms were retained, for the particular case of the electric dipole the expression is

in fact exact and complete. It will be instructive, therefore, to calculate now the full, exact,

expressions that result from computing ~B and ~E from eqn (8.37), since this will illustrate

how we can identify different terms as corresponding to static-zone, radiation-zone and

induction-zone contributions to the fields.

We first calculate ~B(~r ) = ~∇× ~A(~r ), with ~A(~r ) given by eqn (8.37), finding

Bi = εijk ∂jAk = −i kεijk pk∂j

(1

r
ei kr

)
,

= −i kεijkpk

(
− xj
r3

+ i k
xj
r2

)
ei kr , (8.40)
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and so

~B = k2 (~n× ~p )
ei kr

r

(
1 +

i

kr

)
. (8.41)

From ~E = ik−1 ~∇× ~B in eqn (8.6) we then have

Ei =
i

k
εijk pm∂j

[
εk`mk

2x`

( 1

r2
+

i

kr3

)
ei kr

]
,

= i k (δi`δjm − δimδj`) pm
[
δj`

( 1

r2
+

i

kr3

)
− 2xjx`

r4
− 3ixjx`

kr5
+ i k

xjx`
r

( 1

r2
+

i

kr3

)]
ei kr ,

=
k2

r
(pi − ni ~n · ~p ) ei kr +

i k

r2
(pi − 3~n · ~p ni) ei kr − 1

r3
(pi − 3~n · ~p ni) ei kr . (8.42)

In 3-vector language, this gives

~E = −k2~n× (~n× ~p )
ei kr

r
+ [3(~n · ~p )~n− ~p ]

( 1

r3
− i k

r2

)
ei kr . (8.43)

The first term on the right-hand side of eqn (8.43) can be recognised as the radiation-

zone contribution, with its characteristic 1/r fall-off. It is the dominant term in the case

that kr >> 1. The term proportional to 1/r3 is the static-zone contribution. It has the

characteristic feature that it would survive even in static limit where the frequency ω = k

goes to zero; in fact, it has the standard form of the electric field of a static electric dipole,

~Estatic =
3(~n · ~p )~n− ~p

r3
. (8.44)

The static-zone term is the dominant one when kr << 1. Finally, in the induction zone,

where kr ∼ 1, it can be seen that all the terms in eqn (8.43) are of roughly equal size, and

so they must all be retained.

For the magnetic field, given in eqn (8.41), we again have the characteristic 1/r fall-off

in the radiation zone, where kr >> 1. There is no static-zone contribution to the magnetic

field in this case (as can be seen from the fact that ~B becomes zero in the static limit

k −→ 0). In the induction zone where kr ∼ 1, the 1/r and 1/r2 contributions in eqn (8.41)

are of roughly equal size.

Note that we have ~n · ~B = 0 everywhere, but that ~n · ~E = 0 only in the radiation zone

(i.e. at order 1/r). In the radiation zone we have

~B = k2(~n× ~p )
ei kr

r
, ~E = −k2~n× (~n× ~p )

ei kr

r
= −~n× ~B . (8.45)

Note that we have | ~B| = | ~E|, as usual for radiation fields. By contrast, we see from eqns

(8.41) and (8.43) that when kr << 1 we have

~B = i k (~n× ~p )
eikr

r2
, ~E = [3(~n · ~p )~n− ~p ]

eikr

r3
, (8.46)
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and so | ~B| ∼ (kr) | ~E|, which means | ~B| << | ~E|.

Returning now to the radiation zone, we may calculate the radiated power in the usual

way, using the Poynting vector. In particular, we saw previously that with the electric and

magnetic fields written in the complex notation, the time average of the Poynting flux is

given by

〈~S 〉 =
1

8π
<
(
~E × ~B ∗

)
. (8.47)

(< denotes the real part. Actually, in this example ~E × ~B ∗ is in any case real.) Then the

power radiated into the solid angle dΩ is given by

dP = 〈~S 〉 · ~n r2dΩ ,

=
1

8π
[(−~n× ~B)× ~B ∗ ] · ~n r2dΩ ,

=
1

8π
| ~B|2 r2dΩ . (8.48)

From (8.45) we therefore have

dP

dΩ
=
k4

8π
|~n× ~p |2 =

k4

8π

(
|~p |2 − |~n · ~p |2

)
. (8.49)

Note that the 1/r2 fall-off of the Poynting flux is exactly balanced by the r2 growth of the

area element of a sphere of radius r. This happens for radiation fields in all cases. It means

that radiation energy is never “lost”; it gets weaker per unit area as it spreads outwards

from the source, but the total area of a surrounding sphere correspondingly gets larger, so

that the total power intercepted over the entire sphere remains the same, regardless of the

radius.

Consider an example where the electric dipole moment ~p is real. (See the paragraph

after eqn (8.37) for a discussion about when ~p could be real.) If we take θ to be the angle

between ~p and ~n, so that ~n · ~p = p cos θ, then this gives

dP

dΩ
=
k4

8π
|~p |2 sin2 θ . (8.50)

Since dΩ = sin θ dθ dϕ, the total power radiated by the oscillating dipole is then given by

P =

∫
dP

dΩ
dΩ = 2π

k4

8π
|~p |2

∫ π

0
sin3 θ dθ = 1

3k
4 |~p |2 . (8.51)

As a concrete example, consider a dipole antenna comprising two thin conducting rods

running along the z axis, meeting (but not touching) at the origin, and extending to z = ±1
2d

respectively. The antenna is driven at the centre (z = 0) by an alternating current source

with angular frequency ω. The current will fall off as a function of z, becoming zero at the
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tips of the antenna at z = ±1
2d. At least as a leading-order approximation, in the regime

we are considering here where kd << 1, this fall-off can be expected to be linear in z.34

Thus we shall assume

I(z, t) = I(z)e−iωt = I0

(
1− 2|z|

d

)
e−iωt . (8.52)

The equation of charge conservation, ~∇ · ~J + ∂ρ/∂t = 0 then allows us to solve for the

charge density. The current (8.52) is essentially confined to the line x = y = 0, since we are

assuming the conducting rods that form the antenna are thin. Thus really, we have

~J(~r, t) =
(
0, 0, I(z, t) δ(x)δ(y)

)
. (8.53)

Similarly, the charge density will be given by

ρ(~r, t) = λ(z, t) δ(x)δ(y) , (8.54)

where λ(z, t) is the charge per unit length in the rods. The charge conservation equation

therefore becomes
∂I(z, t)

∂z
+
∂λ(z, t)

∂t
= 0 , (8.55)

and so, in view of the time dependence, which implies also λ(z, t) = λ(z)e−iωt, we have

∂I(z)

∂z
− iωλ(z) = 0 . (8.56)

Thus we shall have

λ(z) = − i

ω

∂I(z)

∂z
= − i

ω
I0

∂

∂z

(
1− 2|z|

d

)
. (8.57)

This implies

λ(z) =
2i I0

ωd
, 0 < z ≤ 1

2d ,

λ(z) = −2i I0

ωd
, −1

2d ≤ z < 0 , (8.58)

with λ(z) = 0 for z outside the range −1
2d ≤ z ≤

1
2d.

The dipole moment ~p is directed along the z axis, ~p = (0, 0, p), and is given by

p =

∫ d/2

−d/2
zλ(z)dz =

2i I0

ωd

∫ d/2

0
zdz − 2i I0

ωd

∫ 0

−d/2
zdz =

i I0d

2ω
. (8.59)

34It should in principle be possible to derive the profile function for the current in the antenna as a

function of z. This would involve solving time-dependent boundary-value problem, and I have not seen it

done analytically.
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From (8.50), we therefore find that the power per unit solid angle is given by

dP

dΩ
=
k4|~p |2

8π
sin2 θ =

I2
0 (kd)2

32π
sin2 θ , (8.60)

where θ is the angle between ~n = ~r/r and the z axis. Integrating over all solid angles, the

total radiated power is therefore given by

P = 1
12I

2
0 (kd)2 . (8.61)

8.3 Higher multipoles

As mentioned previously, in a multipole expansion we can obtain exact expressions, term

by term, for the electric and magnetic fields. To do this, first go back to the general integral

expression (8.4), i.e.

~A(~r ) =

∫
~J(~r ′)

ei k|~r−~r ′|

|~r − ~r ′|
d3~r ′ , (8.62)

which gives ~A(~r, t) = ~A(~r ) e−iωt. The goal now will be to construct a systematic expansion

of the function

ei k|~r−~r ′|

|~r − ~r ′|
(8.63)

as a power series in the small quantity r′/r.

We begin by noting that for a general function f(~r ), we can apply Taylor’s theorem to

obtain

f(~r + ~a ) = f(~r ) + ai∂if(~r ) +
1

2!
ai aj ∂i∂jf(~r ) + · · · . (8.64)

Now take f(~r ) to be the function

f(~r ) =
eik|~r |

|~r |
=
eikr

r
, (8.65)

and take ~a to be −~r ′. Thus from eqn (8.64) we find

f(~r − ~r ′) = f(~r )− x′i ∂if(~r ) +
1

2!
x′ix
′
j ∂i∂jf(~r ) + · · ·

= f(r)− x′i ∂if(r) +
1

2!
x′ix
′
j ∂i∂jf(r) + · · · ,

= f(r)− x′i (∂ir) f
′(r) +

1

2
x′ix
′
j [(∂i∂jr)f

′(r) + (∂ir)(∂jr) f
′′(r)] + · · · ,(8.66)

where the primes on f(r) denote derivatives with respect to r, and so

ei k|~r−~r ′|

|~r − ~r ′|
=

1

r
ei kr +

( 1

r2
− i k

r

)
(~n · ~r ′) ei kr + · · · . (8.67)
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The first term in eqn (8.67) gives the electric dipole contribution that we found in the

previous section, in eqns (8.27) and (8.37). As we emphasised in that discussion, this term

was in fact complete and exact, as we have now seen. As we shall now show, the second

term in eqn (8.67) gives contributions for an electric quadrupole term and a magnetic dipole

term.

Plugging the second term in eqn (8.67) into the integral (8.62) that gives the vector

potential gives

~A(~r ) = ei kr
( 1

r2
− i k

r

) ∫
(~n · ~r ′) ~J(~r ′) d3~r ′ . (8.68)

In order to interpret this expression, we need to manipulate the integrand a bit. Its i’th

component is given by

nj x
′
j Ji(~r

′) = 1
2(Ji x

′
j − Jj x′i)nj + 1

2(Ji x
′
j + Jj x

′
i)nj ,

= 1
2εijk ε`mk J` x

′
m nj + 1

2(Ji x
′
j + Jj x

′
i)nj ,

= −εijk njMk + 1
2(Ji x

′
j + Jj x

′
i)nj , (8.69)

where

Mi(~r
′) = 1

2εijk x
′
j Jk(~r

′) , i.e. ~M(~r ′) = 1
2~r
′ × ~J(~r ′) (8.70)

is the magnetisation resulting from the current density ~J . (The argument of ~J is always

understood to be the primed position vector ~r ′.)

The remaining term in (8.69), i.e. the symmetric term 1
2(Ji x

′
j+Jj x

′
i)nj , can be analysed

as follows. Consider

∂′k(x
′
i x
′
j nj Jk) = δik x

′
j nj Jk + δjk x

′
i nj Jk + x′i x

′
j nj ∂

′
kJk ,

= (x′i Jj + x′j J
′
i)nj + ix′i x

′
j nj ω ρ(~r ′) , (8.71)

where, to get to the last line, we used the charge conservation equation ∂′kJk + ∂ρ/∂t =

∂kJk − iω ρ = 0. Integrating eqn (8.71) over all space, the left-hand side can be turned into

a surface integral over the sphere at infinity, which therefore gives zero. Thus we conclude

that ∫
(x′i Jj + x′j Ji)njd

3~r ′ = −i k

∫
x′i x

′
j nj ρ d

3~r , (8.72)

where we have replaced ω by k, since they are equal. The upshot, using eqn (8.69), is that∫
(~n · ~r ′) ~J(~r ′) d3~r ′ = −~n×

∫
~M d3~r ′ − i k

2

∫
~r ′ (~n · ~r ′) ρ(~r ′) d3~r ′ . (8.73)

Defining the magnetic dipole moment ~m by

~m =

∫
~M(~r ′) d3~r ′ = 1

2

∫
~r ′ × ~J(~r ′) d3~r ′ , (8.74)
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we conclude that the contribution (8.68) to the vector potential gives

~A(~r ) = ei kr
( i k

r
− 1

r2

)
~n× ~m+

i k

2
ei kr

( i k

r
− 1

r2

) ∫
~r ′ (~n · ~r ′) ρ(~r ′) d3~r ′ . (8.75)

Recall that as always in these calculations, ~n = ~r
r . Since this is independent of the integra-

tion variable ~r ′ it could of course be taken outside the integral in the second term in eqn

(8.75). However, it is easier to write the expression as we have done here, so that ~n sits

directly adjacent to the ~r ′ that it is dotted into. Recall also that the current density ~J(~r )

and the charge density ρ(~r ) here are in general complex quantities, and so the magnetic

dipole moment ~m appearing in eqn (8.75) can in general be complex. (See the paragraph

after eqn (8.37) for further discussion of this point.)

8.3.1 Magnetic dipole term

Consider the magnetic dipole term in (8.75) first:

~A(~r ) = ei kr
( i k

r
− 1

r2

)
~n× ~m . (8.76)

Let

f = f(r) ≡ ei kr
( i k

r2
− 1

r3

)
, (8.77)

so ~A = rf~n× ~m = f~r × ~m. Then from ~B = ~∇× ~A we shall have

Bi = εijk∂jAk = εijk εk`m ∂j(fx`)mm ,

= εijk εk`m (f ′x`
xj
r

+ fδj`) ,

= (δi`δjm − δimδj`)(f ′x`
xj
r

+ fδj`) ,

= rf ′ni~n · ~m− rf ′mi − 2fmi , (8.78)

where f ′ means df(r)/dr. From (8.77) we have

f ′ = ei kr
(
− k2

r2
− 3i k

r3
+

3

r4

)
= −k

2

r2
ei kr − 3f

r
, (8.79)

and so we find

~B = −k2~n× (~n× ~m)
ei kr

r
+ [3~n (~n · ~m)− ~m ]

( 1

r3
− i k

r2

)
ei kr . (8.80)

Note that this is identical to the expression (8.43) for the electric field of an electric dipole

source, with the electric dipole ~p replaced by the magnetic dipole, and the electric field

replaced by the magnetic field:

~p −→ ~m , ~E −→ ~B . (8.81)
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The electric field of the magnetic dipole can be obtained by using ~E = (i/k) ~∇× ~B, as in

eqn (8.6). However, a simpler way to find it here is to note that from the Maxwell equation

~∇× ~E = −∂ ~B/∂t we have

~∇× ~E = iω ~B = i k ~B , (8.82)

and so

~B = − i

k
~∇× ~E . (8.83)

Now, we already saw from the calculations for the electric dipole that when the ~B field

(8.41) is substituted into (8.6), it gives rise to the ~E field given in (8.43). As we just noted,

in the present magnetic dipole case, the expression for the ~B field is just like the expression

for the ~E field in the electric dipole case, and we already know that in the electric case, the

~B field is given by (8.41). Therefore, we can conclude that in the present magnetic case,

the ~E field that would yield, using (8.83), the result (8.80) for the ~B field will be just the

negative of the expression for ~B in the electric case (with ~p replaced by ~m). (The reason for

the minus sign is that (8.83) has a minus sign, as compared with (8.6), under the exchange

of ~E and ~B.) Thus the upshot is that the electric field for the magnetic dipole radiation

will be given by

~E = −k2(~n× ~m)
ei kr

r

(
1 +

i

kr

)
. (8.84)

This result can alternatively be verified (after a rather involved calculation) by directlty

substituting (8.80) into (8.6).35

Notice that, as in the earlier calculation of the fields due to an electric dipole, we have

kept all the terms in the expressions for ~E and ~B. These include the leading-order (slowest

fall-off) radiation terms, and also the subleading terms in the induction and static zones.

An observation from the calculations of the electric and magnetic fields for electric dipole

radiation and magnetic dipole radiation is that there is a discrete symmetry under which

35The only “gap” in the simple argument we just presented is that any other vector ~E ′ = ~E + ~∇h would

also give the same ~B field when plugged into (8.83), where h was an arbitrary function. However, we know

that ~∇ · ~E should vanish (we are in a region away from sources), and it is obvious almost by inspection that

the answer given in (8.84) satisfies this condition. Thus if we had arrived at the wrong answer for ~E, it could

be wrong only by a term ~∇h where ∇2h = 0. There is no such function with an exponential factor ei kr,

and so there is no possibility of our answer (8.84) being wrong. If any doubts remain, the reader is invited

to substitute (8.80) into (8.6) to verify (8.84) directly.
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the two situations interchange:

~p −→ ~m

~E −→ ~B (8.85)

~B −→ − ~E

This is an example of what is known as an “electric/magnetic duality” of Maxwell’s equa-

tions.

8.3.2 Electric quadrupole term

We now return to the electric quadrupole term in (8.75), namely

~A(~r ) =
i k

2
ei kr

( i k

r
− 1

r2

) ∫
~r ′ (~n · ~r ′) ρ(~r ′) d3~r ′ . (8.86)

For simplicity, we shall keep only the leading-order radiation term in this expression,

~A(~r ) = −1
2k

2 e
i kr

r

∫
~r ′ (~n · ~r ′) ρ(~r ′) d3~r ′ . (8.87)

and furthermore when calculating the ~B and ~E fields, we shall keep only the leading-order

1/r radiation terms that come from the derivatives hitting ei kr. As we observed before, this

means that when we act with ~∇, we can simply use the rule

~∇ −→ i k ~n . (8.88)

Thus, from ~B = ~∇× ~A we shall have, for the radiation field,

~B = i k ~n× ~A . (8.89)

We therefore have

~B(~r ) = −1
2k

2 (i k)~n× ei kr

r

∫
~r ′ (~n · ~r ′) ρ(~r ′) d3~r ′ ,

= − i k3

2

ei kr

r

∫
(~n× ~r ′)(~n · ~r ′) ρ(~r ′) d3~r ′ . (8.90)

For the electric field, we have, using (8.6) and (8.88),

~E =
i

k
~∇× ~B = −~n× ~B = −i k~n× (~n× ~A) . (8.91)

The electric quadrupole moment tensor Qij is defined by

Qij =

∫
(3x′ix

′
j − r′

2
δij) ρ(~r ′) d3~r ′ . (8.92)
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Note that this is traceless, i.e. Qii = 0 (summed over i, of course!). As in the previous

discussion of the electric and magnetic dipole moments, it should be recalled here that in

general ρ(~r ) can be complex, and hence Qij can be complex in general.

Define the vector ~Q(~n), whose components Q(~n)i are given by

Q(~n)i ≡ Qij nj . (8.93)

Consider the expression 1
3~n× ~Q(~n). We shall have

[1
3~n× ~Q(~n)]i = 1

3εijk njQk` n` ,

= 1
3εijk njn`

∫
(3x′kx

′
` − r′

2
δk`) ρ(~r ′) d3~r ′ ,

=

∫
(~n× ~r ′)i (~n · ~r ′) ρ(~r ′) d3~r ′ . (8.94)

(Note that the δk` term in the second line gives zero, since εijk nj n` δk` = εijk nn nk = 0.)

This implies that the expression (8.90) for the electric-quadrupole ~B field can be written as

~B = − i k3

6r
ei kr ~n× ~Q(~n) . (8.95)

Since we have ~E = ~B × ~n (see (8.91)), it follows that the time-averaged power per unit

solid angle will be given by

dP

dΩ
=

1

8π
<
(
~E × ~B ∗

)
· ~n r2 ,

=
k6

288π
|(~n× ~Q(~n))× ~n|2 =

k6

288π
(| ~Q(~n)|2 − |~n · ~Q(~n)|2) , (8.96)

which can therefore be written as

dP

dΩ
=

k6

288π
|~n× ~Q(~n)|2 . (8.97)

Written using indices, this is therefore

dP

dΩ
=

k6

288π
(QkiQ

∗
kjninj −QijQ∗k`ninjnkn`) . (8.98)

As always, having obtained an expression for the power radiated per unit solid angle, it

is natural to integrate this up over the sphere, in order to obtain the total radiated power.

In this case, we shall need to evaluate∫
ninj dΩ , and

∫
ninjnkn` dΩ . (8.99)

One way to do this is to parameterise the unit vector ~n in terms of spherical polar angles

(θ, ϕ) in the usual way,

~n = (sin θ cosϕ, sin θ sinϕ, cos θ) , (8.100)
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and slog out the integrals with dΩ = sin θdθdϕ.

A more elegant way to evaluate the integrals in (8.99) is as follows. For the first integral,

we note that the answer, whatever it is, must be a symmetric 2-index tensor. It must also

be completely isotropic, since by the time we have integrated over all solid angles it is

not possible for the result to be “biased” so that it favours any direction in space over any

other. There is only one possibility for the symmetric isotropic tensor; it must be a constant

multiple of the Krönecker delta, so we must have∫
ninj dΩ = c δij , (8.101)

for some constant c. The constant c can be determined by taking the trace, and using

nini = 1: ∫
nini dΩ =

∫
dΩ = 4π = c δii = 3c , (8.102)

and so we have ∫
ninj dΩ =

4π

3
δij . (8.103)

In case one doubted this result, it is not too hard in this case to confirm the result by

evaluating all the integrals explicitly using (8.100).

Turning now to the second integral in (8.99), we can use a similar argument. The answer

must be a 4-index totally symmetric isotropic tensor. In fact the only symmetric isotropic

tensors are those that can be made by taking products of Krönecker deltas, and so in this

case it must be that ∫
ninjnkn` dΩ = b (δijδk` + δikδj` + δi`δjk) , (8.104)

for some constant b. We can determine the constant by multiplying both sides by δijδk`,

giving

4π =

∫
dΩ = (9 + 3 + 3)b = 15b , (8.105)

and so ∫
ninjnkn` dΩ =

4π

15
(δijδk` + δikδj` + δi`δjk) . (8.106)

With these results we shall have from (8.98) that

P =

∫
dP

dΩ
dΩ =

k6

288π

[
QkiQ

∗
kj

∫
ninj dΩ−QijQ∗k`

∫
ninjnkn` dΩ

]
,

=
k6

288π

[4π

3
QkiQ

∗
kjδij −

4π

15
QijQ

∗
k`(δijδk` + δikδj` + δi`δjk)

]
,

=
k6

216

[
QijQ

∗
ij − 2

5QijQ
∗
ij − 1

5QiiQ
∗
jj

]
,

=
k6

360
QijQ

∗
ij . (8.107)
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(Recall that Qij is symmetric and traceless.)

Since the quadrupole moment tensor Qij is symmetric, it follows that if it is also real,

it is then always possible to choose an orientation for the Cartesian coordinate system

such that Qij becomes diagonal. (This is because the matrix U that diagonalises Q, i.e.

Q → Qdiag = UTQU , is itself orthogonal, UTU = 1l, and therefore the diagonalisation is

achieved by an orthogonal transformation of the coordinates.)36 Thus, having chosen an

appropriate orientation for the Cartesian axes, we can assume that

Qij =


Q1 0 0

0 Q2 0

0 0 Q3

 , where Qii = 0 implies Q1 +Q2 +Q3 = 0 . (8.108)

The expression (8.98) for the angular power distribution will give

dP

dΩ
=

k6

288π

(
Q2

1n
2
1 +Q2

2n
2
2 +Q2

3n
2
3 − (Q1n

2
1 +Q2n

2
2 +Q3n

2
3)2
)
. (8.109)

One can substitute (8.100) into this in order to obtain an explicit expression for the dP/dΩ

in terms of spherical polar angles (θ, ϕ).

Consider for simplicity the special case where Q1 = Q2. This means that there is an

axial symmetry around the z axis, and also we shall have

Q1 = Q2 = −1
2Q3 . (8.110)

Substituting (8.100) and (8.110) into (8.109), we obtain

dP

dΩ
=
k6Q2

3

128π
sin2 θ cos2 θ =

k6Q2
3

512π
sin2 2θ . (8.111)

This is indeed, as expected, azimuthally symmetric (it does not depend on ϕ). It describes a

quatrefoil-like power distribution, with four lobes, unlike the figure-of-eight power distribu-

tion of the electric dipole radiation. Note also that its frequency dependence is proportional

to ω6 (= k6), unlike the electric dipole radiation that is proportional to ω4. A plot of the

power distribution for quadrupole radiation is given in Figure 3 below.

36In the general case where Qij is complex, it cannot necessarily be diagonalised by means of a real

orthogonal transformation (i.e. a rotation of the coordinate system). To see this, suppose Qij = QRij + iQIij ,

where QRij and QIij are both real and symmetric. In general, the real, orthogonal transformation U that is

required in order to diagonalise QRij will be different from the one that is required in order to diagonalise

QIij .
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Figure 6: The angular power distribution for electric quadrupole radiation

8.4 Linear antenna

In the later part of section 8.2, we considered a centre-fed dipole antenna. In that section

we made the assumption that the wavelength of the electromagnetic radiation was very

large compared with the length of the dipole, i.e. that kd << 1. In that limit, one could

assume to a good approximation that the current in each arm of the dipole antenna fell off

in a linear fashion as a function of z (the axis along which the dipole is located). Thus,

with the dipole arms extanding over the intervals

−1
2d ≤ z < 0 and 0 < z ≤ 1

2d , (8.112)

we assumed there that the current in each arm was proportional to (d/2− |z|).

In this section, we shall consider the case where the dipole arms of not assumed to be

short compared to the wavelength. Under these circumstances, it can be shown that the

current distribution in the dipole arms takes the form

~J(~r, t) = I0 sin k(d/2− |z|) e−iωt δ(x)δ(y) ~Z , |z| ≤ 1
2d , (8.113)

where ~Z = (0, 0, 1) is the unit vector along the z-axis, which is the axis along which the

dipole is located.
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We then have ~A(~r, t) = ~A(~r ) e−iωt, where

~A(~r ) =

∫ ~J(~r ′, t− |~r − ~r |) d3~r ′

|~r − ~r ′|
. (8.114)

Thus in the radiation zone, with |~r − ~r ′| ≈ r − ~n · ~r ′ as usual, we therefore have

~A(~r ) ≈ ~Z
I0 e

i kr

r

∫ d/2

−d/2
sin k(d/2− |z|) e−i kz cos θ dz ,

= ~Z
2I0 e

i kr

r

cos(1
2kd cos θ)− cos(1

2kd)

sin2 θ
(8.115)

As we saw earlier, the magnetic field is given by i k ~n × ~A in the radiation zone, and

~E = −~n× ~B. Therefore the radiated power per unit solid angle is given by

dP

dΩ
=
r2

8π
<
(
~E × ~B ∗

)
· ~n =

r2

8π
|( ~B · ~B ∗)~n|2 =

r2

8π
| ~B|2 . (8.116)

Here we have

| ~B|2 = |i k~n× ~A|2 = k2(| ~A|2 − (~n · ~A)2) = k2| ~A|2 sin2 θ , (8.117)

since ~n · ~Z = cos θ, and so the radiated power per unit solid angle is given by

dP

dΩ
=
I2

0

2π

[cos(1
2kd cos θ)− cos(1

2kd)

sin θ

]2
. (8.118)

We can now consider various special cases:

8.4.1 kd << 1:

In this case, we can make Taylor expansions of the trigonometric functions in the numerator

in (8.118), leading to

dP

dΩ
≈ I2

0

2π

[1− 1
2(1

2kd)2 cos2 θ − 1− 1
2(1

2kd)2

sin θ

]2
,

=
I2

0

2π

( 1
2(1

2kd)2 sin2 θ

sin θ

)2
,

=
I2

0 (kd)2 sin2 θ

128π
. (8.119)

This agrees with the result (8.60), after making allowance for the fact that the current in

the calculation leading to (8.60) was twice as large as the current in the present calculation.

8.4.2 kd = π:

In this case, each arm of the dipole has a length equal to 1
4 of the wavelength, and so

I(z) = I0 sin 1
2π(1− 2|z|/d). In this case, (8.118) becomes

dP

dΩ
=
I2

0

2π

cos2(1
2π cos θ)

sin2 θ
. (8.120)
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Figure 7: Normalised plots of the angular power distributions for the short antenna (in

blue); the quarter-wave antenna (in orange); and the half-wave antenna (in green).

8.4.3 kd = 2π:

In this case, each dipole arm has a length equal to 1
2 of the wavelength, and I(z) =

I0 sinπ(1− 2|z|/d). In this case (8.118) becomes

dP

dΩ
=
I2

0

2π

cos4(1
2π cos θ)

sin2 θ
. (8.121)

A polar plot showing the angular power distributions for the cases of the short antenna

in eqn (8.119); the quarter-wave antenna in eqn (8.120); and the half-wave antenna in eqn

(8.121) are shown in figure 7. They have been scaled so that the maximum amplitude is

unity in each case. It can be seen that the short antenna has the widest angular spread,

while the half-wave antenna has the narrowest angular spread.

9 Electromagnetism and Quantum Mechanics

9.1 The Schrödinger equation and gauge transformations

We saw at the end of chapter 2, in equation (2.109), that in the non-relativistic limit the

Hamiltonian describing a particle of mass m and charge e in the presence of electromagnetic

fields given by potentials φ and ~A is

H =
1

2m
(πi − eAi)2 + eφ , (9.1)

where πi is the canonical 3-momentum. In quantum mechanics, we the standard prescription

for writing down the Schrödinger equation for the wavefunction ψ describing the particle is
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to interpret πi as an operator, and to write

H ψ = i ~
∂ψ

∂t
. (9.2)

In the position representation we shall have

πi = −i ~ ∂i , or ~π = −i ~ ~∇ . (9.3)

Thus the Schrödinger equation for a particle of mass m and charge e in an electromagnetic

field is

− ~2

2m

(
~∇− i e

~
~A
)2
ψ + eφψ = i ~

∂ψ

∂t
. (9.4)

The Schrödinger equation (9.4) is written in terms of the scalar and vector potentials

φ and ~A that describe the electromagnetic field. Thus, if we merely perform a gauge

transformation

~A −→ ~A ′ = ~A+ ~∇λ , φ −→ φ′ = φ− ∂λ

∂t
, (9.5)

then the Schrödinger equation will change its form. On the other hand, we expect that

the physics should be unaltered by a mere gauge transformation, since this leaves the

physically-observable electric and magnetic fields unchanged. It turns out that we should

simultaneously perform the very specific spacetime-dependent phase transformation on the

wavefunction ψ,

ψ −→ ψ′ = ei eλ/~ ψ . (9.6)

Then the Schrödinger equation expressed entirely in terms of the primed quantities (i.e.

wavefunction ψ′ and electromagnetic potentials φ′ and ~A ′) will take the identical form to

the original unprimed equation (9.4). Thus, we may say that the Schrödinger equation

transforms covariantly under gauge transformations.

To see the details of how this works, it is useful first to define what are called covariant

derivatives. We do this both for the three spatial derivatives, and also for the time derivative.

Thus we define

Di ≡ ∂i −
i e

~
Ai , D0 ≡

∂

∂t
+

i e

~
φ . (9.7)

Note that the original Schrödinger equation (9.4) is now written simply as

− ~2

2m
DiDiψ − i ~D0ψ = 0 . (9.8)

Next, perform the transformations

~A −→ ~A ′ = ~A+ ~∇λ , φ −→ φ′ = φ− ∂λ

∂t
,

ψ −→ ψ′ = ei eλ/~ ψ (9.9)
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The crucial point about this is that we have the following:

D′i ψ
′ ≡

(
∂i −

i e

~
A′i

)
ψ′ =

(
∂i −

i e

~
Ai −

i e

~
(∂iλ)

)(
ei eλ/~ ψ

)
,

= ei eλ/~
(
∂i −

i e

~
Ai −

i e

~
(∂iλ) +

i e

~
(∂iλ)

)
ψ ,

= ei eλ/~
(
∂i −

i e

~
Ai

)
ψ , (9.10)

and

D′0 ψ
′ ≡

( ∂
∂t

+
i e

~
φ′
)
ψ′ =

( ∂
∂t

+
i e

~
φ− i e

~
∂λ

∂t

)(
ei eλ/~ ψ

)
,

= ei eλ/~
( ∂
∂t

+
i e

~
φ− i e

~
∂λ

∂t
+

i e

~
∂λ

∂t

)
ψ ,

= ei eλ/~
( ∂
∂t

+
i e

~
φ
)
ψ . (9.11)

In other words, we have

D′iψ
′ = ei eλ/~Diψ , D′0ψ

′ = ei eλ/~D0ψ . (9.12)

This means that Diψ and D0ψ transform the same way as ψ itself under the gauge

transformations (9.9), namely just by acquiring the phase factor ei eλ/~. This is a non-

trivial statement, since the gauge parameter λ is an arbitrary function of space and time.

Had we been considering standard partial derivatives ∂i and ∂/∂t rather than the covariant

derivatives defined in (9.7), it would most certainly not have been true. For example,

∂iψ
′ = ∂i

(
ei eλ/~ ψ

)
= ei eλ/~ ∂iψ + ei eλ/~ i e

~
(∂iλ)ψ 6= ei eλ/~ ∂iψ , (9.13)

precisely because the derivative can land on the space-time dependent gauge-transformation

parameter λ and thus give the second term, which spoils the covariance of the transforma-

tion. The point about the covariant derivatives is that the contributions from the gauge

transformation of the gauge potentials precisely cancels the “unwanted” second term in

(9.13).

By iterating the calculation, it also follows that D′iD
′
iψ
′ = ei eλ/~DiDiψ, and so we see

that the Schrödinger equation (9.8) written in terms of the primed fields, i.e.

− ~2

2m
D′iD

′
iψ
′ − i ~D′0ψ

′ = 0 , (9.14)

just implies the Schrödinger equation in terms of unprimed fields, since

0 = − ~2

2m
D′iD

′
iψ
′ − i ~D′0ψ

′ ,

= ei eλ/~
(
− ~2

2m
DiDiψ − i ~D0ψ

)
. (9.15)
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What we have proved above is that the Schrödinger equation transforms covariantly

under electromagnetic gauge transformations, provided that at the same time the wave

function is scaled by a space-time dependent phase factor, as in (9.9). Note that we use the

term “covariant transformation” here in the same sense as we used it earlier in the course

when discussing the behaviour of the Maxwell equations under Lorentz transformations.

The actual transformation is totally different in the two contexts; here we are discussing

the behaviour of the Schrödinger equation under gauge transformations rather than Lorentz

transformations, but in each case the essential point, which is characteristic of a covariance

of any equation under a symmetry transformation, is that the equation expressed in terms

of the symmetry-transformed (primed) variables is identical in form to the original equation

for the unprimed variables, but with a prime placed on every field.

Note that the two definitions of the spatial and time covariant derivatives in (9.7) can

be unified into the single 4-dimensional definition

Dµ = ∂µ −
i e

~
Aµ (9.16)

since we have Aµ = (φ, ~A), and hence Aµ = (−φ, ~A).

The Schrödinger equation itself provides only an approximate description of the quantum

theory of matter. This is obvious from the fact that it is obtained by starting from a

non-relativistic classical Hamiltonian, and then applying the quantisation procedure. And

indeed, clearly the Schrödinger equation (9.8) does not transform covariantly under Lorentz

transformations. (The fact that time is treated on a completely different footing from space

makes this obvious.) The non-relativistic Schrödinger equation is therefore inconsistent

with causality (essentially, the notion that nothing can travel faster than light). At the

very least, one should therefore be taking a relativistic classical theory as the the starting

point for applying the quantisation procedure. It turns out that this is not sufficient. If

one constructs a relativistic generalisation of the Schrödinger equation, one then encounters

difficulties in giving a probabilistic interpretation of the wave function, related to the fact

that the probability density current is not positive definite. The resolution of this problem

requires a further process of quantisation, known as second quantisation, in which the wave-

function itself becomes an operator that creates and annihilates particles. Theories of this

type are known as quantum field theories, and they lie at the heart of all the fundamental

theories of matter and forces.

An example is quantum electrodynamics, which is a quantum field theory describing

electromagnetism together with electrons (and necessarily positrons, which are the antipar-

ticles of electrons). In this theory the 4-vector gauge potential Aµ becomes a quantum field,
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which creates and annihilates photons, and the electron is described by a quantum field that

satisfies a relativistic equation known as the Dirac equation. It is one of the most spec-

tacularly successful theories known, leading to predictions that have been experimentally

verified to quite remarkable accuracy.

9.2 Magnetic monopoles

The Maxwell equations

∂µF
µν = −4π Jν ,

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 (9.17)

take on a more symmetrical-looking form if we introduce the dual of the field-strength

tensor, defined by

F̃µν = 1
2εµνρσ F

ρσ . (9.18)

In terms of F̃µν , the second equation in (9.17) (i.e. the Bianchi identity) becomes

∂µF̃
µν = 0 . (9.19)

From F0i = −Ei and Fij = εijkBk, it is easy to see that

F̃0i = Bi , F̃ij = εijk Ek . (9.20)

It follows that F̃µν is obtained from Fµν by making the replacements

~E −→ − ~B , ~B −→ ~E . (9.21)

The symmetry between the two Maxwell equations would become even more striking

if there were a current on the right-hand side of (9.19), analogous to the electric 4-current

density on the right-hand-side of the first Maxwell equation in (9.17). Since the rôles of ~E

and ~B are exchanged when passing from Fµν to F̃µν , it is evident that the 4-current needed

on the right-hand side of (9.19) must be a magnetic 4-current density, JµM . Let us now

attach a subscript E to the standard electric 4-current density, in order to emphasise which

is which in the following. The generalised Maxwell equations will now be written as

∂µF
µν = −4π JνE , ∂µF̃

µν = −4π JνM . (9.22)

Particles with magnetic charge, known as magnetic monopoles, have never been seen in

nature. However, there seems to be no reason in principle why they should not exist, and
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it is of interest to explore their properties in a little more detail. A point electric charge e

has an electric field given by

~E =
e~r

r3
. (9.23)

Thus by analogy, a point magnetic monopole, with magnetic charge g, will have a magnetic

field given by

~B =
g ~r

r3
. (9.24)

This satisfies

~∇ · ~B = 4π ρM , ρM = g δ3(~r) , (9.25)

where ρM = J0
M is the magnetic charge density.

We shall be interested in studying the quantum mechanics of electrically-charged parti-

cles in the background of a magnetic monopole. Since the Schrödinger equation is written

in terms of the potentials φ and ~A, we shall therefore need to write down the 3-vector

potential ~A for the magnetic monopole. To do this, we introduce Cartesian coordinates

(x, y, z), related to spherical polar coordinates (r, θ, ϕ) in the standard way,

x = r sin θ cosϕ , y = r sin θ sinϕ , x = r cos θ , (9.26)

and we also define

ρ2 = x2 + y2 . (9.27)

Consider the 3-vector potential

~A = g
( zy
rρ2

,− zx
rρ2

, 0
)
. (9.28)

Using

∂r

∂x
=

x

r
,

∂r

∂y
=
y

r
,

∂r

∂z
=
z

r
,

∂ρ

∂x
=

x

ρ
,

∂ρ

∂y
=
y

ρ
,

∂ρ

∂z
= 0 , (9.29)

it is easily seen that

Bx = ∂yAz − ∂zAy = g∂z

( zx
rρ2

)
=

gx

rρ2
− gxz2

r3ρ2
=
gx

r3
, (9.30)

and similarly

By =
gy

r3
, Bz =

gz

r3
. (9.31)

Thus indeed we find that

~∇× ~A =
g~r

r3
, (9.32)
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and so the 3-vector potential (9.28) describes the magnetic monopole field (9.24).

In terms of spherical polar coordinates we have ρ2 = x2 + y2 = r2 sin2 θ, and so (9.28)

can be written as

~A =
g cot θ

r
(sinϕ,− cosϕ, 0) . (9.33)

Not surprisingly, this potential is singular at r = 0, since we are describing an idealised

point magnetic charge. In exactly the same way, the potential φ = e/r describing a point

electric charge diverges at r = 0 also. However, the potential (9.33) also diverges everywhere

along the z axis, i.e. at θ = 0 and θ = π. It turns out that these latter singularities are

“unphysical,” in the sense that they can be removed by making gauge transformations.

This is not too surprising, when we note that the magnetic field itself, given by (9.24) has

no singularity along the z axis. It is, of course, genuinely divergent at r = 0, so that is a

real physical singularity.

To see the unphysical nature of the singularities in (9.33) along θ = 0 and θ = π, we

need to make gauge transformations, under which

~A −→ ~A+ ~∇λ . (9.34)

Consider first taking

λ = g ϕ = g arctan
y

x
. (9.35)

From this, we find

~∇λ = −g
r

cosecθ (sinϕ,− cosϕ, 0) . (9.36)

Letting the gauge-transformed potential be ~A ′, we therefore find

~A ′ = ~A+ ~∇λ =
g

r

cos θ − 1

sin θ
(sinϕ,− cosϕ, 0) = −g

r
tan 1

2θ (sinϕ,− cosϕ, 0) . (9.37)

It can be seen that ~A is completely non-singular along θ = 0 (i.e. along the positive z axis).

It is, however, singular along θ = π (i.e. along the negative z axis).

We could, on the other hand, perform a gauge transformation with λ given by

λ = −g ϕ = −g arctan
y

x
(9.38)

instead of (9.35). Defining the gauge-transformed potential as ~A ′′ in this case, we find

~A ′′ =
g

r
cot 1

2θ (sinϕ,− cosϕ, 0) . (9.39)

This time, we have obtained a gauge potential that is non-singular along θ = π (i.e. the

negative z axis), but it is singular along θ = 0 (the positive z axis).
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There is no single choice of gauge in which the 3-vector potential for the magnetic

monopole is completely free of singularities away from the origin r = 0. We have obtained

two expressions for the vector potential, one of which, ~A ′, is non-singular along the positive

z axis, and the other, ~A ′′, is non-singular along the negative z axis. The singularity that

each has is known as a “string singularity,” since it lies along a line, or string. By making

gauge transformations the location of the string can be moved around, but it can never be

removed altogether.

In the discussion above, the z axis appears to have played a preferred rôle, but this is, of

course, just an artefact of our gauge choices. We could equally well have chosen a different

expression for ~A, related by a gauge transformation, for which the string singularity ran

along any desired line, or curve, emanating from the origin.

9.3 Dirac quantisation condition

We have seen that gauge potentials for the magnetic monopole, free of singularities on the

positive and negative z axes resepctively, are given by

~A ′ = −g
r

tan 1
2θ (sinϕ,− cosϕ, 0) ,

~A ′′ =
g

r
cot 1

2θ (sinϕ,− cosϕ, 0) . (9.40)

The two are themselves related by a gauge transformation, namely

~A ′′ = ~A ′ + ~∇(−2gϕ) . (9.41)

Now let us consider the quantum mechanics of an electron in the background of the

magnetic monopole. As we discussed in section 9.1, the Schrödinger equation for the electron

is given by (9.4), where e is its charge, and m is its mass. We shall consider the Schrödinger

equation in two different gauges, related as in (9.41). Denoting the corresponding electron

wave-functions by ψ′ and ψ′′, we see from (9.9) (9.41) that we shall have

ψ′′ = e−2i egϕ/~ ψ′ . (9.42)

However, we have seen that the gauge transformation is not physical, but merely corresponds

to shifting the string singularity of the magnetic monopole from the negative z axis to the

positive z axis. Quantum mechanically, the physics will only be unchanged if the electron

wave-function remains single valued under a complete 2π rotation around the z axis. This

means that the phase factor in the relation (9.42) must be equal to unity, and so it must

be that
2eg

~
2π = 2π n , (9.43)
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where n is an integer. Thus it must be that the product of the electric charge e on the

electron, and the magnetic charge g on the magnetic monopole, must satisfy the so-called

Dirac quantisation condition,

2e g = n ~ . (9.44)

It is interesting to note that although a magnetic monopole has never been observed, it

would only take the existence of a single monopole, maybe somewhere in another galaxy,

to imply that electric charges everywhere in the universe must quantised in units of

~
2g
, (9.45)

where g is the magnetic charge of the lonely magnetic monopole. In fact all observed

electric charges are indeed quantised; in integer multiples of the charge e on the electron,

in everyday life, and in units of 1
3e in the quarks of the theory of strong interactions. It is

tempting to speculate that the reason for this may be the existence of a magnetic monopole

somewhere out in the vastness of space, in a galaxy far far away.

10 Local Gauge Invariance and Yang-Mills Theory

10.1 Relativistic quantum mechanics

We saw in the previous section that the ordinary non-relativistic quantum mechanics of

a charged particle in an electromagnetic field has the feature that it is covariant under

electromagnetic gauge transformations, provided that the usual gauge trnasformation of

the 4-vector potential is combined with a phase transformation of the wavefunction for the

charged particle:

Aµ −→ Aµ + ∂µλ , ψ −→ ei eλ/~ ψ . (10.1)

The essential point here is that the gauge transformation parameter λ can be an arbitrary

function of the spacetime coordinates, and so the phase transformation of the wavefunction

is a spacetime-dependent one. Such spacetime-dependent transformations are known as

local transformations.

One could turn this around, and view the introduction of the electromagnetic field as the

necessary addition to quantum mechanics in order to allow the theory to be covariant under

local phase transformations of the wavefunction. If we started with quantum mechanics in

the absence of electromagnetism, so that for a free particle of mass m we have

− ~2

2m
~∇2 ψ = i ~

∂ψ

∂t
, (10.2)
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then the Schrödinger equation is obviously covariant under constant phase transformations

of the wavefunction,

ψ −→ ei c ψ , (10.3)

where c is an arbitrary constant. And, indeed, the physics described by the wavefunction

is invariant under this phase transformation, since all physical quantities are constructed

using a product of ψ and its complex conjugate ψ̄ (for example, the probability density

|ψ|2), for which the phase factors cancel out. Also, clearly, the Schrödinger equation (10.2)

does not transform nicely under local phase transformations, since the derivatives will now

land on the (spacetime dependent) phase factor in (10.3) and give a lot of messy terms.

As we now know, the way to achieve a nice covariant transformation of the Schrödinger

equation under local phase transformations is to replace the partial derivatives ∂i and ∂0 in

(10.2) by covariant derivatives

Di = ∂i −
i e

~
Ai , D0 = ∂0 +

i e

~
φ (10.4)

where Ai and φ transform in the standard way for the electromagnetic gauge potentials

at the same time as the local phase transformation for ψ is performed, as in (10.1). From

this point of view, it could be said that we have derived electromagnetism as the field

needed in order to allow the Schrödinger equation to transform covariantly under local

phase transformations of the wavefunction.

The idea now is to extend this idea to more general situations. By again demanding

local “phase” transformations of some quantum-mechanical equation, we will now be able

to derive a generalisation of electromagnetism known as Yang-Mills theory.

Working with a non-relativistic equation like the Schrödinger equation is rather clumsy,

because of the way in which space and time arise on such different footings. It is more

elegant (and simpler) to switch at this point to the consideration of relativistic quantum

mechanical equation. There are various possible equations one could consider, but they

all lead to equivalent conclusions about the generalisation of electromagnetism. Examples

one could consider include the Dirac equation, which provides a relativistic description of

the electron, or any other fermionic particle with spin 1
2 . A simpler option is to consider

the Klein-Gordon equation for a relativistic particle of spin 0 (otherwise known as a scalar

field). The Klein-Gordon equation for a free scalar field ϕ with mass m is very simple,

namely

ϕ−m2ϕ = 0 , (10.5)
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where = ∂µ∂µ is the usual d’Alembertian operator, which, as we know, is Lorentz invari-

ant.37 Note that from now on, we shall use units where Planck’s constant ~ is set equal to

1.

In what follows, we shall make the simplifying assumption that the scalar field is mass-

less, and so its Klein-Gordon equation is simly

ϕ = 0 . (10.6)

We shall do this because no essential feature that we wish to explore will be lost, and it

will slightly shorten the equations. It is completely straightforward to add it back in if

desired.38

The Klein-Gordon equation (10.6) can be derived from the Lagrangian density

L = −1
2∂

µϕ∂µϕ . (10.7)

Varying the action I =
∫
d4xL, we find

δI = −
∫
d4x∂µϕ∂µδϕ =

∫
d4x (∂µ∂

µϕ) δϕ , (10.8)

(dropping the boundary term at infinity as usual), and so demanding that the action be

stationary under arbitrary variations δϕ implies the Klein-Gordon equation (10.6).

Before moving on to the generalisation to Yang-Mills theory, we shall first review, again,

the derivation of electromagnetism as the field needed in order to turn a global phase

invariance into a local invariance, this time from the viewpoint of the relativistic Klein-

Gordon equation. To do this, we first need to enlarge the system of wavefunctions from one

real scalar to two. Suppose, then, we have two real scalars called ϕ1 and ϕ2, each satisfying

37The non-relativistic Schrödinger equation can be derived from the Klein-Gordon equation (10.5) in an

appropriate limit. The leading-order time dependence of a field with mass (i.e. energy) m will be e−imt

(in units where we set ~ = 1). Thus the appropriate non-relativistic approximation is where where the

wavefunction ϕ is assumed to be of the form ϕ ∼ e−imt ψ, with ψ only slowly varying in time, which

means that the term ∂2ψ/∂t2 can be neglected in comparison to the others. Substituting into (10.5) and

dropping the ∂2ψ/∂t2 term gives precisely the Schrödinger equation for the free massive particle, namely

−(1/2m)∇2ψ = i ∂ψ/∂t.
38Note that we can only discuss a non-relativistic limit for the massive Klein-Gordon equation. This is

because the non-relativisitic approximation (discussed in the previous footnote) involved assuming that each

time derivative of ψ with respect to t was small compared with m times ψ. Clearly this would no longer

be true if m were zero. Put another way, a massless particle is inherently relativistic, since it must travel

at the speed of light (like the photon). We shall not be concerned with taking the non-relativistic limit in

what follows, and so working with a massless field will not be a problem.
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a Klein-Gordon equation. These equations can therefore be derived from the Lagrangian

density

L = −1
2∂

µϕ1 ∂µϕ1 − 1
2∂

µϕ2 ∂µϕ2 . (10.9)

We can conveniently combine the two real fields into a complex scalar field φ, defined by

φ =
1√
2

(ϕ1 + iϕ2) . (10.10)

The Lagrangian density can then be written as

L = −1
2∂

µφ̄ ∂µφ . (10.11)

The complex field φ therefore satisfies the Klein-Gordon equation

φ = 0 . (10.12)

It is clear that the complex field φ has a global phase invariance, under

φ −→ eiα φ , (10.13)

where α is a constant. (The term “global” is used to describe such phase transformations,

which are identical at every point in spacetime.) This can be seen at the level of the Klein-

Gordon equation (10.12), since the constant phase factor simply passes straight through the

d’Alembertian operator. It can also be seen at the level of the Lagrangian density, since

again the derivatives do not land on the phase factor, and furthermore, the eiα phase factor

from transforming φ is cancelled by the e−iα phase factor from tramsforming φ̄.

It is also clear that the Lagrangian density is not invariant under local phase trans-

formations, where α is assumed now to be spacetime dependent. This is because we now

have

∂µφ −→ ∂µ(eiα φ) −→ eiα ∂µφ+ i (∂µα)φ . (10.14)

It is the second term, where the derivatives land on α, that spoils the invariance.

The remedy, not surprisingly, is to introduce a gauge potential Aµ, and replace the

partial derivatives by covariant derivatives

Dµ = ∂µ − i eAµ , (10.15)

where now φ will be interpreted as describing a complex scalar field with electric charge

e. As we saw before when discussing the Schrödinger equation, the covariant derivative
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acting on φ has a nice transformation property under the local phase tramsformations of φ,

provided at the same time we transform Aµ:

φ −→ eiα φ , Aµ −→ Aµ +
1

e
∂µα . (10.16)

This implies that Dµφ transforms nicely as

Dµφ −→ eiαDµφ , (10.17)

and so the new Lagrangian density

L = −1
2(Dµφ) (Dµφ) (10.18)

is indeed invariant. This is the “derivation” of ordinary electromagnetism.

In this viewpoint, where we are deriving electromagnetism by requiring the local phase

invariance of the theory under (10.13), has not yet given any dynamics to the gauge field

Aµ. Indeed, one cannot derive a dynamical existence for Aµ because in fact there is no

unique answer. What one can do, however, is to introduce a dynamical term “by hand,”

which has all the natural properties one would like. First of all, we want a dynamical term

that respects the gauge invariance we have already achieved in the rest of the Lagrangian.

Secondly, we expect that it should give rise to a second-order dynamical equation for Aµ.

We are back to the discussion of section 4.2, where we derived Maxwell’s equations from an

action principal. The steps leading to the answer are as follows.

First, to make a gauge-invariant term we need to use the gauge-invariant field strength

Fµν = ∂µAν − ∂νAµ (10.19)

as the basic “building block.” Then, to make a Lorentz-invariant term, the lowest-order

possibility is to form the quadratic invariant Fµν Fµν . Taking the standard normalisation

as discussed in section 4.2, we are therefore lead to propose the total Lagrangian density

L = −1
2(Dµφ) (Dµφ)− 1

16π
Fµν Fµν , (10.20)

where Dµ = ∂µ − i eAµ. It is easily verified that the Euler-Lagrange equations resulting

from this Lagrangian density are as follows. Requiring the stationarity of the action under

variations of the wavefunction φ implies

DµDµφ = 0 , i.e. (∂µ − i eAµ)(∂µ − i eAµ)φ = 0 , (10.21)

This is the gauge-covariant generalisation of the original uncharged Klein-Gordon equation.
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Requiring instead stationarity of the action under variations of Aµ implies

∂µF
µν = −4πJν , (10.22)

where

Jµ = −i e
(
φ̄Dµφ− (Dµφ)φ

)
. (10.23)

Thus Aµ satisfies the Maxwell field equation, with a source current density given by (10.23).

This is exactly what one would hope for; the complex field φ carries electric charge e, and

so it is to be expected that it should act as a source for the electromagnetic field. In the

process of giving dynamics to the electromagnetic field we have, as a bonus, derived the

current density for the scalar field.

10.2 Yang-Mills theory

At the end of the previous subsection we rederived electromagnetism as the field needed in

order to turn the global phase invariance of a complex scalar field that satisfies the Kelin-

Gordon equation into a local phase invariance. The phase factor eiα is a unit-modulus

complex number. The set of all unit-modulus complex numbers form the group U(1); i.e.

1× 1 complex matrices U satisfying U †U = 1. (For 1× 1 matrices, which are just numbers,

there is of course no distinction between Hermitean conjugation, denoted by a dagger, and

complex conjugation.)

In order to derive the generalisation of electromagnetism to Yang-Mills theory we need to

start with an extended system of scalar fields, each satisfying the Klein-Gordon equation,

whose Lagrangian is invariant under a larger, non-abelian, group.39 We shall take the

example of the group SU(2) in order to illustrate the basic ideas. One can in fact construct

a Yang-Mills theory based on any Lie group.

The group SU(2) should be familiar from quantum mechanics, where it arises when

one discusses systems with intrinstic spin 1
2 . The group can be defined as the set of 2 × 2

complex matrices U subject to the conditions

U †U = 1 , detU = 1 . (10.24)

39An abelian group is one where the order of combination of group elements makes no difference. By

contrast, for a non-ableian group, if two elements U and V are combined in the two different orderings, the

results are, in general, different. Thus, for a group realised by matrices under multiplication, for example,

one has in general that UV 6= V U .
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It can therefore be parameterised in the form

U =

 a b

−b̄ ā

 , (10.25)

where a and b are complex numbers subject to the constraint

|a|2 + |b|2 = 1 . (10.26)

If we write a = x1 + ix2, b = x3 + ix4, the constraint is described by the surface

x2
1 + x2

2 + x2
3 + x2

4 = 1 (10.27)

in Euclidean 4-space, and so the elements of the group SU(2) are in one-to-one correspon-

dence with the points on a unit 3-dimensional sphere. Clearly SU(2) has three independent

parameters.40

The group SU(2) can be generated by exponentiating the three Pauli matrices τa, where

τ1 =

0 1

1 0

 , τ2 =

0 −i

i 0

 , τ3 =

1 0

0 −1

 . (10.28)

They satisfy the commutation relations

[τa, τb] = 2i εabc τc , (10.29)

i.e. [τ1, τ = 2] = 2i τ3, and cyclic permutations.

Let

Ta =
1

2i
τa . (10.30)

We shall therefore have

[Ta, Tb] = εabc Tc . (10.31)

Note that the Ta, which are called the generators of the Lie algebra of SU(2), are anti-

Hermitean,

T †a = −Ta . (10.32)

They are also, of course, traceless.

40For comparison, the group U(1), whose elements U can be parameterised as U = eiα with 0 ≤ α < 2π,

has one parameter. Since eiα is periodic in α the elements of U(1) are in one-to-one correspondence with

the points on a unit circle, or 1-dimensional sphere. In fact the circle, S1, and the 3-sphere, S3, are the only

spheres that are isomorphic to groups.
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The SU(2) group elements can be written as

U = eαa Ta , (10.33)

where αa are three real parameters. (This is the analogue of writing the U(1) elements U

as U = eiα.) It is easy to check that the unitarity of U , i.e. U †U = 1, follows from the

anti-Hermiticity of the generators Ta:

U †U =
(
eαaTa

)†
eαbTb = eαaT

†
a eαbTb = e−αaTa eαbTb = 1 . (10.34)

The unit-determinant property follows from the tracelessness of the Ta, bearing in mind

that for any matrix X we have detX = exp(tr logX):

detU = det(eαaTa) = exp[tr log(eαaTa)] = exp[tr(αaTa)] = exp[0] = 1 . (10.35)

Suppose now that we take a pair of complex scalar fields, called φ1 and φ2, each of

which satisfies the massless Klein-Gordon equation. We may assemble them into a complex

2-vector, which we shall call Φ:

Φ =

φ1

φ2

 . (10.36)

This field therefore satisfies the Klein-Gordon equation

Φ = 0 , (10.37)

which can be derived from the Lagrangian density

L = −(∂µΦ†)(∂µΦ) . (10.38)

It is obvious that the Lagrangian density (10.38) is invariant under global SU(2) trans-

formations

Φ −→ U Φ , (10.39)

where U is a constant SU(2) matrix. Thus, we have

L −→ −∂µ(Φ† U †) ∂µ(UΦ) = −(∂µΦ†)U † U (∂µΦ) = −(∂µΦ†) (∂µΦ) = L . (10.40)

Obviously, L would not be invariant if we allowed U to be space-time dependent, for

the usual reason that we would get extra terms where the derivatives landed on the U

transformation matrix. Based on our experience with the local U(1) phase invariance of

the theory coupled to electromagnetism, we can expect that again we could achieve a local
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SU(2) invariance by introducing appropriate analogues of the electromagnetic field. In this

case, since the SU(2) group is characterised by 3 parameters rather than the 1 parameter

characterising U(1), we can expect that we will need 3 gauge fields rather than 1. We shall

called these Aaµ, where 1 ≤ a ≤ 3. In fact it is convenient to assemble the three gauge fields

into a 2× 2 matrix, by defining

Aµ = Aaµ Ta , (10.41)

where Ta are the generators of the SU(2) algebra that we introduced earlier.

We next define the covariant derivative Dµ, whose action on the complex 2-vector of

scalar fields Φ is defined by

DµΦ = ∂µΦ +Aµ Φ . (10.42)

Since we don’t, a priori, know how Aµ should transform we shall work backwards and

demand that its transformation rule should be such that Dµ satisfies the nice property we

should expect of a covariant derivative in this case, namely that if we transform Φ under a

local SU(2) transformation

Φ −→ Φ′ = U Φ , (10.43)

then we should also have that

(DµΦ) −→ (DµΦ)′ = U(DµΦ) . (10.44)

Working this out, we shall have

(DµΦ)′ = D′µ Φ′ = (∂µ +A′µ)(U Φ) ,

= (∂µU) Φ + U ∂µΦ +A′µ U Φ ,

= U DµΦ = U ∂µΦ + U Aµ Φ . (10.45)

Equating the last two lines, and noting that we want this to be true for all possible Φ, we

conclude that

∂µU +A′µ U = U Aµ . (10.46)

Multiplying on the right with U † then gives the result that

A′µ = U Aµ U
† − (∂µU)U † . (10.47)

This, then, will be the gauge transformation rule for the Yang-Mills potentials Aµ. In other
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words, the full set of local SU(2) transformations comprise41

Aµ −→ A′µ = U Aµ U
† − (∂µU)U † ,

Φ −→ Φ′ = U Φ . (10.48)

What we have established is that if we replace the Lagrangian density (10.38) by

L = −(DµΦ)† (DµΦ) , (10.49)

then it will be invariant under the local SU(2) transformations given by (10.48). The

proof is now identical to the previous proof of the invariance of (10.38) under global SU(2)

transformations. The essential point is that the local transformation matrix U “passes

through” the covariant derivative, in the sense that (DµΦ)′ = D′µ(UΦ) = U DµΦ.

So far, we have suceeded in constructing a theory with a local SU(2) symmetry, but as

yet, the Yang-Mills potentials Aaµ that we introduced do not have any dynamics of their own.

Following the strategy we applied to the case of electromagnetism and local U(1) invariance,

we should now look for a suitable term to add to the Lagrangian density (10.49) that will do

the job. Guided by the example of electromagnetism, we should first find a a field strength

tensor for the Yang-Mills fields, which will be the analogue of the electromagnetic field

strength

Fµν = ∂µAν − ∂νAµ . (10.50)

It is clear that the expression (10.50) is not suitable in the Yang-Mills case. If one

were to try adopting (10.50) as a definition for the field strength, then a simple calculation

shows that under the SU(2) gauge transformation for Aµ given in (10.48), the field strength

would transform into a complete mess. It turns out that the appropriate generalistion that

is needed for Yang-Mills is to define

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (10.51)

Of course this would reduce to the standard electromagnetic field strength in the abelian

U(1) case, since the commutator [Aµ, Aν ] ≡ AµAν −AνAµ would then vanish.

41Note that this non-abelian result, which takes essentially the same form for any group, reduces to the

previous case of electromagnetic theory is we specialise to the abelian group U(1). Essentially, we would just

write U = eiα and plug into the transformations (10.48). Since left and right multiplication are the same in

the abelian case, the previous results for electromagnetic gauge invariance can be recovered.
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The first task is to check how Fµν defined by (10.51) transforms under the SU(2) gauge

transformation of Aµ given in (10.48). We shall have

Fµν −→ F ′µν = ∂µA
′
ν +A′µA

′
ν − (µ↔ ν) ,

= ∂µ(UAνU
† − (∂νU)U †) + (UAµU

† − (∂µU)U †)(UAνU
† − (∂νU)U †)− (µ↔ ν) ,

= (∂µU)AνU
† + U(∂µAν)− UAνU †(∂µU)U † − (∂µ∂νU)U † + (∂νU)U †(∂µU)U †

+UAµU
†UAνU

† − UAµU †(∂νU)U † − (∂µU)U †UAνU
†

+(∂µU)U †(∂νU)U † − (µ↔ ν) ,

= U(∂µAν − ∂νAµ +AµAν −Aν Aµ)U † , (10.52)

where the notation −(µ↔ ν) means that one subtracts off from the terms written explicitly

the same set of terms with the indices µ and ν exchanged. Comparing with (10.51) we see

that the upshot is that under the SU(2) gauge transformation for Aµ given in (10.48), the

field strength Fµν defined in (10.51) transforms as

Fµν −→ F ′µν = UFµνU
† . (10.53)

This means that Fµν transforms covariantly under SU(2) gauge transformations. It would of

course, reduce to the invariance of the elctromagnetic field strength transformation (F ′µν =

Fµν) in the abelian case.

It is now a straightforward matter to write down a suitable term to add to the Lagrangian

density (10.49). As for electromagnetism, we want a gauge-invariant and Lorentz-invariant

quantity that is quadratic in fields. Thus we shall take

L = −(DµΦ)† (DµΦ) +
1

8π
tr(Fµν Fµν) , (10.54)

The proof that tr(Fµν Fµν) is gauge invariant is very simple; under the SU(2) gauge trans-

formation we shall have

tr(Fµν Fµν) −→ tr(Fµν ′ F ′µν) = tr(UFµνU †UFµνU
†) = tr(UFµνFµνU

†)

= tr(FµνFµνU
†U) = tr(Fµν Fµν) . (10.55)

The equations of motion for the Φ and Aµ fields can be derived from (10.54) in the

standard way, as the Euler-Lagrange equations that follow from requiring that the action I =∫
d4xL be stationary under variations of Φ and Aµ respectively. First, let us just consider

the source-free Yang-Mills equations that will result if we just consider the Lagrangian

density for the Yang-Mills fields alone,

LYM =
1

8π
tr(Fµν Fµν) . (10.56)
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Wrting IYM =
∫
d4xLYM , we shall have

δIYM =
1

8π
2 tr

∫
d4xδFµν F

µν ,

=
1

4π
tr

∫
d4x(∂µδAν − ∂νδAµ + [δAµ, Aν ] + [Aµ, δAν ])Fµν ,

=
1

2π
tr

∫
d4x(∂µδAν + [Aµ, δAν ])Fµν ,

=
1

2π
tr

∫
d4x(−δAν ∂µFµν +AµδAνF

µν − δAνAµFµν) ,

= − 1

2π
tr

∫
d4xδAν (∂µF

µν + [Aµ, F
µν ]) , (10.57)

and so requiring that the action be stationary for all variations δAν implies

∂µF
µν + [Aµ, F

µν ] = 0 . (10.58)

These are the source-free Yang-Mills equations, which are the generalisation of the source-

free Maxwell equations ∂µF
µν = 0. Obviously the Yang-Mills equations reduce to the

Maxwell equations in the abelian U(1) case.

If we now include the −(DµΦ)† (DµΦ) term in the above calculation, we shall find that

δI =

∫
d4x(Φ†δAνD

νΦ− (DνΦ)†δAνΦ)− 1

2π
tr

∫
d4xδAν (∂µF

µν + [Aµ, F
µν ]) . (10.59)

Requiring stationarity under the variations δAν now gives the Yang-Mills equations with

sources,

∂µF
µν + [Aµ, F

µν ] = 2π Jν , (10.60)

where

Jµ = (DµΦ) Φ† − Φ (DµΦ)† . (10.61)

Note that is is a 2 × 2 matrix current, as it should be, since the Hermitean-conjugated

2-vector sits to the right of the unconjugated 2-vector.42

This completes this brief introduction to Yang-Mills theory. As far as applications are

concerned, it is fair to say that Yang-Mills theory lies at the heart of modern fundamental

physics. The weak nuclear force is described by the Weinberg-Salam model, based on the

Yang-Mills gauge group SU(2). The W and Z bosons, which have been seen in particle

accelerators such as the one at CERN, are the SU(2) gauge fields. The strong nuclear

force is described by a Yang-Mills theory with SU(3) gauge group, and the 8 gauge fields

associated with this theory are the gluons that mediate the strong interactions. Thus one

may say that almost all of modern particle physics relies upon Yang-Mills theory.
42It is helpful to introduce an index notation to label the rows and columns of the 2× 2 matrices, in order

to verify that (10.61) is the correct expression.
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