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1 Electrodynamics and Special Relativity

1.1 Introduction

In Newtonian mechanics, the fundamental laws of physics, such as the dynamics of moving
objects, are valid in all inertial frames (i.e. all non-accelerating frames). If S is an inertial
frame, then the set of all inertial frames comprises all frames that are in uniform motion
relative to S. Suppose that two inertial frames S and S’, are parallel, and that their origins
coincide at at t = 0. If S’ is moving with uniform velocity ¢ relative to S, then a point
P with position vector 7 with respect to S will have position vector 7' with respect to S’,

where

=/

7 =r—ut. (1.1)

Of course, it is always understood in Newtonian mechanics that time is absolute, and so

the times ¢ and ¢’ measured by observers in the frames S and S’ are the same:
t'=t. (1.2)

The transformations (1.1) and (1.2) form part of what is called the Galilean Group. The
full Galilean group includes also rotations of the spatial Cartesian coordinate system, so

that we can define

7'=M-F—7t, t'=t, (1.3)

where M is an orthogonal 3 x 3 constant matrix acting by matrix multiplication on the

components of the position vector:

X X
z z

where MT M = 1.

Returning to our simplifying assumption that the two frames are parallel, i.e. that
M = 1, it follows that if a particle having position vector 7 in S moves with velocity
@ = dr/dt, then its velocity @' = dr’/dt as measured with respect to the frame S’ is given
by

=/

U =u—17. (1.5)

Suppose, for example, that 7 lies along the z axis of S; i.e. that S’ is moving along

the x axis of S with speed v = |¢]. If a beam of light were moving along the = axis of S



with speed ¢, then the prediction of Newtonian mechanics and the Galilean transformation

would therefore be that in the frame S’, the speed ¢’ of the light beam would be
d=c—v. (1.6)

Of course, as is well known, this contradicts experiment. As far as we can tell, with
experiments of ever-increasing accuracy, the true state of affairs is that the speed of the
light beam is the same in all inertial frames. Thus the predictions of Newtonian mechanics
and the Galilean transformation are falsified by experiment.

Of course, it should be emphasised that the discrepancies between experiment and the
Galilean transformations are rather negligible if the relative speed v between the two inertial
frames is of a typical “everyday” magnitude, such as the speed of a car or a plane. But if
v begins to become appreciable in comparison to the speed of light, then the discrepancy
becomes appreciable too.

By contrast, it turns out that Maxwell’s equations of electromagnetism do predict a
constant speed of light, independent of the choice of inertial frame. To be precise, let us

begin with the free-space Maxwell’s equations,

.. 1 - o OE -
V-E = — P, VXB—MOGO—:MOJ,
€0 ot
> o - - 0B
V-B =0, VxE+Z=o, (1.7)

ot
where E and B are the electric and magnetic fields, p and J are the charge density and
current density, and ey and pg are the permittivity and permeability of free space.!

To see the electromagnetic wave solutions, we can consider a region of space where there

are no sources, i.e. where p = 0 and J = 0. Then we shall have

- o oo 0= = D)

)= ——VxB=— = 1.8

V x (VXE) 5V % Hoco 3 (1.8)

But using the vector identity V x (V x E) = V(V - E) — V2E, it follows from V- E = 0
that the electric field satisfies the wave equation

- O?E
sz — Ho€o W =0. (19)

This admits plane-wave solutions of the form

E = EyelFmot) (1.10)

!The equations here are written using the system of units known as SI, which stands for “Super Inconve-
nient.” In these units, the number of unnecessary dimensionful “fundamental constants” is maximised. We

shall pass speedily to more convenient units a little bit later.



where Eo and k are constant vectors, and w is also a constant, where
k? = poeg w?. (1.11)

Here k means ]E |, the magnitude of the wave-vector k. Thus we see that the waves travel

at speed c given by
w 1
c=— = . 1.12
k \/Hoeo (1.12)

Putting in the numbers, this gives ¢ &~ 3 x 10® metres per second, i.e. the familiar speed of

light.

A similar calculation shows that the magnetic field B also satisfies an identical wave

equation, and in fact B and E are related by

B=—kxE. (1.13)

S

The situation, then, is that if the Maxwell equations (1.7) hold in a given frame of
reference, then they predict that the speed of light will be ¢ ~ 3 x 10® metres per second
in that frame. Therefore, if we assume that the Maxwell equations hold in all inertial
frames, then they predict that the speed of light will have that same value in all inertial
frames. Since this prediction is in agreement with experiment, we can reasonably expect
that the Maxwell equations will indeed hold in all inertial frames. Since the prediction
contradicts the implications of the Galilean transformations, it follows that the Maxwell
equations are not invariant under Galilean transformations. This is just as well, since the
Galilean transformations are wrong!

In fact, as we shall see, the transformations that correctly describe the relation between
observations in different inertial frames in uniform motion are the Lorentz Transformations
of Special Relativity. Furthermore, even though the Maxwell equations were written down in
the pre-relativity days of the nineteenth century, they are in fact perfectly invariant? under
the Lorentz transformations. No further modification is required in order to incorporate
Maxwell’s theory of electromagnetism into special relativity.

However, the Maxwell equations as they stand, written in the form given in equation
(1.7), do not look manifestly covariant with respect to Lorentz transformations. This is
because they are written in the language of 3-vectors. To make the Lorentz transformations
look nice and simple, we should instead express them in terms of 4-vectors, where the extra

component is associated with the time direction.

2Strictly, as will be explained later, we should say covariant rather than invariant.



In order to give a nice elegant treatment of the Lorentz transformation properties of
the Maxwell equations, we should first therefore reformulate special relativity in terms of 4-
vectors and 4-tensors. Since there are many different conventions on offer in the marketplace,
we shall begin with a review of special relativity in the notation that we shall be using in

this course.

1.2 The Lorentz Transformation

The derivation of the Lorentz transformation follows from Einstein’s two postulates:

e The laws of physics are the same for all inertial observers.

e The speed of light is the same for all inertial observers.

To derive the Lorentz transformation, let us suppose that we have two inertial frames
S and S’, whose origins coincide at time zero, that is to say, at ¢ = 0 in the frame S, and
at t’ = 0 in the frame S’. If a flash of light is emitted at the origin at time zero, then it will

spread out over a spherical wavefront given by
2yt - =0 (1.14)

in the frame S, and by
4y =0 (1.15)

in the frame S’. Note that, following the second of Einstein’s postulates, we have used the
same speed of light ¢ for both inertial frames. Our goal is to derive the relation between
the coordinates (z,y, z,t) and (2,3, 2’,¢') in the two inertial frames.

Consider for simplicity the case where S’ is parallel to S, and moves along the x axis

with velocity v. Clearly we must have
v =y, 2 =z. (1.16)

Furthermore, the transformation between (z,t) and (2/,t') must be a linear one, since
otherwise it would not be translation-invariant or time-translation invariant. Thus we may
say that

' = Ax + Bt, t' = Cz + Dt, (1.17)

for constants A, B , C' and D to be determined.



Now, if 2/ = 0, this must, by definition, correspond to the equation x = vt in the frame
S, and so from the first equation in (1.17) we have B = —Av. For convenience we will

change the name of the constant A to -, and thus we have

' =~z —vt). (1.18)
By the same token, if we consider taking x = 0 then this will correspond to ' = —vt’ in
the frame S’. It follows that

r =2 +ot). (1.19)

Note that it must be the same constant v in both these equations, since the two really just
correspond to reversing the direction of the x axis, and the physics must be the same for
the two cases.

Now we bring in the postulate that the speed of light is the same in the two frames, so

if we have x = ¢t then this must imply 2’ = ¢t’. Solving the resulting two equations
ct' = y(c—v)t, ct = vy(c+ v)t’ (1.20)

for =y, we obtain
1

TV

Solving 22 — 22 = #'* — 2% for ¢/, after using (1.18), we find #'? = 72(t — vz/c?)? and

(1.21)

hence

t =yt — c%:z:) . (1.22)

(We must choose the positive square root since it must reduce to ' = +¢ at zero relative

velocity, v.) Thus we arrive at the Lorentz transformation

v
v =~z —vt), y =y, Y=z, =t — 6—233), (1.23)

where v is given by (1.21), for the special case where S’ is moving along the x direction
with velocity v.

At this point, for notational convenience, we shall introduce the simplification of working
in a system of units in which the speed of light is set equal to 1. We can do this because the
speed of light is the same for all inertial observers, and so we may as well choose to measure
length in terms of the time it takes for light in vacuo to traverse the distance. In fact, the
metre is nowadays defined to be the distance travelled by light in vacuo in 1/299,792,458
of a second. By making the small change of taking the light-second as the basic unit of

length, rather than the 1/299,792,458'th of a light-second, we end up with a system of units



in which ¢ = 1. Alternatively, we could measure time in “light metres,” where the unit is
the time taken for light to travel 1 metre. In these units, the Lorentz transformation (1.23)
becomes

/

' =y(x —ot), v =y, 2=z, t' =~(t—vx), (1.24)

where

v = N (1.25)

It will be convenient to generalise the Lorentz transformation (1.24) to the case where
the frame S’ is moving with (constant) velocity @ in an arbitrary direction, rather than
specifically along the x axis. It is rather straightforward to do this. We know that there is a
complete rotational symmetry in the three-dimensional space parameterised by the (z,y, 2)
coordinate system. Therefore, if we can first rewrite the special case described by (1.24) in
terms of 3-vectors, where the 3-vector velocity ¥ happens to be simply ¢ = (v,0,0), then
generalisation will be immediate. It is easy to check that with ¢ taken to be (v,0,0), the

Lorentz transformation (1.24) can be written as

= — - - - S
7l =7+ 2 (U-7) 0 —~0t, =t —-7-7), (1.26)

with v = (1—v?)~%2 and v = ||, and with ¥ = (z,v, z). Since these equations are manifestly
covariant under 3-dimensional spatial rotations (i.e. they are written entirely in a 3-vector
notation), it must be that they are the correct form of the Lorentz transformations for an
arbitrary direction for the velocity 3-vector 7.

The Lorentz transformations (1.26) are what are called the pure boosts. It is easy to
check that they have the property of preserving the spherical light-front condition, in the
sense that points on the expanding spherical shell given by 72 = ¢ of a light-pulse emitted
at the origin at ¢ = 0 in the frame S will also satisfy the equivalent condition 7’ 2% in
the primed reference frame S’. (Note that r? = 22 + 3? + 22.) In fact, a stronger statement

is true: The Lorentz transformation (1.26) satisfies the equation

e Ly (1.27)

1.3 An interlude on 3-vectors and suffix notation

Before describing the 4-dimensional spacetime approach to special relativity, it may be
helpful to give a brief review of some analogous properties of 3-dimensional Euclidean space,

and Cartesian vector analysis.



Consider a 3-vector ff, with z, ¥ and z components denoted by A;, As and As respec-

tively. Thus we may write

—

A= (A, Az, A3). (1.28)

It is convenient then to denote the set of components by A;, for i = 1,2, 3.
The scalar product between two vectors A and B is given by

3
A-B=ABy + AyBy + A3B3 = > A;B;. (1.29)
=1

This expression can be written more succinctly using the Finstein Summation Convention.
The idea is that when writing valid expressions using vectors, or more generally tensors,
on every occasion that a sumation of the form Y 3, is performed, the summand is an
expression in which the summation index ¢ occurs exactly twice. Furthermore, there will
be no occasion when an index occurs exactly twice in a given term and a sum over i is
not performed. Therefore, we can abbreviate the writing by simply omitting the explicit
summation symbol, since we know as soon as we see an index occuring exactly twice in a
term of an equation that it must be accompanied by a summation symbol. Thus we can

abbreviate (1.29) and just write the scalar product as
A-B=AB;. (1.30)

The index i here is called a “dummy suffix.” It is just like a local summation variable in
a computer program; it doesn’t matter if it is called 4, or j or anything else, as long as it
doesn’t clash with any other index that is already in use.

The next concept to introduce is the Kronecker delta tensor ¢;;. This is defined by
oy =1 1if i=7, 05=0 if i#j, (1.31)

Thus
511:522:533:1, 512:513:"':0. (1.32)

Note that d;; is a symmetric tensor: d;; = d;;. The Kronecker delta clearly has the replace-

ment property

Ai = 5ijAj s (133)

since by (1.31) the only non-zero term in the summation over j is the term when j = i.

Now consider the vector product A x B. We have

/_f X é = (Ang — AgBQ,AgBl — A1B3,A132 — AgBl) . (134)

10



To write this using index notation, we first define the 3-index totally-antisymmetric ten-
sor €;;;. Total antisymmetry means that the tensor changes sign if any pair of indices is
swapped. For example

€ijk = —€ikj = —€jik = —€kji - (1.35)
Given this total antisymmetry, we actually only need to specify the value of one non-zero
component in order to pin down the definition completely. We shall define €103 = +1. From

the total antisymmetry, it then follows that
€123 = €231 = €312 = +1, €132 = €321 = €213 = —1, (1.36)

with all other components vanishing.
It is now evident that in index notation, the ¢’th component of the vector product AxB

can be written as

(A x B); = €;jxA;By,. (1.37)

For example, the ¢ = 1 component (the x component) is given by
(A x B)1 = €1j,A;By, = €193A9B3 + €132A3By = Ay By — A3Bs, (1.38)

in agreement with the z-component given in (1.34).
Now, let us consider the vector triple product Ax (E X é) The i component is therefore

given by

—

[A X (é X C_;)]z = EijkAj(é X C_;)k = eijkekémAjBZCm . (139)
For convenience, we may cycle the indices on the second € tensor around and write this as

—

[A x (B x O)i = €ijuempA; BeCrn . (1.40)

There is an extremely useful identity, which can be proved simply by considering all possible
values of the free indices 1, j, £, m:
€ijk€emk = 03¢0jm — OimOje - (1.41)
Using this in (1.40), we have
[A X (B X C)]Z = (51'Z6jm — 5im5jg)AngCm,
= 0y0jmA;BeCry — 6imd0AjBeChy
= BZAjCj — CZAij s

—

= (A-0)B;— (A -B)C;. (1.42)

11



In other words, we have proven that

Ax(BxC)=(A-C)B—(A-B)C. (1.43)

It is useful also to apply the index notation to the gradient operator V. This is a

vector-valued differential operator, whose components are given by
- o 0 0

V=(—,=—,=—). 1.44

(833’ oy’ 82) (1.44)

—

In terms of the index notation, we may therefore say that the ¢’th component (V); of the
vector V is given by 9/0x;. In order to make the writing a little less clumsy, it is useful to

rewrite this as

0

0; (1.45)

Thus, the i’th component of V is 0.
It is now evident that the divergence and the curl of a vector A can be written in index

notation as

divff = ﬁ . fT = E?ZA, s (curlff)i = (ﬁ X fT)Z = EijkajAk . (1.46)
The Laplacian, V2 = V - V = 8/922 4 82 /8y? + 82/922, is given by
v~ 90,. (1.47)

By the rules of partial differentiation, we have 0;z; = d;;. If we consider the position

vector 7 = (x,y, ), then we have 72 = 22 4 2 + 22, which can be written as
r? =z . (1.48)
If we now act with 0; on both sides, we get
2r Ojr = 2x; 0;xj = 2 05 = 225 . (1.49)
Thus we have the very useful result that
oir =—. (1.50)
So far, we have not given any definition of what a 3-vector actually is, and now is the
time to remedy this. We may define a 3-vector A as an ordered triplet of real quantities,

—

A = (Ay, As, As), which transforms under rigid rotations of the Cartesian axes in the same

way as does the position vector ¥ = (z,y,z). Now, any rigid rotation of the Cartesian

12



coordinate axes can be expressed as a constant 3 x 3 orthogonal matrix M acting on the

column vector whose components are x, y and z:

x x
y | =M|y]|, (1.51)
2 z
where
MIM=1. (1.52)

An example would be the matrix describing a rotation by a (constant) angle 6 around the

z axis, for which we would have

cosf sinf O
M= | —sinf cosf 0] . (1.53)
0 0 1

Matrices satisfying the equation (1.52) are called orthogonal matrices. If they are of
dimension n x n, they are called O(n) matrices. Thus the 3-dimensional rotation matrices
are called O(3) matrices.?

In index notation, we can write M as M;;, where i labels the rows and j labels the

columns:

My M M3
M= | Myy Mo Mo | . (1.54)
M3y Msy  Ms3

The rotation (1.51) can then be expressed as
zi = Mz, (1.55)
and the orthogonality condition (1.52) is
My My; = 5i5 . (1.56)

(Note that if M has components M;; then its transpose M7 has components M. i)

3There is a little subtlety that we have glossed over, here. If we take the determinant of (1.52), and
use the facts that det(AB) = (det A)(det B) and det(A”) = det A, we see that (det M)? = 1 and hence
det M = 1. The matrices with det M = +1 are called SO(n) matrices in n dimensions, where the “S”
stands for “special,” meaning unit determinant. It is actually SO(n) matrices that are pure rotations. The
transformations with det M = —1 are actually rotations combined with a reflection of the coordinates (such

as ¢ — —x). Thus, the pure rotation group in 3 dimensions is SO(3).

13



As stated above, the components of any 3-vector transform the same way under rotations
as do the components of the position vector 7. Thus, if A and B are 3-vectors, then after

a rotation by the matrix M we shall have
Al = M;; A, B] = M;; B;j . (1.57)
If we calculate the scalar product of A and B after the rotation, we shall therefore have
AiB] = M;; Aj M. By, . (1.58)

(Note the choice of a different dummy suffix in the expression for B}!) Using the orthogo-

nality condition (1.56), we therefore have that
AiB; = A;Bb;r, = A;B;j . (1.59)

Thus the scalar product of any two 3-vectors is invariant under rotations of the coordinate
axes. That is to say, A;B; is a scalar quantity, and by definition a scalar is invariant under
rotations.

It is useful to count up how many independent parameters are needed to specify the
most general possible rotation matrix M. Looking at (1.54), we can see that a general 3 x 3
matrix has 9 components. But our matrix M is required to be orthogonal, i.e. it must satisfy
M”M — 1 = 0. How many equations does this amount to? Naively, it is a 3 x 3 matrix
equation, and so implies 9 conditions. But this is not correct, since it actually the left-hand
side of MT'M — 1 = 0 is a symmetric matrix. (Take the transpose, and verify this.) A
3 x 3 symmetric matrix has (3 x 4)/2 = 6 independent components. Thus the orthogonality
condition imposes 6 constraints on the 9 components of a general 3 x 3 matrix, and so that

leaves over

9-6=23 (1.60)

as the number of independent components of a 3 x 3 orthogonal matrix, It is easy to see
that this is the correct counting; to specify a general rotation in 3-dimensional space, we
need two angles to specify an axis (for example, the latitude and longitude), and a third
angle to specify the rotation around that axis.

The above are just a few simple examples of the use of index notation in order to write
3-vector and 3-tensor expressions in Cartesian 3-tensor analysis. It is a very useful notation
when one needs to deal with complicated expressions. As we shall now see, there is a very
natural generalisation to the case of vector and tensor analysis in 4-dimensional Minkowski

spacetime.

14



1.4 4-vectors and 4-tensors

The Lorentz transformations given in (1.26) are linear in the space and time coordinates.
They can be written more succinctly if we first define the set of four spacetime coordinates
denoted by x*, where p is an index, or label, that ranges over the values 0, 1, 2 and 3. The
case u = 0 corresponds to the time coordinate ¢, while p = 1, 2 and 3 corresponds to the

space coordinates z, y and z respectively. Thus we have?
(20,2t 2% 2%) = (t, 2,9, 2) . (1.61)

Of course, once the abstract index label p is replaced, as here, by the specific index values
0, 1, 2 and 3, one has to be very careful when reading a formula to distinguish between, for
example, 2 meaning the symbol z carrying the spacetime index p = 2, and z? meaning
the square of x. It should generally be obvious from the context which is meant.

The invariant quadratic form appearing on the left-hand side of (1.27) can now be

written in a nice way, if we first introduce the 2-index quantity 7, defined to be given by

-1 0 0 0
0 1 0 O

Ny = 0 0 1 0 (1.62)
0 0 0 1

What this means is that the rows of the matrix on the right are labelled by the index p
and the columns are labelled by the index v. In other words, (1.62) is saying that the only

non-vanishing components of 7, are given by

noo = —1, 1 =n2 =13 =1, (1.63)

with 7, = 0 if u # v. Note that 7,, is symmetric:

Nuv = MNvp - (164)

Using 7, the quadratic form on the left-hand side of (1.27) can be rewritten as

3 3
2?4yt 42—t = Z Z N Ha” . (1.65)
pn=0rv=0

At this point, it is convenient again to introduce the FEinstein Summation Convention.
This makes the writing of expressions such as (1.65) much less cambersome. The summation

convention works as follows:

4The choice to put the index label p as a superscript, rather than a subscript, is purely conventional. But,
unlike the situation with many arbitrary conventions, in this case the coordinate index is placed upstairs in

all modern literature.

15



In an expression such as (1.65), if an index appears ezactly twice in a term, then it will
be understood that the index is summed over the natural index range (0, 1, 2, 3 in our
present case), and the explicit summation symbol will be omitted. An index that occurs
twice in a term, thus is understood to be summed over, is called a Dummy Index.

Since in (1.65) both p and v occur exactly twice, we can rewrite the expression, using

the Einstein summation convention, as simply
a? +y? + 27—t =yt (1.66)

On might at first think there would be a great potential for ambiguity, but this is not the
case. The point is that in any valid vectorial (or, more generally, tensorial) expression, the
only time that a particular index can ever occur exactly twice in a term is when it is summed
over. Thus, there is no ambiguity resulting from agreeing to omit the explicit summation
symbol, since it is logically inevitable that a summation is intended.’

Now let us return to the Lorentz transformations. The pure boosts written in (1.26),

being linear in the space and time coordinates, can be written in the form
ot = At 2, (1.67)

where A¥,, are constants, and the Einstein summation convention is operative for the dummy
index v. By comparing (1.67) carefully with (1.26), we can see that the components A*,

are given by

AOO = 7, Aoi = —;,

ANy = —Y U, Alj = 52']' + —/71)2 ViV5 (1.68)
where 6;; is the Kronecker delta symbol,
o =1 if i=j, 05=0 if i#j. (1.69)

A couple of points need to be explained here. Firstly, we are introducing Latin indices here,
namely the ¢ and j indices, which range only over the three spatial index values, i = 1, 2
and 3. Thus the 4-index p can be viewed as u = (0,4), where ¢ = 1, 2 and 3. This piece

of notation is useful because the three spatial index values always occur on a completely

5As a side remark, it should be noted that in a valid vectorial or tensorial expression, a specific index can
NEVER appear more than twice in a given term. If you have written down a term where a given index
occurs 3, 4 or more times then there is no need to look further at it; it is WRONG. Thus, for example, it
is totally meaningless to write 7., x*z". If you ever find such an expression in a calculation then you must

stop, and go back to find the place where an error was made.
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symmetric footing, whereas the time index value p = 0 is a bit different. This can be seen,
for example, in the definition of 7, in (1.62) or (1.63).

The second point is that when we consider spatial indices (for example when u takes the
values i = 1, 2 or 3), it actually makes no difference whether we write the index i upstairs
or downstairs. Sometimes, as in (1.68), it will be convenient to be rather relaxed about
whether we put spatial indices upstairs or downstairs. By contrast, when the index takes
the value 0, it is very important to be careful about whether it is upstairs or downstairs.
The reason why we can be cavalier about the Latin indices, but not the Greek, will become
clearer as we proceed.

We already saw that the Lorentz boost transformations (1.26), re-expressed in terms of

A#, in (1.68), have the property that 7, z#z” = 1, 2’"2'”. Thus from (1.67) we have
N 2H @ = 1 AV N 5 2P (1.70)

(Note that we have been careful to choose two different dummy indices for the two implicit
summations over p and o!) On the left-hand side, we can replace the dummy indices p and

v by p and o, and thus write
Npo P27 = Ny Ay NV 5 2P 27 . (1.71)
This can be grouped together as
(Mpo — M A N 5 )aP2” = 0, (1.72)
and, since it is true for any x*, we must have that
Nuw M p N 6 = 1o . (1.73)

(This can also be verified directly from (1.68).) The full set of A’s that satisfy (1.73) are
the Lorentz Transformations. The Lorentz Boosts, given by (1.68), are examples, but they
are just a subset of the full set of Lorentz transformations that satisfy (1.73). Essentially,
the additional Lorentz transformations consist of rotations of the three-dimensional spatial
coordinates. Thus, one can really say that the Lorentz boosts (1.68) are the “interesting”
Lorentz transformations, i.e. the ones that rotate space and time into one another. The
remainder are just rotations of our familiar old 3-dimensional Euclidean space.

We can count the number of independent parameters in a general Lorentz transformation

in the same way we did for the 3-dimensional rotations in the previous section. We start
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with A*,, which can be thought of as a 4 x 4 matrix with rows labelled by u and columns

labelled by v. Thus
A% A% A% A0
Ay Ay Ay Al
e VS (1.74)
Ao A% A% A%
A3g A3p A3y A3
These 4 x 4 = 16 components are subject to the conditions (1.73). In matrix notation,

(1.73) clearly translates into
ATnA—n=0. (1.75)

This is itself a 4 x 4 matrix equation, but not all its components are independent since the
left-hand side is a symmetric matrix. (Verify this by taking its transpose.) Thus (1.75)
contains (4 x 5)/2 = 10 independent conditions, implying that the most general Lorentz
transformation has

16 — 10 = 6 (1.76)

independent parameters.

Notice that if  had been simply the 4 x 4 unit matrix, then (1.75) would have been a
direct 4-dimensional analogue of the 3-dimensional orthogonality condition (1.52). In other
words, were it not for the minus sign in the 00 component of 7, the Lorentz transformations
would just be spatial rotations in 4 dimensions, and they would be elements of the group
O(4). The counting of the number of independent such transformations would be identical
to the one given above, and so the group O(4) of orthogonal 4 x 4 matrices is characterised
by 6 independent parameters.

Because of the minus sign in 7, the group of 4 x 4 matrices satisfying (1.75) is called
0O(1,3), with the numbers 1 and 3 indicating the number of time and space dimensions
respectively. Thus the four-dimensional Lorentz Group is O(1,3).

Obviously, the subset of A matrices of the form

Aot 1.77
_<o M) (L.77)

where M is any 3 x 3 orthogonal matrix, satisfies (1.75). This O(3) subgroup of the O(1, 3)
Lorentz group describes the pure rotations (and reflections) in the 3-dimensional spatial
directions. The 3 parameters characterising these transformations, together with the 3
parameters of the velocity vector characterising the pure boost Lorentz transformations

(1.68), comprise the total set of 3+3 = 6 parameters of the general Lorentz transformations.
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The coordinates z# = (2°, 2%) live in a four-dimensional spacetime, known as Minkowski
Spacetime. This is the four-dimensional analogue of the three-dimensional Euclidean Space
described by the Cartesian coordinates z° = (z,y,z). The quantity N is called the
Minkowski Metric, and for reasons that we shall see presently, it is called a tensor. It is
called a metric because it provides the rule for measuring distances in the four-dimensional
Minkowski spacetime. The distance, or to be more precise, the interval, between two
infinitesimally-separated points (20, 2!, 22, 23) and (20 + d2*, 2! + da', 2% + d2?, 23 + da?)

in spacetime is written as ds, and is given by
ds? = 1y, dz*dz” . (1.78)

Clearly, this is the Minkowskian generalisation of the three-dimensional distance dsg be-
tween neighbouring points (z,y, z) and (x 4+ dx,y + dy, z + dz) in Euclidean space, which,
by Pythagoras’ theorem, is given by

ds%; = dx? + dy2 + dz? = 52']' dztda’ . (1'79)

The Euclidean metric (1.79) is invariant under arbitrary constant rotations of the (x,y, z)
coordinate system. (This is clearly true because the distance between the neighbouring
points must obviously be independent of how the axes of the Cartesian coordinate system
are oriented.) By the same token, the Minkowski metric (1.78) is invariant under arbitrary
Lorentz transformations. In other words, as can be seen to follow immediately from (1.73),
the spacetime interval ds’ 2 = Ny d’ Hda' calculated in the primed frame is identical to the

interval ds? calculated in the unprimed frame
ds? = un dx'Mdz’" = N Ay N o daPdx
= Npodr’da’ = ds*. (1.80)
For this reason, we do not need to distinguish between ds? and ds’ 2, since it is the same in

all inertial frames. It is what is called a Lorentz Scalar.

The Lorentz transformation rule of the coordinate differential dz*, i.e.
da'" = A", dx” (1.81)

can be taken as the prototype for more general 4-vectors. Thus, we may define any set
of four quantities U¥, for 4 = 0, 1, 2 and 3, to be the components of a Lorentz 4-vector
(often, we shall just abbreviate this to simply a 4-vector) if they transform, under Lorentz

transformations, according to the rule
UM =Ar,U". (1.82)
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The Minkowski metric 7,,, may be thought of as a 4 x 4 matrix, whose rows are labelled
by 1 and columns labelled by v, as in (1.62). Clearly, the inverse of this matrix takes
the same form as the matrix itself. We denote the components of the inverse matrix by
n*¥. This is called, not surprisingly, the inverse Minkowksi metric. Clearly it satisfies the
relation

ymy TIVp = 6Z ) (183)

where the 4-dimensional Kronecker delta is defined to equal 1 if 4 = p, and to equal 0 if
i # p. Note that like 7, the inverse n* is symmetric also: n#*” = n"#.
The Minkowksi metric and its inverse may be used to lower or raise the indices on other

quantities. Thus, for example, if U* are the components of a 4-vector, then we may define
Up=nuU". (1.84)

This is another type of 4-vector. T'wo distinguish the two, we call a 4-vector with an upstairs
index a contravariant 4-vector, while one with a downstairs index is called a covariant 4-
vector. Note that if we raise the lowered index in (1.84) again using n*¥, then we get back
to the starting point:

U, =", UP =56 UP =U". (1.85)

It is for this reason that we can use the same symbol U for the covariant 4-vector U, = 1, U
as we used for the contravariant 4-vector U*.

In a similar fashion, we may define the quantities A,” by
A =nu,m"7 AP, (1.86)
It is then clear that (1.73) can be restated as
AL AP =00 (1.87)

"M =AM, 2 to give

We can also then invert the Lorentz transformation x
= A (1.88)

It now follows from (1.82) that the components of the covariant 4-vector U, defined by

(1.84) transform under Lorentz transformations according to the rule
U,=A"U,. (1.89)

Any set of 4 quantities U, which transform in this way under Lorentz transformations will

be called a covariant 4-vector.
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Using (1.88), we can see that the gradient operator 0/0x* transforms as a covariant

4-vector. Using the chain rule for partial differentiation we have

3} dzv 0
= . 1.

ox'"*  oz'* Oxv (1.90)

But from (1.88) we have (after a relabelling of indices) that
ox” y

and hence (1.90) gives

0 a9 (1.92)

e '

As can be seen from (1.89), this is precisely the transformation rule for a a covariant 4-
vector. The gradient operator arises sufficiently often that it is useful to use a special symbol

to denote it. We therefore define

0
Thus the Lorentz transformation rule (1.92) is now written as
d,=N,"0,. (1.94)

1.5 Lorentz tensors

Having seen how contravariant and covariant 4-vectors transform under Lorentz transfor-
mations (as given in (1.82) and (1.89) respectively), we can now define the transformation
rules for more general objects called tensors. These objects carry multiple indices, and each
one transforms with a A factor, of either the (1.82) type if the index is upstairs, or of the
(1.89) type if the index is downstairs. Thus, for example, a tensor 7}, transforms under

Lorentz transformations according to the rule
T/;V =N ATy (1.95)
More generally, a tensor T#1#m,, ., will transform according to the rule
T ey = AP, AP N T A T TP (1.96)

Note that scalars are just special cases of tensors with no indices, while vectors are special
cases with just one index.
It is easy to see that products of tensors give rise again to tensors. For example, if U

and V* are two contravariant vectors then T = U*V'"¥ is a tensor, since, using the known
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transformation rules for U and V we have
T = UV = AUV
= AV N, TP (1.97)

Note that the gradient operator J, can also be used to map a tensor into another
tensor. For example, if U, is a vector field (i.e. a vector that changes from place to place in
spacetime) then S = 0,U, is a tensor field.

We make also define the operation of Contraction, which reduces a tensor to one with
a smaller number of indices. A contraction is performed by setting an upstairs index on a
tensor equal to a downstairs index. The Einstein summation convention then automatically
comes into play, and the result is that one has an object with one fewer upstairs indices and
one fewer downstairs indices. Furthermore, a simple calculation shows that the new object

is itself a tensor. Consider, for example, a tensor T#,. This, of course, transforms as
", = A*, A7 TP, (1.98)

under Lorentz transformations. If we form the contraction and define ¢ = T*,,, then we see

that under Lorentz transformations we shall have
¢ = T", =N, N T,
= TP =¢. (1.99)

Since ¢/ = ¢, it follows, by definition, that ¢ is a scalar.

An essentially identical calculation shows that for a tensor with a arbitrary numbers of
upstairs and downstairs indices, if one makes an index contraction of one upstairs with one
downstairs index, the result is a tensor with the corresponding reduced numbers of indices.
Of course multiple contractions work in the same way.

The Minkowski metric 7, is itself a tensor, but of a rather special type, known as an
tnvariant tensor. This is because, unlike a generic 2-index tensor, the Minkowski metric is
identical in all Lorentz frames. This can be seen from (1.73), which can be rewritten as the
statement

Mo = A A7 po = T - (1.100)
The same is also true for the inverse metric n¥.

We already saw that the gradient operator 0, = 0/0z* transforms as a covariant vector.

If we define, in the standard way, 0% = n*¥ d,, then it is evident from what we have seen

above that the operator

O = 0"9, = 1™ 8,0, (1.101)
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transforms as a scalar under Lorentz transformations. This is a very important operator,
which is otherwise known as the wave operator, or d’Alembertian:

o* o0* 092 9

(1.102)

It is worth commenting further at this stage about a remark that was made earlier.
Notice that in (1.102) we have been cavalier about the location of the Latin indices, which
of course range only over the three spatial directions ¢ = 1, 2 and 3. We can get away with
this because the metric that is used to raise or lower the Latin indices is just the Minkowski

metric restricted to the index values 1, 2 and 3. But since we have

moo = —1, Nij = 0ij » Moi = 1io = 0, (1.103)

this means that Latin indices are lowered and raised using the Kronecker delta d;; and
its inverse . But these are just the components of the unit matrix, and so raising or
lowering Latin indices has no effect. It is because of the minus sign associated with the ngg
component of the Minkowski metric that we have to pay careful attention to the process of
raising and lowering Greek indices. Thus, we can get away with writing 9;9;, but we cannot

write 0,0,,.

1.6 Proper time and 4-velocity

We defined the Lorentz-invariant interval ds between infinitesimally-separated spacetime
events by

ds? = 1y, drtdz” = —dt* + do® + dy* + d2*. (1.104)

This is the Minkowskian generalisation of the spatial interval in Euclidean space. Note that
ds? can be positive, negative or zero. These cases correspond to what are called spacelike,
timelike or null separations, respectively.

On occasion, it is useful to define the negative of ds?, and write
dr? = —ds® = —n, dr*dz” = dt* — dz* — dy* — d2* . (1.105)

This is called the Proper Time interval, and 7 is the proper time. Since ds is a Lorentz
scalar, it is obvious that dr is a scalar too.

We know that dz* transforms as a contravariant 4-vector. Since dr is a scalar, it follows
that

_dxt

= """
Ut = (1.106)
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is a contravariant 4-vector also. If we think of a particle following a path, or worldline in
spacetime parameterised by the proper time 7, i.e. it follows the path * = z#(7), then U*
defined in (1.106) is called the 4-velocity of the particle.

It is useful to see how the 4-velocity is related to the usual notion of 3-velocity of a

particle. By definition, the 3-velocity i is a 3-vector with components u’ given by

. dat
b= . 1.1
u o (1.107)
From (1.105), it follows that
dr? = dt?*[1 — (dx/dt)? — (dy/dt)* — (dz/dt)?)] = dt*(1 — u?), (1.108)

where u = |d], or in other words, u = Vuiu'. In view of the definition of the v factor in

(1.25), it is natural to define
1

= —. 1.109
V= (1.109)
Thus we have dr = dt/v, and so from (1.106) the 4-velocity can be written as
dt dxt dz#
w_ gt dzf _dat 1.11
ar @t~ (1.110)
Since dx/dt = 1 and dx'/dt = u', we therefore have that
Ul=v, U'=n~d. (1.111)
Note that U*U, = —1, since, from (1.105), we have
v 2
p—_— — N dzt dx _ —(dr) _ 1 1112
urv, = n, U"U ()2 ()2 . (1.112)
We shall sometimes find it convenient to rewrite (1.111) as
Ut = (y,yu')  or  U'=(y,70). (1.113)

Having set up the 4-vector formalism, it is now completely straightforward write down
how velocities transform under Lorentz transformations. We know that the 4-velocity U*
will transform according to (1.82), and this is identical to the way that the coordinates z*
transform:

Ut =Ar,U", ot = A, 2 (1.114)

Therefore, if we want to know how the 3-velocity transforms, we need only write down
the Lorentz transformations for (¢,,v,2), and then replace (t,z,vy,2) by (U°,U',U?,U?).
Finally, using (1.113) to express (U°,U',U? U?) in terms of @ will give the result.
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Consider, for simplicity, the case where S’ is moving along the x axis with velocity wv.

The Lorentz transformation for U# can therefore be read off from (1.24) and (1.25):

R AR

Ul = N, (U = 0UY),

U/2 — U2 ,

Ut = U, (1.115)
where we are now using v, = (1 — v2)"/2 to denote the gamma factor of the Lorentz

transformation, to distinguish it from the ~ constructed from the 3-velocity « of the particle

in the frame S, which is defined in (1.109). Thus from (1.113) we have

Vo= e (1 - vug),
Yy = vy (up —v),
Yy, = yuy,
Yu, = yu,, (1.116)

where, of course, 7' = (1 — u/*)~1/2 is the analogue of ~ in the frame S’. Thus we find

, Up— , Uy , u,
— , =Y == 1.117
Yz 1 —vuy “y Yo (1 - Uum) B Yo (1 - Uum) ( )

2 Electrodynamics and Maxwell’s Equations

2.1 Natural units

We saw earlier that the supposition of the universal validity of Maxwell’s equations in all
inertial frames, which in particular would imply that the speed of light should be the same in
all frames, is consistent with experiment. It is therefore reasonable to expect that Maxwell’s
equations should be compatible with special relativity. However, written in their standard
form (1.7), this compatibility is by no means apparent. Our next task will be to re-express
the Maxwell equations, in terms of 4-tensors, in a way that makes their Lorentz covariance
manifest.

We shall begin by changing units from the S.I. system in which the Maxwell equations

are given in (1.7). The first step is to change to Gaussian units, by performing the rescalings

E
- NZV T dr 7
p — VAmeyp, J — Amey J . (2.1)
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Bearing in mind that the speed of light is given by ¢ = 1/,/1p€g, we see that the Maxwell

equations (1.7) become

Lo . . 10E 4rn -
. F - 4rp. wxB-L2E_4j
c Ot c
Lo - - 10B
‘B = E+-=2—= 2.2
v 0, VxE+---=0, (2.2)

Finally, we pass from Gaussian units to Natural units, by choosing our units of length and
time so that ¢ = 1, as we did in our discussion of special relativity. Thus, in natural units,

the Maxwell equations become

. - OE

V-E = 4rmp, VxB—E;:Mf, (2.3)
5 . - OB

The equations (2.3), which have sources on the right-hand side, are called the Field Equa-
tions. The equations (2.4) are called Bianchi Identities. We shall elaborate on this a little

later.

2.2 Gauge potentials and gauge invariance

We already remarked that the two Maxwell equations (2.4) are know as Bianchi identities.
They are not field equations, since there are no sources; rather, they impose constraints on
the electric and magnetric fields. The first equation in (2.4), i.e. V-B= 0, can be solved
by writing

— -

B=VxA, (2.5)

where A is the magnetic 3-vector potential. Note that (2.5) identically solves V-B=0,
because of the vector identity that div curl = 0. Substituting (2.5) into the second equation

in (2.4), we obtain
. /. 0A
Vx (E+57)=0. (2.6)

This can be solved, again identically, by writing
- 04 o
E+—=-Vo¢, 2.7
+ 3 ¢ (2.7)
where ¢ is the electric scalar potential. Thus we can solve the Bianchi identities (2.4) by

writing E and B in terms of scalar and 3-vector potentials ¢ and A:

Ez—%—%—f, B=vxA. (2.8)
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Although we have now “disposed of” the two Maxwell equations in (2.4), it has been
achieved at a price, in that there is a redundancy in the choice of gauge potentials ¢ and

A. First, we may note that that B in (2.8) is unchanged if we make the replacement
A— A+ VA, (2.9)

where A is an arbitrary function of position and time. The expression for E will also be

invariant, if we simultaneously make the replacement

oA

b— b (2.10)

To summarise, if a given set of electric and magnetic fields E and B are described by a
scalar potential ¢ and 3-vector potential A according to (2.8), then the identical physical
situation (i.e. identical electric and magnetic fields) is equally well described by a new pair
of scalar and 3-vector potentials, related to the original pair by the Gauge Transformations
given in (2.9) and (2.10), where X is an arbitrary function of position and time.

We can in fact use the gauge invariance to our advantage, by making a convenient
and simplifying gauge choice for the scalar and 3-vector potentials. We have one arbitrary
function (i.e. A(¢,7)) at our disposal, and so this allows us to impose one functional relation
on the potentials ¢ and A. For our present purposes, the most useful gauge choice is to use

this freedom to impose the Lorenz gauge condition,’

. . 96
VA4 =0 (2.11)

Substituting (2.8) into the remaining Maxwell equations (i.e. (2.3), and using the Lorenz

gauge condition (2.11), we therefore find

¢
V2 - W = —47Tp,
)
VA - %T? = —4nJ. (2.12)

The important thing, which we shall make use of shortly, is that in each case we have on

the left-hand side the d’Alembertian operator [J = 0*0,,, which we discussed earlier.

5Note that, contrary to the belief of many physicists, this gauge choice was introduced by the Danish
physicist Ludvig Lorenz, and not the Dutch physicist Hendrik Lorentz who is responsible for the Lorentz
transformation. Adding to the confusion is that unlike many other gauge choices that one encounters, the

Lorenz gauge condition is, as we shall see later, Lorentz invariant.
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2.3 Maxwell’s equations in 4-tensor notation

The next step is to write the Maxwell equations in terms of four-dimensional quantities.
Since the 3-vectors describing the electric and magnetic fields have three components each,
there is clearly no way in which they can be “assembled” into 4-vectors. However, we
may note that in four dimensional a two-index antisymmetric tensor has (4 x 3)/2 = 6
independent components. Since this is equal to 3 + 3, it suggests that perhaps we should
be grouping the electric and magnetic fields together into a single 2-index antisymmetric

tensor. This is in fact exactly what is needed. Thus we introduce a tensor F},,, satisfying
Fo=—-F,. (2.13)

It turns out that we should define its components in terms of E and B as follows:
Fo = —F;, Fyy=EF; Fij = €iji, By, - (2.14)

Here ;5 is the usual totally-antisymmetric tensor of 3-dimensional vector calculus. It is
equal to +1 if (ijk) is an even permutation of (123), to = —1 if it is an odd permutation,
and to zero if it is no permautation (i.e. if two or more of the indices (ijk) are equal). In

other words, we have

Fy3 = By, F31 = By, Fiy = Bg,
Fyp=-By, Fig=-By,  Fyu=-Bs. (2.15)

Viewing F},, as a matrix with rows labelled by u and columns labelled by v, we shall have

0 —-E -BE, —Ej
Ei 0 By —-Bs

F = . (2.16)
E, —By; 0 DB

Es By —-B; 0

We also need to combine the charge density p and the 3-vector current density J into
a four-dimensional quantity. This is easy; we just define a 4-vector J#, whose spatial
components J i are just the usual 3-vector current components, and whose time component

JO is equal to the charge density p:
J=p, T =T. (2.17)

A word of caution is in order here. Although we have defined objects F),, and J# that

have the appearance of a 4-tensor and a 4-vector, we are only entitled to call them such if
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we have verified that they transform in the proper way under Lorentz transformations. In
fact they do, and we shall justify this a little later.
For now, we shall proceed to see how the Maxwell equations look when expressed in

terms of F),,, and J#. The answer is that they become

0 FM = —4AmJ¥, (2.18)

0uFup+ 0y Fpy +0,F, = 0. (2.19)

Two very nice things have happened. First of all, the original four Maxwell equations
(2.3) and (2.4) have become just two four-dimensional equations; (2.18) is the field equa-
tion, and (2.19) is the Bianchi identity. Secondly, the equations are manifestly Lorentz
covariant; i.e. they transform tensorially under Lorentz transformations. This means that
they keep exactly the same form in all Lorentz frames. If we start with (2.18) and (2.19)
in the unprimed frame S, then we know that in the frame S’, related to S by the Lorentz
transformation (1.67), the equations will look identical, except that they will now have
primes on all the quantities.

We should first verify that indeed (2.18) and (2.19) are equivalent to the Maxwell equa-
tions (2.3) and (2.4). Consider first (2.18). This equation is vector-valued, since it has the
free index v. Therefore, to reduce it down to three-dimensional equations, we have two

cases to consider, namely v = 0 or v = j. For v = 0 we have
RF0 = —4nJY (2.20)

which therefore corresponds (see (2.14) and (2.17)) to

—0E; = —4mp, e V-E =4mp. (2.21)
For v = j, we shall have

QoFY + 0;F = —4nJ7 | (2.22)

which gives
8()Ej + Eijkain = —4rJ7 . (2.23)

This is just”

E - - .

—%—t—FVxB:éMJ. (2.24)

Thus (2.18) is equivalent to the two Maxwell field equations in (2.3).

"Recall that the i’th component of V x V is given by (ﬁ X ‘7)1 = €510, Vi, for any 3-vector V.
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Turning now to (2.19), it follows from the antisymmetry (2.13) of F),, that the left-hand
side is totally antisymmetric in (uvp) (i.e. it changes sign under any exchange of a pair of
indices). Thefore there are two distinct assignments of indices, after we make the 1 + 3
decomposition p = (0,7) etc. Either one of the indices is a 0 with the other two Latin, or

else all three are Latin. Consider first (u, v, p) = (0,1, j):

OOFZ-]- + 8¢Fj0 + 8jF02' =0, (2.25)
which, from (2.14), means
0By,
€ijk a9t + 8¢Ej — OjEi =0. (2.26)
Since this is antisymmetric in ¢j there is no loss of generality involved in contracting with
€;j¢, which gives®
0B
2L 4 2, 0,E; = 0. (2.27)
ot
This is just the statement that
- - 0B

which is the second of the Maxwell equations in (2.4).
The other distinct possibility for assigning decomposed indices in (2.19) is to take
(w, v, p) = (i, 4, k), giving
O0iFji, + 0 F; + O Fy5 = 0. (2.29)
Since this is totally antisymmetric in (i, 7, k), no generality is lost by contracting it with
€ijk giving
3eiji 0iFj, = 0. (2.30)

From (2.14), this implies
36ijk6jkgaiBg = 0, and hence 68ZBZ =0. (2.31)

This has just reproduced the first Maxwell equation in (2.4), i.e. V-B=0.

We have now demonstrated that the equations (2.18) and (2.19) are equivalent to the four
Maxwell equations (2.3) and (2.4). Since (2.18) and (2.19) are written in a four-dimensional
notation, it is highly suggestive that they are indeed Lorentz covariant. However, we should

be a little more careful, in order to be sure about this point. Not every set of objects V#

8Recall that €ijm€Ekem = Oikdje — 03005k, and hence €;jmerjm = 20;x. These identities are easily proven by
considering the possible assignments of indices and explicitly verifying that the two sides of the identities

agree.
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can be viewed as a Lorentz 4-vector, after all. The test is whether they transform properly,
as in (1.82), under Lorentz transformations.

We may begin by considering the quantities J* = (p, J?). Note first that by applying
0, to the Maxwell field equation (2.18), we get identically zero on the left-hand side, since

partial derivatives commute and F'* is antisymmetric. Thus from the left-hand side we get
OuJ"' =0. (2.32)

This is the equation of charge conservation. Decomposed into the 3 + 1 language, it takes
the familiar form
dp = =

o TV JI=0. (2.33)

By integrating over a closed 3-volume V and using the divergence theorem on the second
term, we learn that the rate of change of charge inside V is balanced by the flow of charge

through its boundary S:
0

— =— [ J-dS. 2.34
8t/vdv [Sst (2.34)

Now we are in a position to show that J* = (p, J ) is indeed a 4-vector. Considering
JO = p first, we may note that
dQ = pdxdydz (2.35)

is clearly Lorentz invariant, since it is an electric charge. Clearly, for example, all Lorentz
observers will agree on the number of electrons in a given closed spatial region, and so they

will agree on the amount of charge. Another quantity that is Lorentz invariant is
dv = dtdzdydz , (2.36)

the volume of an infinitesimal region in spacetime. This can be seen from the fact that the
Jacobian J of the transformation from dv to dv’ = dt'dxz’'dy'dz’ is given by

70

J = det (%’5

- ) = det(A",). (2.37)

Now the defining property (1.73) of the Lorentz transformation can be written in a matrix

notation as

ATy =, (2.38)

and hence taking the determinant, we get (det A)?> = 1 and hence

det A = +1. (2.39)
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Assuming that we restrict attention to Lorentz transformations without reflections, then
they will be connected to the identity (we can take the boost velocity ¢ to zero and/or
the rotation angle to zero and continuously approach the identity transformation), and so
det A = 1. Thus it follows from (2.37) that for Lorentz transformations without reflections,
the 4-volume element dtdxdydz is Lorentz invariant.

Comparing d@) = pdrdydz and dv = dtdzdydz, both of which we have argued are
Lorentz invariant, we can conclude that p must transform in the same way as dt under
Lorentz transformations. In other words, p must transform like the 0 component of a
4-vector. Thus writing, as we did, that J° = p, is justified.

In the same way, we may consider the spatial components J° of the putative 4-vector
J#. Considering J', for example, we know that J'dydz is the current flowing through the
area element dydz. Therefore in time dt, there will have been a flow of charge J'dtdydz.
Being a charge, this must be Lorentz invariant, and so it follows from the known Lorentz
invariance of dv = dtdxdydz that J' must transform the same way as dx under Lorentz
transformations. Thus J' does indeed transform like the 1 component of a 4-vector. Similar
arguments apply to J? and J3. (It is important in this argument that, because of the
charge-conservation equation (2.32) or (2.34), the flow of charges we are discussing when
considering the J* components are the same charges we discussed when considering the J°
component.)

We have now established that J* = (p, J*) is indeed a Lorentz 4-vector, where p is the
charge density and J* the 3-vector current density.

At this point, we recall that by choosing the Lorenz gauge (2.11), we were able to reduce
the Maxwell field equations (2.3) to (2.12). Furthermore, we can write these equations
together as

LAY = —4x J¥, (2.40)

where

—,

AP = (¢, A), (2.41)

where the d’Alembertian, or wave operator, [1 = 0/0,, = 0;0; — 03 was introduced in (1.102).
We saw that it is manifestly a Lorentz scalar operator, since it is built from the contraction
of indices on the two Lorentz-vector gradient operators. Since we have already established
that J* is a 4-vector, it therefore follows that A* is a 4-vector. Note, en passant, that the
Lorenz gauge condition (2.11) that we imposed earlier translates, in the four-dimensional
language, into

9 A" =0, (2.42)
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which is nicely Lorentz invariant.
The final step is to note that our definition (2.14) is precisely consistent with (2.41) and
(2.8), if we write

F,, =0,A,—0,A,. (2.43)
First, we note from (2.41) that because of the 799 = —1 needed when lowering the 0 index,
we shall have
A, = (—¢,A). (2.44)
Therefore we find
Foi = 00Ai — 0;A0 = % +0;¢ = —E;
Fj = A;— ;4 = €iji(V x A)p = eij1, By - (2.45)

In summary, we have shown that J* is a 4-vector, and hence, using (2.40), that A* is a
4-vector. Then, it is manifest from (2.43) that F},, is a 4-tensor. Hence, we have established
that the Maxwell equations, written in the form (2.18) and (2.19), are indeed expressed in
terms of 4-tensors and 4-vectors, and so the manifest Lorentz covariance of the Maxwell
equations is established.

Finally, it is worth remarking that in the 4-tensor description, the way in which the gauge
invariance arises is very straightforward. First, it is manifest that the Bianchi identity (2.19)

is solved identically by writing
Fu=0,A,—0,A,, (2.46)

for some 4-vector A,. This is because (2.19) is totally antisymmetric in prp, and so, when
(2.46) is substituted into it, one gets identically zero since partial derivatives commute.
(Try making the substitution and verify this explicitly. The vanishing because of the com-
mutativity of partial derivatives is essentially the same as the reason why curl grad = 0
and div curl = 0.) It is also clear from (2.46) that F),, will be unchanged if we make the
replacement

Ay — A+ 0N, (2.47)
where A is an arbitrary function of position and time. Again, the reason is that partial
derivatives commute. Comparing (2.47) with (2.44), we see that (2.47) implies

O\

¢—>¢_E7

A — A+ O, (2.48)
and so we have reproduced the gauge transformations (2.9) and (2.10).
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It should have become clear by now that all the familiar features of the Maxwell equa-
tions are equivalently described in the spacetime formulation in terms of 4-vectors and
4-tensors. The only difference is that everything is described much more simply and ele-

gantly in the four-dimensional language.

2.4 Lorentz transformation of £ and 5

Although for many purposes the four-dimensional decsription of the Maxwell equations is
the most convenient, it is sometimes useful to revert to the original description in terms of
E and B. For example, we may easily derive the Lorentz transformation properties of E
and B , making use of the four-dimensional formulation. In terms of F},,, there is no work
needed to write down its behaviour under Lorentz transformations. Raising the indices for

convenience, we shall have

F'M = AV, N 5 FPO (2.49)

From this, and the fact (see (2.14) that F% = E;, F"/ = ¢, By, we can then immediately
read of the Lorentz transformations for E and B.
From the expressions (1.68) for the most general Lorentz boost transformation, we may

first calculate E , calculated from

E, = F" =AM\ A\, F,

— AOO Alk FOk + Aok Aio Fk() + Aok Aig ‘ka7

—1 -1
= 7(% + 7 5 Uivk)Ek — YvivpEy — yup (51'4 + V—QUM) €kem Bm
v v

-1
= ’YEi + V€ijk UjBk — 7@—21)ﬂ)kEk . (250)

(Note that because FH is antisymmetric, there is no F%° term on the right-hand side on
the second line.) Thus, in terms of 3-vector notation, the Lorentz boost transformation of

the electric field is given by

. . . ~1 .
E =~y(E+7x B)— 702 (- E)7. (2.51)

An analogous calculation shows that the Lorentz boost transformation of the magnetic field

is given by

v—1
02

B =y(B-txE)— (7-B)7. (2.52)

Suppose, for example, that in the frame S there is just a magnetic field B , while E=0.

An observer in a frame S’ moving with uniform velocity @ relative to S will therefore observe
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not only a magnetic field, given by

_ -1 ~
B =~B - 7U2 (@ B)7, (2.53)

but also an electric field, given by
E' =~7x B. (2.54)

This, of course, is the principle of the dynamo.’

It is instructive to write out the Lorentz transformations explicitly in the case when the

boost is along the x direction, ¥ = (v,0,0). Equations (2.51) and (2.52) become

E. =E,, E, =~(E, —vB.), E. =~(E, +vBy),
Bl = B,, B, =~(By +vE.), B, =~(B, —vE,). (2.55)

2.5 The Lorentz force

Consider a point particle following the path, or worldline, 2! = z(t). It has 3-velocity
u' = da'/dt, and, as we saw earlier, 4-velocity

B 1
7 VI—uZ’

Multiplying by the rest mass m of the particle gives another 4-vector, namely the 4-

U¥ = (v,71), where (2.56)

momentum

pt = mU! = (my, my ). (2.57)

The quantity p® = me~ is called the relativistic energy E, and p' = m~yu’ is called the

relativistic 3-momentum. Note that since U*U, = —1, we shall have
o, = —m?. (2.58)

We now define the relativistic 4-force f#* acting on the particle to be

_ "

== (2.59)

where 7 is the proper time. Clearly f* is indeed a 4-vector, since it is the 4-vector dp*
divided by the scalar dr.

Using (2.57), we can write the 4-force as

di di dil
- 3=, 2 3o, 2= -
ft = (m’y U , MY U U+ my ) (2.60)

In a practical dynamo the rotor is moving with a velocity ¥ which is much less than the speed of light,
i.e. |#] << 1 in natural units. This means that the gamma factor v = (1 — v?)~/2 is approximately equal

to unity in such cases.
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It follows that if we move to the instantaneous rest frame of the particle, i.e. the frame in

which @ = 0 at the particular moment we are considering, then f* reduces to

p - a
f rest frame (0, ), (2.61)
where
Fem® (2.62)
o dt '

is the Newtonian force measured in the rest frame of the particle.!® Thus, we should
interpret the 4-force physically as describing the Newtonian 3-force when measured in the
instantaneous rest frame of the accelerating particle.

If we now suppose that the particle has electric charge e, and that it is moving under
the influence of an electromagnetic field F},,, then its motion is given by the Lorentz force
equation

Fl=eFM U, (2.63)

One can more or less justify this equation on the grounds of “what else could it be?”, since
we know that there must exist a relativistic equation (i.e. a Lorentz covariant equation)
that describes the motion. In fact it is easy to see that (2.63) is correct. We calculate the

spatial components:

fi = eF"VU, =eFOU+eFY Uj,
= e(—Ei)(—) + e€iji By vy, (2.64)

and thus
f=ey(E+axB). (2.65)

But f* = dp*/dr, and so f = dp/dr = ~ dp/dt (recall from section 1.6 that dr = dt/) and

so we have
dp B
dt

where dp/dt is the rate of change of relativistic 3-momentum. This is indeed the standard

x B), (2.66)

£

e(E +

expression for the motion of a charged particle under the Lorentz force.

2.6 Action principle for charged particles

In this section, we shall show how the equations of motion for a charged particle moving

in an electromagnetic field can be derived from an action principle. To begin, we shall

ONote that we can replace the proper time 7 by the coordinate time ¢ in the instantaneous rest frame,

since the two are the same.
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consider an uncharged particle of mass m, with no forces acting on it. It will, of course,
move in a straight line. It turns out that its equation of motion can be derived from the

Lorentz-invariant action

S = —m/ Cdr, (2.67)
T1

where 7 is the proper time along the trajectory a*(7) of the particle, starting at proper
time 7 = 71 and ending at 7 = 7». The action principle then states that if we consider all
possible paths between the initial and final spacetime points on the path, then the actual
path followed by the particle will be such that the action S is stationary. In other words, if
we consider small variations of the path around the actual path, then to first order in the
variations we shall have .5 = 0.
To see how this works, we note that dr? = dt? — daz'dz’ = dt*(1 — viv;) = dt*(1 — v?),
where v; = dx'/dt is the 3-velocity of the particle. Thus
to t2

S=-m | 1-v)dt=-m
t1 t1

(1— a2 at. (2.68)
In other words, the Lagrangian L, for which S = fff Ldt, is given by
L=—m(1—i'")"2. (2.69)

As a check, if we expand (2.69) for small velocities (i.e. small compared with the speed

of light, so |#!| << 1), we shall have
L=-m+imv®+---. (2.70)

Since the Lagrangian is given by L =T — V we see that T is just the usual kinetic energy

%mv2 for a non-relativistic particle of mass m, while the potential energy is just m. Of
course if we were not using units where the speed of light were unity, this energy would be
mc?. Since it is just a constant, it does not affect the equations of motion that will follow
from the action principle.

Now let us consider small variations 6x%(t) around the path z(t) followed by the particle.
The action will vary according to

t2

68 =m | (1 —a7i)" Y2 itsitdt . (2.71)
t1
Integrating by parts then gives
t2d _1/2 . _1/2 . t2
S =—-m — ((1 —2737) a:l) dz'dt + m{(l —3737) xléxl} . (2.72)
t1 dt t1
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As usual in an action principle, we restrict to variations of the path that vanish at the
endpoints, so dz'(t;) = dz'(ty) = 0 and the boundary term can be dropped. The variation
d2' is allowed to be otherwise arbitrary in the time interval t; < t < to, and so we conclude

from the requirement of stationary action 4.5 = 0 that

d i iN—1/2 i
a((l—x]x]) 1/2x) =0. (2.73)
Now, recalling that we define v = (1 — v?)~/2, we see that
d(m~v)
= 2.74
o g, (2.74)
or, in other words,
dp
= =0 2.75
s, (2.75)

where p'= m~7 is the relativistic 3-momentum. We have, of course, derived the equation
for straight-line motion in the absence of any forces acting.

Now we extend the discussion to the case of a particle of mass m and charge e, moving
under the influence of an electromagnetic field F},,,. This field will be written in terms of a

4-vector potential:

F = 8,A, — 0,A,. (2.76)

The action will now be the sum of the free-particle action (2.68) above plus a term describing
the interaction of the particle with the electromagnetic field. The total action turns out to
be
5= / ® (Cmdr + eAude). (2.77)
T1

Note that it is again Lorentz invariant.

—,

From (2.44) we have A, = (—¢, A), and so

1% . .
Aydat = A, ddit dt = (Ao + Aii®)dt = (—¢ + Asi®)dt . (2.78)

Thus we have S = fttf Ldt with the Lagrangian L given by
L=—-m(1—ila)"? —ep + e’ (2.79)

where potentials ¢ and A; depend on t and x. The first-order variation of the action under

a variation dz° in the path gives

t2 . . . . . .
5S = / m(1— @7 27) "2 60" — edip0a’ + A + edj Aii'dad |dt
t1

t , A, .
= /t : {— %(mvm’l) —e0;ip — e% +e0; A &7 |dx'dt . (2.80)

1
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We have dropped the boundary terms immediately, since dz° is again assumed to vanish
Yy Y. g

at the endpoints.) Thus the principle of stationary action 4.5 = 0 implies
d(myi') dA

= 2.81
pm (2.81)
Now, the total time derivative dA;/dt has two contributions, and we may write it as
dA;  0A; dr?  0A; »
L= 0jA —— = "+ ;A 2.82
dt ot TN g or oAt (282)

This arises because first of all, A; can depend explicitly on the time coordinate; this con-
tribution is 9A;/0t. Additionally, A; depends on the spatial coordinates z*, and along the
path followed by the particle, 2° depends on ¢ because the path is 2* = x%(¢). This accounts
for the second term.

Putting all this together, we have

d(myi')
T == (— )‘1‘6(814 —OA)
= (Ez + €ijk LE]Bk) . (283)
In other words, we have
dp - =
5 = B+ B), (2.84)

which is the Lorentz force equation (2.66).
It is worth noting that although we gave a “three-dimensional” derivation of the equa-
tions of motion following from the action (2.77), we can also instead directly derive the

four-dimensional equation dp*/dr = eF*U,. To begin, we write the proper time interval

as dr = (—1ppdzPdz?)'/?  and so its variation under a variation of the path x*(7) gives
5(dr) = —(—npedzPdz®)~Y2y,, detdsz”
dz# y
= _T,uy W déx s
= —Uudoz”, (2.85)

where U, is the 4-velocity. Thus the variation of the action (2.77) gives
T2
0SS = / (mU, doz" + eA,, doz" + ed, A, dx"dzt),
T1

T2
= / (—mdU, éx* — edA, 6zt + €0, Ay daFdx”) ,

- / —“— T o a, Ty samar. (2.86)
dr dr
Now we have
Ay 5,9 _ g 4,07, (2.87)
dr mdr
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and so

T2 d

S = / ( - m% —e0, A, U" +e0, A, U”)ém“dT. (2.88)
71

Requiring 65 = 0 for all variations (that vanish at the endpoints) we therefore obtain the

equation of motion

du,
"

e(OuAy, — 0,A,) U,
= eF,, U". (2.89)

Thus we have reproduced the Lorentz force equation (2.66).

2.7 Gauge invariance of the action

In writing down the relativistic action (2.77) for a charged particle we had to make use
of the 4-vector potential A,. This is itself not physically observable, since, as we noted
earlier, A, and AL = A, + O\ describe the same physics, where A is any arbitrary function
in spacetime, since A, and AL give rise to the same electromagnetic field F),,. One might
worry, therefore, that the action itself would be gauge dependent, and therefore might not
properly describe the required physical situation. However, all is in fact well. This already
can be seen from the fact that, as we demonstrated, the variational principle for the action
(2.77) does in fact produce the correct gauge-invariant Lorentz force equation (2.66).

It is instructive also to examine the effects of a gauge transformation directly at the
level of the action. If we make the gauge transformation A, — AL = A, + 0, we see from
(2.77) that the action S transforms to S’ given by

T2
s = /T (—mdr + eAydzh + edAdzh)

1

T2 T2
— S+ / g da = ¢ / dx, (2.90)
T1 T1

and so

S =85 +e[Am) — A(11)]. (2.91)

The simplest situation to consider is where we restrict ourselves to gauge transformations
that vanish at the endpoints, in which case the action will be gauge invariant, S’ = S. Even
if A is non-vanishing at the endpoints, we see from (2.91) that S and S’ merely differ by a
constant that depends solely on the values of A at 71 and 7. Clearly, the addition of this

constant has no effect on the equations of motion that one derives from S’.
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2.8 Canonical momentum, and Hamiltonian

Given any Lagrangian L(x%, 4%, t) one defines the canonical momentum 7; as
0L
o 9dt

The relativistic Lagrangian for the charged particle is given by (2.79), and so we have

(2.92)

T

i =m(l — 7@V i+ ed;, (2.93)

or, in other words,
m o= myi'+ed;, (2.94)
= p;t+ed;, (2.95)

where p; as usual is the standard mechanical relativistic 3-momentum of the particle.

As usual, the Hamiltonian for the system is given by
H=mi"—1L, (2.96)
and so we find
H = myi's' + % +ed. (2.97)
Now, &' = v; and myv? + m/y = my(v? + (1 — v?)) = m~, so we have
H=mvy+ed. (2.98)

The Hamiltonian is to be viewed as a function of the coordinates x* and the canonical

momenta 7;. To express v in terms of 7;, we note from (2.94) that m~yi’ = 7; — eA;, and so

squaring, we get m2y2v? = m?v?/(1—v?) = (m; — eA;)%. Solving for v2, and hence for v, we

find that m?y2 = (m; —eA;)? + m?, and so finally, from (2.98), we arrive at the Hamiltonian

H= \/(m —eA)?+m?+ep. (2.99)

Note that Hamilton’s equations, which will necessarily give rise to the same Lorentz

force equations of motion we encountered previously, are given by

0H oH .
o i, ot~ i (2.100)

As a check of the correctness of the Hamiltonian (2.99) we may examine it in the non-

relativistic limit when (m; — eA;)? is much less than m?. We then extract an m? factor from

inside the square root in /(m; — eA;)? + m? and expand to get

H = m\/1+(7ri—eAi)2/m2—|—e¢,
1

- m+%(ﬂi—ex4i)2+€¢+"'- (2.101)
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The first term is the rest-mass energy, which is just a constant, and the remaining terms
presented explicitly in (2.101) give the standard non-relativistic Hamiltonian for a charged

particle

H

non-rel. = 5, (T — e4:)* + e¢. (2.102)

This should be familiar from quantum mechanics, when one writes down the Schrodinger

equation for the wave function for a charged particle in an electromagnetic field.

3 Particle Motion in Static Electromagnetic Fields

In this chapter, we discuss the motion of a charged particle in static (i.e. time-independent)

electromagnetic fields.

3.1 Description in terms of potentials

If we are describing static electric and magnetic fields, E = E(7) and B = B(7), it is natural
(and always possible) to describe them in terms of scalar and 3-vector potentials that are

also static, ¢ = ¢(7), A = A(F). Thus we write

= - 9A .
B = VxA®. (3.1)

We can still perform gauge transformations, as given in (2.9) and (2.10). The most general
gauge transformation that preserves the time-independence of the potentials is therefore

given by taking the parameter A to be of the form
A7 t) = A7)+ kt, (3.2)
where k is an arbitrary constant. This implies that ¢ and A will transform according to
p—¢—k, A— ALVA). (3.3)

Note, in particular, that the electrostatic potential ¢ can just be shifted by an arbitrary
constant. This is the familiar freedom that one typically uses to set ¢ = 0 at infinity.
Recall that the Hamiltonian for a particle of mass m and charge e in an electromagnetic
field is given by (2.98)
H=my+eo, (3.4)

42



where v = (1—v2)~1/2, In the present situation with static fields, the Hamiltonian does not
depend explicitly on time, i.e. 9H /0t = 0. In this circumstance, it follows that the energy

£ is conserved, and is given simply by H:

E=H=my+ed. (3.5)
The time-independence of £ can be seen from Hamilton’s equations (2.100):
g = d_H_a_H+8H¢i+a_H7'T.
d — dt 0t Ot om "
= 0—ma' +aim=0. (3.6)

We may think of the first term in £ as being the mechanical term,
gmcch =m7, (37)

since this is just the total energy of a particle of rest mass m moving with velocity ¢. The
second term, e, is the contribution to the total energy from the electric field. Note that the
magnetic field, described by the 3-vector potential ff, does not contribute to the conserved
energy. This is because the magnetic field B does no work on the charge:

Recall that the Lorentz force equation can be written as

d(m~yv?)

o = e(E; + €1 v/ By,) . (3.8)
Multiplying by v* we therefore have
dvt - dry .
iy {8 Rl in ) ]
myv'— + mv'v = (3.9)
Now v = (1 —v?)~1/2, s0
dry 2\—3/2 ,dv’ 5 i dv’
—=(1- f— =t — 1
dt ( v ) v dt fy v dt Y (3 0)
and so (3.9) gives
D _ g, (3.11)
m—y = ev'E;. .
Since Enech = My, and m is a constant, we therefore have
dg;“t%h —e-E. (3.12)

Thus, the mechanical energy of the particle is changed only by the electric field, and not
by the magnetic field.

Note that another derivation of the constancy of £ = my + e¢ is as follows:

¢ d(mvy) d¢

@ - Ta w
_ dEmech dz’
= g T

= ei-E—et-E=0. (3.13)
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3.2 Particle motion in static uniform E and B fields

Let us consider the case where a charged particle is moving in static (i.e. time-independent)
uniform E and B fields. In other words, E and B are constant vectors, independent of
time and of position. In this situation, it is easy to write down explicit expressions for the

corresponding scalar and 3-vector potentials. For the scalar potential, we can take
¢p=—E-7=—Ea'. (3.14)
Clearly this gives the correct electric field, since
—0;¢ = 0;(Eja’) = E;0;27 = E;6;; = E; . (3.15)

(It is, of course, essential that E; is constant for this calculation to be valid.)
Turning now to the uniform B field, it is easily seen that this can be written as B =

V x ff, with the 3-vector potential given by

A=1Bx7. (3.16)

(I

It is easiest to check this using index notation. We have

— - . . 1
(VxA) = €5x0jAr = €105 (5€kemBex™),
1 1
= €ijk€tmk Bgajxm = 3¢€ijkClik By,

= 64B;=DB;. (3.17)

Of course the potentials we have written above are not unique, since we can still perform
gauge transformations. If we restrict attention to transformations that maintain the time-
independence of ¢ and ff, then for ¢ the only remaining freedom is to add an arbitrary
constant to ¢. For the 3-vector potential, we can still add VA(7) to A, where A(7) is an
arbitrary function of position. It is sometimes helpful, for calculational reasons, to do this.
Suppose, for example, that the uniform B field lies along the z axis: B = (0,0, B). From

(3.16), we may therefore write the 3-vector potential
A= (-1By,1Bz,0). (3.18)
Another choice is to take A’ = A + 6/\(77), with A = —%B:Ey. This gives
A" = (=By,0,0). (3.19)
One easily verifies that indeed V x A’ = (0,0, B).
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3.2.1 Motion in a static uniform electric field

From the Lorentz force equation, we shall have

dp -,
P _ o F 2
at (3.20)

where p = m~7 is the relativistic 3-momentum. Without loss of generality, we may take
the electric field to lie along the x axis, and so we will have

dp, dpy dp.
—~ —eF —_— =
ar il dt

=0. (3.21)

Since there is a rotational symmetry in the (y, z) plane, we can, without loss of generality,
choose to take p, = 0, since the motion in the (yz) plane is evidently, from (3.21), simply

linear. Thus we may take the solution to (3.21) to be

ps=¢€eEt, p,=p, p.=0, (3.22)

where p is a constant. We have also chosen the origin for the time coordinate ¢ such that
p,=0att=0.
Recalling that the 4-momentum is given by p* = (m~, p) = (Emech, P), and that ptp, =

mQUNUH = —m?, we see that

Emech = \/m? + P2+ p3 = \/m? + P2+ (cEt)2, (3.23)

and hence we may write

Emech = \/ES + (eEt)?, (3.24)

where £ = m? + p? is the square of the mechanical energy at time ¢ = 0.

We have p'= m~vy U = Enech U, and so

v _ s _ cbi (3.25)
dt Emeen |\ [g2 1 (cBt)?
which can be integrated to give
1
z=— E2 + (eEt)2. (3.26)

(The constant of integration has been absorbed into a choice of origin for the = coordinate.)
Note from (3.25) that the z-component of the 3-velocity asymptotically approaches 1 as ¢
goes to infinity. Thus the particle is accelerated closer and closer to the speed of light, but

never reaches it.
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We also have

L p . (3.27)
At~ Emecn g2 4 (cBL)?
This can be integrated by changing variable from ¢ to u, defined by
eEt = &) sinhu. (3.28)
This gives y = pu/(eFE), and hence
D Et
Yy = e% arcsinh(eg—o) . (3.29)

(Again, the constant of integration has been absorbed into the choice of origin for y.)
The solutions (3.26) and (3.29) for x and y as functions of ¢ can be combined to give z

as a function of y, leading to

. (“:0 eEy
T=—= cosh (?) . (3.30)

This is a catenary.
In the non-relativistic limit when |v| << 1, we have p ~ mv and then, expanding (3.30)

we find the standard “Newtonian” parabolic motion

el o
~ tant . 3.31
z % constant + 55 y (3.31)

3.2.2 Motion in a static uniform magnetic field

From the Lorentz force equation we shall have

W _

dt_eﬁxé. (3.32)

Recalling (3.11), we see that in the absence of an electric field we shall have v = constant,
and hence dp/dt = d(m~v)/dt = m~y dv/dt, leading to

dv e -,
=—UXx B=

i ix B 3.33

oY

since £ = my + e¢ = m~y (a constant) here.

Without loss of generality we may choose the uniform B field to lie along the z axis:

—

B = (0,0, B). Defining

eB eB
= _ = .34
we then find
dvy dv, dv,
a0 a v a v (3.35)



From this, it follows that
d(ve +1ivy)
dt

and so the first two equations in (3.35) can be integrated to give

= —iw (v +ivy), (3.36)

vy +ivy = e~ Wita) (3.37)

where vy is a real constant, and « is a constant (real) phase. Thus after further integrations

we obtain
x = 9 + rosin(wt + «), y = yo + rocos(wt + «), z = 2o+ U,t, (3.38)

for constants rg, g, Yo, 20 and v,, with

Vo myvg D
= — = = — 3.39
T LT TeB " eB’ (3.39)

where p is the relativistic 3-momentum in the (z,y) plane. The particle therefore follows a

helical path, of radius rg.

3.2.3 Adiabatic invariant

In any conservative system with a periodic motion, it can be shown that the quantity
I= fﬂ'idaji, (3.40)

integrated over a complete cycle of the coordinates z° is conserved under slow (adiabatic)
changes of the external parameters. Specifically, if there is an external parameter a, then
dI /dt is of order O(a?,d), but there is no linear dependence on the first derivative a.

In our previous discussion, of a charged particle moving under the influence of a uniform
magnetic field B that lies along the z direction, we may consider the invariant I that one

obtains by integrating around its closed path in the (z,y) plane. We shall have

I= j{mdwi = j{(pi +ed;)dx" (3.41)

and
j{pidxi = 27rop = 271rieB . (3.42)
We shall also have
efAidxi = e/ B.dS = —emr?B. (3.43)
S
Hence we find
I =2nr}eB — mrieB, (3.44)
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and so

=2
[ =mr2eB="2 4
rye B (3.45)

The statement is that since I is an adiabatic invariant, it will remain essentially un-
changed if B, which we can view here as the external parameter, is slowly changed. Thus
we may say that

ro x B~Y2, or pox B2, (3.46)

Note that since mr3 = A, the area of the loop, it follows from (3.45) that
I=ed, (3.47)

where ® = AB is the magnetic flux threading the loop. Thus if we make a slow change to
the magnetic field, then the radius of the particle’s orbit adjusts itself so that the magnetic
flux through the loop remains constant.

As an application, we may consider a charged particle moving in a static magnetic field
that changes gradually with position. We have already seen that £ is constant in a pure

magnetic field. Since we have
pupu = _gr2nech + ﬁ2 = _m2 > (348)

it follows that |p] is also a constant. In our discussion of the particle motion in the magnetic
field, we defined p to be the component of transverse 3-momentum; i.e. the component in

the (z,y) plane. Thus we shall have
P2 =0 +pi, (3.49)

where pr, denotes the longitudinal component of 3-momentum. It follows that

N ~ N el B
PL=p"—p =P - —. (3.50)

Since p? is a constant, it follows that as the particle penetrates into a region where the
magnetic field increases, the longitudinal momentum py, (i.e. the momentum in the direction
of its forward motion) gets smaller and smaller. If the B field becomes large enough, the
forward motion will be brought to zero, and the particle will be repelled out of the region

of high magnetic field.

3.2.4 Motion in uniform E and B fields

Having considered the case of particle motion in a uniform E field, and in a uniform B

field, we may also consider the situation of motion in uniform E and B fields together. To
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discuss this in detail is quite involved, and we shall not pursue it extensively here. Instead,

consider the situation where we take

—

B=(0,0,B), E=(0,E,,E.), (3.51)

(there is no loss of generality in choosing axes so that this is the case), and we make the
simplifying assumption that the motion is non-relativistic, i.e. || << 1. The equations of
motion will therefore be

m— = e(E + 7 x B), (3.52)
and so
mZ = eBy, my = ek, — eBi, mz=ekE,. (3.53)
We can immediately solve for z, finding

(&

z=— B t* + 0t (3.54)

2m

where we have chosen the z origin so that z = 0 at ¢t = 0. The z and y equations can be
combined into

. .
E(a‘:—kiy’)—i—iw(ﬁc—kiy):EEy, (3.55)

where w = eB/m. Thus we find
. s —iwt e —iwt Ey
= —F, = — 3.56
E+ig=ae” + — By =ae” " + (3.56)
Choosing the origin of time so that a is real, we have
. E, . .
x:acoswt—l—f, y = —asinwt. (3.57)
Taking the time averages, we see that
() = — (9) =0. (3.58)

The averaged velocity along the x direction is called the drift velocity. Notice that it is
perpendicular to E and B. It can be written in general as

. E x B

Udrift = gz - (3.59)

For our assumption that |7] << 1 to be valid, we must have |Ex B| << B2, i.e. |E,| << |B|.

Integrating (3.57) once more, we find

E
$:gsinwt—|—§yt, y:g(coswt—l), (360)
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where the origins of x and y have been chosen so that x =y = 0 at t = 0. These equations
describe the projection of the particle’s motion onto the (z,y) plane. The curve is called a
trochoid. 1f |a| > E, /B there will be loops in the motion, and in the special case a = —E, /B

the curve becomes a cycloid, with cusps:

E E
% (wt —sinwt), Y= —g (1 —coswt). (3.61)

xTr =
wB w

4 Action Principle for Electrodynamics

In this section, we shall show how the Maxwell equations themselves can be derived from
an action principle. We shall also introduce the notion of the energy-momentum tensor for
the electromagnetic field. We begin with a discussion of Lorentz invariant quantities that

can be built from the Maxwell field strength tensor F,.

4.1 Invariants of the electromagnetic field

As we shall now show, it is possible to build two independent Lorentz invariants that are
quadratic in the electromagnetic field. One of these will turn out to be just what is needed

in order to construct an action for electrodynamics.

4.1.1 The first invariant

The first quadratic invariant is very simple; we may write
L =F, F". (4.1)

Obviously this is Lorentz invariant, since it is built from the product of two Lorentz tensors,
with all indices contracted. It is instructive to see what this looks like in terms of the electric

and magnetic fields. From the expressions given in (2.14), we see that

I = FoF"+ Fo F" + Fy; FY,
= 2Fy F" + F;j F¥ = —2E;E; + ¢;;5 B €iju By,
— —2E,E; +2B;B;, (4.2)
and so
I = F,, F" =2(B* - E%). (4.3)
One could, of course, verify from the Lorentz transformations (2.51) and (2.52) for E

and B that indeed (52 —52) was invariant, i.e. I] = I; under Lorentz transformations. This
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would be quite an involved computation. However, the great beauty of the 4-dimensional
language is that there is absolutely no work needed at all; one can see by inspection that

F,, F*" is Lorentz invariant.

4.1.2 The second invariant

The second quadratic invariant that we can write down is given by
I = 1P FFpo . (4.4)

First, we need to explain the tensor e#??. This is the four-dimensional Minkowski spacetime
generalisation of the totally-antisymmetric tensor €;;;, of three-dimensional Cartesian tensor
analysis. The tensor e#**? is also totally antisymmetric in all its indices. That means that

it changes sign if any two indices are exchanged. For example,!'!

(HVPO _ _ VHPO _ _ HVOp _ _ OVPH (4.5)

Since all the non-vanishing components of €*? are related by the antisymmetry, we need
only specify one non-vanishing component in order to define the tensor completely. We
shall define

12— 1, or, equivalently €o123 = +1. (4.6)

Thus €77 is —1, +1 or 0 according to whether (uvpo) is an even permutation of (0123),
and odd permutation, or no permutation at all. We use this definition of ¢#*?? in all frames.
This can be done because, like the Minkowski metric 7,,,, the tensor e#”?? is an invariant
tensor, as we shall now discuss.

Actually, to be more precise, €#P? is an invariant pseudo-tensor. This means that un-
der Lorentz transformations that are connected to the identity (pure boosts and/or pure
rotations), it is truly an invariant tensor. However, it reverses its sign under Lorentz trans-
formations that involve a reflection. To see this, let us calculate what the transformation

of e"”P? would be if we assume it behaves as an ordinary Lorentz tensor:

GIMVPU = AMOCAVI@AP-YAU(; Eaﬁ’yé 7

= (detA)e'ro. (4.7)

HBeware that in an odd dimension, such as 3, the process of “cycling” the indices on €i;r (for example,
pushing one off the right-hand end and bringing it to the front) is an even permutation; €x;; = €;k. By
contrast, in an even dimension, such as 4, the process of cycling is an odd permutation; e#"? = —et"P?7.

This is an elementary point, but easily overlooked if one is familiar only with three dimensions!
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The last equality can easily be seen by writing out all the terms. (It is easier to play around
with the analogous identity in 2 or 3 dimensions, to convince oneself of it in an example
with fewer terms to write down.) Now, we already saw in section 2.3 that det A = +1,
with det A = +1 for pure boosts and/or rotations, and det A = —1 if there is a reflection as
well. (See the discussion leading up to equation (2.39).) Thus we see from (4.7) that e*P?
behaves like an invariant tensor, taking the same values in all Lorentz frames, provided
there is no reflection. (Lorentz transformations connected to the identity, i.e. where there
is no reflection, are sometimes called proper Lorentz transformations.) In practice, we shall
almost always be considering only proper Lorentz transformations, and so the distinction
between a tensor and a pseudo-tensor will not concern us.

Returning now to the second quadratic invariant, (4.4), we shall have
I, = 3P FFop =% x4 x e Fy Fjy,,

= 2(—e€ijr)(—Ei)ejreBe,
= 4E;B;=4E-B. (4.8)

Thus, to summarise, we have the two quadratic invariants

I, = F,F"=2B-E?,
I, = 1" F,F,=4E-B. (4.9)

Since the two quantities I; and Iy are (manifestly) Lorentz invariant, this means that,
even though it is not directly evident in the three-dimensional language without quite a lot

of work, the two quantities

—

B>~ FE*  and E-B (4.10)

are Lorentz invariant; i.e. they take the same values in all Lorentz frames. This has a

number of consequences. For example

1. If E and B are perpendicular in one Lorentz frame, then they are perpendicular in

all Lorentz frames.

2. In particular, if there exists a Lorentz frame where the electromagnetic field is purely
electric (E = 0), or purely magnetic (E = 0), then E and B are perpendicular in any

other frame.

3. If |E| > | B| in one frame, then it is true in all frames. Conversely, if |E| < | B in one

frame, then it is true in all frames.
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4. By making an appropriate Lorentz transformation, we can, at a given point, make E
and B equal to any values we like, subject only to the conditions that we cannot alter

the values of (§2 — E’z) and E - B at that point.

4.2 Action for electrodynamics

We have already discussed the action principle for a charged particle moving in an electro-
magnetic field. In that discussion, the electromagnetic field was just a specified background,
which, of course, would be a solution of the Maxwell equations. We can also derive the
Maxwell equations themselves from an action principle, as we shall now show.

We begin by introducing the notion of Lagrangian density. This is a quantity that is
integrated over a three-dimensional spatial volume (typically, all of 3-space) to give the
Lagrangian:

L /ﬁd%. (4.11)

Then, the Lagrangian is integrated over a time interval ¢; <t < t9 to give the action,
s " Lat= / Ld'z. (4.12)
Consider first the vacuum Maxwell equations without sources,
o F" =0, Oy + 0, Fy, +0,F,, =0. (4.13)

We immediately solve the second equation (the Bianchi identity) by writing F},, in terms

of a potential:

Fu = 0,4, — 0,4, (4.14)

Since the Maxwell field equations are linear in the fields, it is natural to expect that the
action should be quadratic. In fact, it turns out that the first invariant we considered above

provides the appropriate Lagrangian density. We take

1
EZ—E FMVF'LLV, (415)
and so the action will be
S=—15- / F,Frdis. (4.16)

We can now derive the source-free Maxwell equations by requiring that this action be
stationary with respect to variations of the gauge field A,. It must be emphasised that we

treat A, as the fundamental field here.
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The derivation goes as follows. We shall have

1 1
4 j%224 4 —_ 1224 4
oS = _—167T (51 /,u/l + 1 ,U«I/(SF )d T 87 /5F/»“’F d L5
= o [P @A - asa e =~ [ Frosa,dt,

1 1
- _ uv 4 7% 4
i /8N(F 0A,))d z + in /(C%F )0A, d x,
1 1
= - J ald Au » _ FHv Ay 4
477/2 ) du+4ﬂ/(au )O0A,d x,
1
ye /(auF )0A,d . (4.17)

Note that in the final steps, we have used the 4-dimensional analogue of the divergence
theorem to turn the 4-volume integral of the divergence of a vector into a 3-volume integral
over the bouding surface 3. The next step is to say that this integral vanishes, because
we restrict attention to variations 64, that vanish on ¥. Finally, we argue that if 0.5 is to

vanish for all possible variations dA,, (that vanish on ¥), it must be that
0, F" =0. (4.18)

Thus we have derived the source-free Maxwell field equation. Of course the Bianchi identity
has already been taken care of by writing F,, in terms of the 4-vector potential A,,.

The action (4.16), whose variation gave the Maxwell field equation, is written in what
is called second-order formalism; that is, the action is expressed in terms of the 4-vector-
potential A, as the fundamental field, with F},, just being a short-hand notation for 9, A, —
0,A,. It is sometimes convenient to use instead the first-order formalism, in which one
treats A, and F),, as independent fields. In this formalism, the equation of motion coming
from demanding that S be stationary under variations of F),, will derive the equation

F = 0,A, —0,A,. To do this, we need a different action as our starting point, namely
1
Sto. = 1= / (LFM B, — F™ 9,A4,)d s (4.19)

First, consider the variation of F'*¥, now treated as an independent fundamental field. This

gives
1 . ,
&&:E/WW”—WWAWL
= L R oA oA, )

where, in getting to the second line, we have used the fact that F'*¥ is antisymmetric. The

reason for doing this is that when we vary F'*” we can take d F'*¥ to be arbitary, but it must
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still be antisymmetric. Thus it is helpful to force an explicit antisymmetrisation on the
0, A, that multiplies it, since the symmetric part automatically gives zero when contracted
onto the antisymmetric dF'*”. Requiring §S;, = 0 for arbitrary 6 F*” then implies the

integrand must vanish. This gives, as promised, the equation of motion
Fu=0,A,—0,A,. (4.21)
Vraying St,. in (4.19) instead with respect to A, we get
5St0, = —ﬁ / F 9,84, d',
= % / (0, F") A, d*z, (4.22)

and hence reuiring that the variation of S¢, with respect to A, vanish gives the Maxwell
field equation
0" =0 (4.23)

again. Note that in this calculation, we immediately dropped the boundary term coming
from the integration by parts, for the usual reason that we only allow variations that vanish
on the boundary.

In practice, we shall usually use the previous, second-order, formalism.

4.3 Inclusion of sources

In general, the Maxwell field equation reads
O F" = —4mJ” . (4.24)

So far, we have seen that by varying the second-order action (4.16) with respect to A, we
obtain

1
55 = — / 0, " 54, d'z. (4.25)

To derive the Maxwell field equation with a source current J#, we can simply add a term

to the action, to give

1
_ _ Qv o 4
5= / (= o= P + T A, ) ' (4.26)
Treating J# as independent of A,, we therefore find
55 = / (i OuF™ + J7)5A, d'a (4.27)
A H ’

and so requiring 6S = 0 gives the Maxwell field equation (4.24) with the source on the
right-hand side.
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The form of the source current J* depends, of course, on the details of the situation
one is considering. One might simply have a situation where J* is an externally-supplied
source field. Alternatively, the source J# might itself be given dynamically in terms of some
charged matter fields, or in terms of a set of moving point charges. Let us consider this
possibility in more detail.

If there is a single point charge ¢ at the location 7, then it will be described by the
charge density

p=q&(F ), (4.28)

where the three-dimensional delta-function &63(7), with 7= (z,y, ), means

83(7) = 6(x)d(y)d(2). (4.29)

—

If the charge is moving, so that its location at time t is at 7= 7(t), then of course we shall

have
p=q8(F—7o(t)). (4.30)

The 3-vector current will be given by

= dre
T = q8 7 - (1) 22, (4.31)
dt
and so the 4-current is
- . drp
JH = (p, pv), where V= (4.32)

and p is given by (4.30). We can verify that this is the correct current vector, by checking
that it properly satisfies the charge-conservation equation 8,J* = dp/dt + 9;J* = 0. Thus

we have
% 0 o iy 4
5 = G500 o(t))—qaxéﬂr To(t)) —
0 3 dz}, o (. dxp
= a0 = io(0) =P = ~0i(p ) -
= —8i(pvi):—aiJi. (4.33)

Note that we used the chain rule for differentiation in the first line, and that in getting to
the second line we used the result that 9/0x f(z —y) = f'(x —y) = —9/dy f(xz — y) for any
function f with argument (x — y) (where f’ denotes the derivative of f with respect to its
argument). It is also useful to note that we can write (4.32) as

o it

_ 4.34
P (4.34)
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where we simply define z{(¢) with © = 0 to be ¢.
Note that the integral [ J*A, for the point charge gives a contribution to that action

that is precisely of the form we saw in equation (2.77):

4 30» = dzp 3
/J“Aud r = /q5 (7 —ro)ﬁAud xdt,
dzh y L
= /path e Ay(zg)dt =¢q it Aydat . (4.35)

Suppose now we have N charges g, following paths 7,(¢). Then the total charge density
will be given by

N
p=>q.0°(F—7a(t)). (4.36)

a=1
Since we have alluded several times to the fact that d,J" = 0 is the equation of charge
conservation, it is appropriate to examine this in a little more detail. The total charge @

at time t1 is given by integrating the charge density over the spatial 3-volume:

Q(t1) = Jd%,, where d¥y = dxdydz . (4.37)
t=t1
This can be written covariantly as
Qt1) = JHdE,, (4.38)

t=t1

where we define also
d¥ = —dtdydz d¥e = —dtdzdzx d¥s = —dtdydz . (4.39)

Because the integral in (4.37) is defined to be over the 3-surface at constant ¢, it follows
that the extra terms, for 4 = 1,2,3, in (4.38) do not contribute.
If we now calculate the charge at a later time t5, and then take the difference between

the two charges, we will obtain

Qlt2) - Qty) = [ 1z, (4.40)

where ¥ is the cylindrical closed spatial 3-volume bounded by the “end caps” formed by the
surfaces t = t1 and t = to, and by the sides at spatial infinity. We are assuming the charges
are confined to a finite region, and so the current J* is zero on the sides of the cylinder.

By the 4-dimensional analogue of the divergence theorem we shall have

/ JhdS, = / 0, 0" d'z, (4.41)
P 14
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where V is the 4-volume bounded by ¥. Thus we have
Q(t2) — Q(tr) = / duJtd'z =0, (4.42)
\%

since 0, J#* = 0. Thus we see that 9,J" = 0 implies that the total charge in an isolated
finite region is independent of time.

Note that the equation of charge conservation implies the gauge invariance of the action.
We have
S = / FWF“” +J1A,)d', (4.43)

and so under a gauge transformation A — A, + Oy, we find
s — / FWF’W £ IRA) e+ / JraAdz |
- S5+ / J”@W\d% — 5+ / B\ ") d'z — / A, Tt d e
— 5+ /E NJF A, (4.44)

As usual, X here is the 3-cylinder of infinite radius in the spatial directions, with endcaps
at t = t; and t = to. The current J* will vanish on the sides of the cylinder, since they
are at spatial infinity and we take J* to vanish there. If we restrict attention to gauge
transformations that vanish at ¢ = t; and ¢ = t5 then the surface integral will therefore give
zero, and so S is unchanged. Even if A is non-zero at ¢ = t; and ¢t = t5 then the surface
integral will just give a constant, independent of A,, and so the original and the gauge

transformed actions will give the same equations of motion.

4.4 Energy density and energy flux

Here, we review the calculation of energy density and energy flux in the 3-dimensional
language. After that, we shall give the more elegant 4-dimensional description.

Consider the two Maxwell equations

— — aE = — ag
B—-—=4 E+— =0. 4.4
V x T xJ, V x FE+ 5 0 (4.45)
From these, we can deduce
. 9E - 0B Lo .
EFE-—+B-— = E- B—4 —B-
5 + ey (V % mJ) (VXE),

= ¢;jx(Eid;By, — Bid;Ey) — 4nJ - E
= —¢i(Bid;jEy + Eyd;B;) — 4nJ - E
= —9j(ejniExB;) — 4nJ - E

E

= V- (ExB)—4nJ-E (4.46)
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We then define the Poynting vector

—

S 4i x B, (4.47)

and so

—

o oS -
%a—(E2+B)——47TV'S—47TJ'E, (4.48)

since E - OE /ot = %8/875(E2), etc.
We now assume that the E and B fields are confined to some finite region of space.

Integrating (4.48) over all space, we obtain

/J Ed3x+8—%/(ﬁz+§2)d3x = —/ﬁ-S%l%;

= —/§~d§,
b

= 0. (4.49)

We get zero on the right-hand side because, having used the divergence theorem to convert
it to an integral over Y, the “sphere at infinity,” the integral vanishes since E and é, and
hence S , are assumed to vanish there.

If the current J is assumed to be due to the motion of a set of charges g, with 3-velocities

U, and rest masses m,, we shall have from (4.31) that

T 9 = dgmoc
/ T Eds =Y qut, B(r) = St (4.50)

where

Emech = Z MaYa (451)

is the total mechanical energy for the set of particles, as defined in (3.7). Note that here
tu = (1—v2)7Y2, (4.52)

Thus we conclude that

d

&(&m‘*‘h +— / (E? + BY)d’z) = 0. (4.53)
This is the equation of total energy conservation. It says that the sum of the total mechanical
energy plus the energy contained in the electromagnetic fields is a constant. Thus we

interpret

1w =
W= _—(E*+ B? 4.54
87T( + B7) (4.54)

as the energy density of the electromagnetic field.
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Returning now to equation (4.48), we can consider integrating it over just a finite volume
V', bounded by a closed 2-surface Y. We will have
i@mmﬁ/wﬁ@:—/gdi. (4.55)
dt 1% b
We now know that the left-hand side should be interpreted as the rate of change of total
energy in the volume V and so clearly, since the total energy must be conserved, we should
interpret the right-hand side as the flux of energy passing through the boundary surface X.
Thus we see that the Poynting vector

- 1 = _,

S=—FEXxB 4.56
yo (4.56)

is to be interpreted as the energy flux across the boundary; i.e. the energy per unit area per

unit time.

4.5 Energy-momentum tensor

The discussion above was presented within the 3-dimensional framework. In this section
we shall give a 4-dimensional spacetime description, which involves the introduction of the
energy-momentum tensor. We shall begin with a rather general introduction. In order to
simplify this discussion, we shall first describe the construction of the energy-momentum
tensor for a scalar field ¢(x*). When we then apply these ideas to electromagnetism, we
shall need to make the rather simple generalisation to the case of a Lagrangian for the
vector field A, (z").

Recall that if we write the Maxwell tensor F),, in terms of the 4-vector potential A,
namely F,, = d,A, — 0,A,, then the Bianchi identity 0,F,, + 0,F,, + 0,F, = 0 is
automatically solved, and so the remaining content of the source-free Maxwell equations is

just the field equation 0" F),, = 0, which implies
0A, —0,(0,A”) =0, (4.57)

where [1 = 90, is the d’Alembertian. If we choose to work in the Lorenz gauge, 9, AY = 0,
the field equation reduces to

A, =0. (4.58)

In the analogous, but simpler, example of a scalar field theory, we could consider the
field equation
¢ =0. (4.59)
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A slightly more general possibility would be to add a “mass term” for the scalar field, and
consider the equation of motion

O¢ +m?p =0, (4.60)

where m is a constant, describing the mass of the field. (As we shall discuss in detail later
in the course, electromagnetism is described by a massless field. At the level of a particle
description, this corresponds to the fact that the photon is a massless particle.)
The equation of motion (4.60) for the scalar field can be derived from an action. Consider
the Lagrangian density
L=—3(0"$)(0.0) + im* ¢*. (4.61)

Varying the action S = [ Ld*z with respect to ¢, we obtain
55 = / (— (86000 + m® $60) d'
_ / (0,0"0 +m? 6) 60’z (4.62)

where we have, as usual, dropped the boundary term when performing the integration by
parts to obtain the second line. Requiring 5 = 0 for all possible d¢ consistent with the
boundary conditions, we conclude that the quantity in the parentheses on the second line
must vanish, and hence we arrive at the equation of motion (4.60).

We can now extend the discussion by considering an abstract Lagrangian density £
describing a scalar field ¢. We shall assume that £ depends on ¢, and on its first derivatives

d,¢, but that it has no ezplicit dependence!? on the spacetime coordinates z*:
L=L(},0no). (4.63)
The action is then given by
S = / L(6,0,8)d"z. (4.64)

The Euler-Lagrange equations for the scalar field then follow from requiring that the

action be stationary. Thus we have'?

5§ = /[g—gam%auw}d%,

2This is the analogue of a Lagrangian in classical mechanics that depends on the coordinates ¢; and

velocities ¢*, but which does not have explicit time dependence. Energy is conserved in a system described

by such a Lagrangian.
13Note that 0L£/00, ¢ means taking the partial derivative of £ viewed as a function of ¢ and 8,¢, with

respect to 0,¢. For example, if £ = —%(auqb)(@“qb) + %m2¢27 then

0£/00.6 = ~(0"9) S0 = —(019) 5 = ~0"5. (4.65)

Of course, in this example dL/d¢ is just equal to m? .
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oL oL
- / [aqb 9%~ 0 (88y¢)5¢]d4 5 00,0 7

- / [&z» %% =0 (a%f¢)5¢]d4 199

where, in getting to the last line, we have as usual dropped the surface term integrated over
the boundary cylinder 3, since we shall insist that d¢ vanishes on . Thus the requirement
that 05 = 0 for all such d¢ implies the Euler-Lagrange equations

oL oL
5 au(m) =0. (4.67)

Now consider the expression d,L£ = 0L/0z”. Since we are assuming £ has no explicit

dependence on the spacetime coordinates, it follows that 0,L is given by the chain rule,

oL oL

720000 . (4.68)

Now, using the Euler-Lagrange equations (4.67), we can write this as

oL oL

0L = 0(55,5)0+ 55,509
oL
= O[5 09 (4.69)
and thus we have
oL v
d, [68V¢ b6 — 0y L] =0 (4.70)
We are therefore led to define the 2-index tensor
oL
which then satisfies
0,1," =0. (4.72)

TH is called an energy-momentum tensor.
We saw previously that the equation 0,J# = 0 for the 4-vector current density J#

implies that there is a conserved charge

Q= JOds, = / JHZ,, . (4.73)
t=const

t=const

where d¥y = dxdydz, etc. By an identical argument, it follows that the equation 9,7, = 0

implies that there is a conserved 4-vector:

pr = / THOGs, — / Ty, | (4.74)
t=const t=const
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(Of course TH = n#? T,¥.) Thus we may check

dPH* .
—_— = 80/ T“Odgilt == / a(]TuOdg:E = —/ OZ-T’“d?’x,
dt t=const t=const t=const

= —/T‘“'dSZ- =0, (4.75)
S

where in the last line we have used the divergence theorem to turn the integral into a 2-
dimensional integral over the boundary sphere S at infinity. This vanishes since we shall
assume the fields are zero at infinity.

Notice that 7°° = —T3% and from (4.71) we therefore have

oL

00 __
= 9000

Q¢ — L. (4.76)

Now for a Lagrangian L = L(¢%,¢') we have the canonical momentum 7m; = dL/dq', and
the Hamiltonian

H=mq — L. (4.77)

Since there is no explicit time dependence, H is conserved, and is equal to the total energy
of the system. Comparing with (4.76), we can recognise that T is the energy density.

From (4.74) we therefore have that
w:/ﬂ%% (4.78)

is the total energy. Since it is manifest from its construction that P* is a 4-vector, and
since its 0 component is the energy, it follows that P* is the 4-momentum.

The essential point in the discussion above is that P* given in (4.74) should be conserved,
which requires 9,7, = 0. The quantity 7, we constructed is not the unique tensor with

this property. We can define a new one, according to
T, — T," + 0,9, , (4.79)
where 1,”? is an arbitrary tensor that is antisymmetric in its last two indices,
Y7 ==, (4.80)

We shall take 1,”“ to vanish at spatial infinity.

The antisymmetry implies, since partial derivatives commute, that

&Jaawpua = 07 (481)
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and hence that the modified energy-momentum tensor defined by (4.79) is conserved too.
Furthermore, the modification to T,” does not alter P*, since, from (4.74), the extra term

will be
[ ormas, = [ o,
t=const t=const

= [ owrida,
t=const

= / YHdS; =0, (4.82)
S

where S is the sphere at spatial infinity. The modification to P* therefore vanishes since
we are requiring that 1,”? vanishes at spatial infinity.
The energy-momentum tensor can be pinned down uniquely by requiring that the four-

dimensional angular momentum M*”, defined by
MW = /(az”dPV —z”dP") (4.83)

be conserved. First, let us make a remark about angular momentum in four dimensions. In

three dimensions, we define the angular momentum 3-vector as L=7x p. In other words,

L = Ez'jkxjpk = %Eijk(xjpk - xkpj) = %Eijijka (4.84)

where M7% = 27pk —2*pi. Thus taking M* = ztp” —z’p* in four dimensions is a plausible-
looking generalisation. It should be noted that in a general dimension, angular momentum
is described by a 2-index antisymmetric tensor; in other words, angular momentum is
associated with a rotation in a 2-dimensional plane. It is a very special feature of three
dimensions that we can use the ¢;;; tensor to map the 2-index antisymmetric tensor Mk
into the vector L; = %eijkM 7k Put another way, a very special feature of three dimensions
is that a rotation in the (x,y) plane can equivalently be described as a rotation about the
orthogonal (i.e. z) axis. In higher dimensions, rotations do not occur around axes, but
rather, in 2-planes. It is amusing, therefore, to try to imagine what the analogue of an axle
is for a higher-dimensional car!

Getting back to our discussion of angular momentum and the energy-momentum tensor

in four dimensions, we are defining
MW = /(:E”dPV —z¥dP!) = /(:E“T”p —x"THP)d%,, . (4.85)

By analogous arguments to those we used earlier, this will be conserved (i.e. dM* /dt = 0)
if
Op(xHT"P — 2" THP) = 0. (4.86)
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Distributing the derivative, we therefore have the requirement that
5‘p‘T”p + 210, T"P — 5ZT“” —2"0,T" =0, (4.87)
and hence, since 9,T" = 0, that T"" is symmetric,
T =T"F. (4.88)

Using the freedom to add 9,1¥**? to TH", as we discussed earlier, it is always possible to
arrange for T to be symmetric. From now on, we shall assume that this is done.

We already saw that P* = [ T*0d@3z is the 4-momentum, so T% is the energy density,
and 7% is the 3-momentum density. Let us now look at the conservation equation 9, 7" = 0

in more detail. Taking 1 = 0, we have 9,T% = 0, or

%TOO +9,7% =0. (4.89)

integrating over a spatial 3-volume V' with boundary S, we therefore find

% /V TOPr = — /V ;T Pz = — /S T%4ds; . (4.90)
The left-hand side is the rate of change of field energy in the volume V, and so we can
deduce, from energy conservation, that 7% is the energy flux 3-vector. But since we are
now working with a symmetric energy-momentum tensor, we have that 7% = T9° and we

already identified 770 as the 3-momentum density. Thus we have that
energy flux = momentum density . (4.91)

From the p = i components of 9, 7" = 0, we have

%T’O +0;T =0, (4.92)

and so, integrating over the 3-volume V', we get

9 / TPz = — / T dr = — / TdS; . (4.93)
ot Jv 1% S

The left-hand side is the rate of change of 3-momentum, and so we deduce that T% is the
3-tensor of momentum flux density. It gives the ¢ component of 3-momentum that flows,
per unit time, through the 2-surface perpendicular to the 2/ axis. T% is sometimes called

the 3-dimensional stress tensor.
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4.6 Energy-momentum tensor for the electromagnetic field

Recall that for a scalar field ¢, the original construction of the energy-momentum tensor
T," (which we later modified by adding 051,"” where 1,"? = —,7") was given by

14 8'6 12
L' = =555 00+ 0, L. (4.94)

If we have a set of IV scalar fields ¢,, then it is easy to see that the analogous conserved

tensor is
Z aay o Opta + 05 L. (4.95)

A similar calculation shows that if we con81der instead a vector field A,, with Lagrangian
density L(A,,0,A,), the construction will give a conserved energy-momentum tensor

v o 8‘C v
T, = ~ oA 0pAs+ 06, L. (4.96)

Let us apply this to the Lagrangian density for pure electrodynamics (without sources),

=——F,F". 4.
L= Ton 1w (4.97)
We have
1 1
0L =——F"oF,, = ——F"0,0A,, 4.
L 5 o i O (4.98)
and so
oL
2
88 i I F (4.99)
Thus from (4.96) we find
1 1
T, = —F"9,A, vV FAFo 4.1
) An a 67T5p oA 5 ( 00)
and so
T = iFVUaMAC, — Ln/w F\Fo. (4.101)
47 167

This expression is not symmetric in p and v. However, following our previous discussion,
we can add a term O0,¢""? to it, where Y*”7 = —H°Y without upsetting the conservation
condition 9,T"" = 0. Specifically, we shall choose *? = —1/(47)A*F"?, and so

O’ = —iﬁa(A”F’”’) )
_ —%(&,A“)FV" - ﬁA“@UFW _ —%(&,A“)FW. (4.102)
(the 9, F"? term drops as a consequence of the source-free field equation.) This leads to

the new energy-momentum tensor

1 1
T = P70 Ay = 0y A) = ) FnF™, (4.103)
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or, in other words,

1
TR _ 4_(FMU o %nwf FJ)\FU)‘) . (4.104)
T

This is indeed manifestly symmetric in 4 and v. From now on, it will be understood when
we speak of the energy-momentum tensor for electrodynamics that this is the one we mean.

It is a straightforward exercise to verify directly, using the source-free Maxwell field
equation and the Bianchi identity, that indeed T*” given by (4.104) is conserved, 9, " = 0.

Note that it has another simple property, namely that it is trace-free, in the sense that
NuwT" =0. (4.105)

This is easily seen from (4.104), as a consequence of the fact that n*“n,, = 4 in four
dimensions. The trace-free property is related to a special feature of the Maxwell equations
in four dimensions, known as conformal invariance.

Having obtained the energy-momentum tensor (4.104) for the electromagnetic field, it
is instructive to look at its components from the three-dimensional point of view. First,

recall that we showed earlier that

F\F° =2(B? — E?). (4.106)
Then, we find
1
TOO — _(FOO_FOO' _ %UOOFU)\FO')\) ’

4
1 . . .

— E(FOZFOZ_I_%BZ_%EQ),
L o= 132 12
1 = o

= g(ﬁ + B?). (4.107)

Thus T% is equal to the energy density W that we introduced in (4.54).

Now consider T%. Since n% = 0, we have

TOi — LFOUFiO' — LFOJ FZ] ’
a7 A7
1
= EEjeijkBk = SZ‘, (4108)

where § = 1/(47)E x B is the Poynting vector introduced in (4.47). Thus T is the energy
flux. As we remarked earlier, since we now have 7% = T it can be equivalently interpreted

as the 3-momentum density vector.
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Finally, we consider the components 7%. We have
TY = 47T (F FI7 — 1n72(B* — E2)) :
FioF + F'FIF — 15,(B? - B7)),

i
(-
(-
(-

§|~§|H§|H

E,E; — B;B; + %52‘]‘(E2 + éz)) .

To summarise, we have

- T 1% W S
B Tio Uz’j B Sz Uij ’

where W and S are the energy density and Poynting flux,

1 - - - 1 - =
= — (E? + B? = —ExB
w 8T (B + B, s A7 el

and

1

Uijequiv — 4— (EZ'E]' + BiBj) + W(Sij .

T

Remarks

E;Bj + €iptejiom B B — 30,552 — E2))

EZ‘EJ' + 5ij§2 — BZB] — %&J(B? — E2)) ,

(4.109)

(4.110)

(4.111)

(4.112)

e Unless E and B are perpendicular and equal in magnitude, we can always choose a

Lorentz frame where E and B are parallel at a point. (In the case that E and B are

perpendicular (but unequal in magnitude), one or other of E or B will be zero, at the

point, in the new Lorentz frame.)
Let the direction of E and B then be along z:

E=(0,0,E), B=(0,0,B).

—

Then we have § = 1/(47)E x B = 0 and

011 =099 =W, o33 =-—W, Oij = 0 otherwise,

and so T" is diagonal, given by

W 0 0 0
0O W 0 0

T — ,
0 0 W 0
0 0 0 —-W

with W = 1/(87)(E2 + B2).
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e If E and B are perpendicular and ]E\ = \é\ at a point, then at that point we can

choose axes so that

— —

E=(E,0,0), B=(0B,0)=(0E0). (4.116)
Then we have
Wo— g2 S =(0,0,W)
- 47_[_ M - ) M )
o011 = 092=0, o33 =W, oij =0 otherwise, (4.117)

and therefore TH¥ is given by

W
0

T =

0

o O o O
o O o O

W

0

.k (4.118)
W W

4.7 Inclusion of massive charged particles

We now consider the energy-momentum tensor for a particle with rest mass m. We proceed
by analogy with the construction of the 4-current density J* for charged non-interacting
particles. Thus we define first a mass density, €, for a point mass m located at ¥ = 7(¢).
This will simply be given by a 3-dimensional delta function, with strength m, located at

the instantaneous position of the mass point:
e =md3 (7 — (). (4.119)

The energy density T for the particle will then be its mass density times the corresponding
7 factor, where v = (1 —v2)~'/2, and @ = diy(t)/dt is the velocity of the particle. Since the
coordinate time ¢t and the proper time 7 in the frame of the particle are related, as usual,

by dt = vydr, we then have

dt
T — ¢ — . 4.120
¢ dr ( )
The 3-momentum density will be
. dzt dt dzt
TV = —e— . 4.121
Var T dr dt (4.121)
We can therefore write .
dt dz¥ dz” dz¥
TV — c— = 4.122
“Ordt - Sdr dt (4.122)
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On general grounds of Lorentz covariance, it must therefore be that

dr dt’
da* da” dr

dr dr dt’
e dz* dx¥

T =

By writing it as we have done in the second line here, it becomes manifest that T*” for the
particle is symmetric in p and v.

Consider now a system consisting of a particle with mass m and charge ¢, moving
in an electromagnetic field. Clearly, since the particle interacts with the field, we should
not expect either the energy-momentum tensor (4.104) for the electromagnetic field or
the energy-momentum tensor (4.123) for the particle to be conserved separately. This is
because energy, and momentum, is being exchanged between the particle and the field. We
can expect, however, that the total energy-momentum tensor for the system, i.e. the sum
of (4.104) and (4.123), to be conserved.

In order to distinguish clearly between the various energy-momentum tensors, let us
define

TH =TI 4T (1.124)

part. >

where T and Tgayrt. are the energy-momentum tensors for the electromagnetic field and

the particle respectively:

1
T = (P P — ™ FpP™)
daxt dx¥
Thars. = S dL (4.125)
where & = mé&3 (7 — 7p(t)).
Consider T} first. Taking the divergence, we find
1% 1 “w vo “w vo 1 o)X qu
al/To.m. = E(auF o F"7 + FFy 0,F"7 — EF 0 Fa)\) ,
1
= (0P BT B 0,8 + SO, F - JFOFY )
1
= (OFro P JFP0, 1 — §F Y FY G 0,F7)
1
= P o,
= —F Y. (4.126)

In getting to the second line we used the Bianchi identity on the last term in the top line.

The third line is obtained by swapping indices on a field strength in the terms with the %
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factors, and this reveals that all except one term cancel, leading to the result. As expected,
the energy-momentum tensor for the electromagnetic field by itself is not conserved when
there are sources.

Now we want to show that this non-conservation is balanced by an equal and opposite
non-conservation for the energy-momentum tensor of the particle, which is given in (4.125).

We have

0, =8, (5%)?—: + a%ay(%) . (4.127)

The first term is zero. This can be seen from the fact that the calculation is identical to
the one which we used a while back in section 4.3 to show that the 4-current J* = pda*/dt

for a charged particle is conserved. Thus we have

dx¥ dxt dx¥
we G g AN Al i
0T = o) =T,
daut
_ ] 4.128
e (4.128)
By the Lorentz force equation mdU* /dr = qF*,U", we have
aut dz”
—— = pFH*,UY = pFH,—— 4.12
“ar PELU P dr ( 2
and so
au* dz”
—— = pF*, =FH,J", 4.130
Tat T (4.130)
since J* = pdx# /dt. Thus we conclude that
8,,T5a”rt. =F*,Jv, (4.131)

and so, combining this with (4.126), we conclude that the total energy-momentum tensor

for the particle plus electromagnetic field, defined in (4.124) is conserved,

8,T" =0. (4.132)

5 Coulomb’s Law

5.1 Potential of a point charge

Consider first a static point charge, for which the Maxwell equations therefore reduce to

—

VxE=0, V-E=d4mp. (5.1)

The first equation implies, of course, that we can write

—

E=-V¢, (5.2)
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and then the second equation implies that ¢ satisfies the Poisson equation
V2 = —4mp. (5.3)

If the point charge is located at the origin, and the charge is e, then the charge density
p is given by
p=ed (7). (5.4)

Away from the origin, (5.3) implies that ¢ should satisfy the Laplace equation,
Vi =0, |7 > 0. (5.5)

Since the charge density (5.4) is spherically symmetric, we can assume that ¢ will be

2

spherically symmetric too, ¢(7) = ¢(r), where r = |7]. From r? = 2727 we deduce, by

acting with 9;, that

oir = —. 5.6
r=? (5.6
From this it follows by the chain rule that
0i = ¢ = ¢/, (5.7)
where ¢ = d¢/dr, and hence
g

Vo = ao0=0(00) =T L 4 ¢ AT 4 gaa,
T rTrTr r r

2
= ¢+ - ¢ . (5.8)
Thus the Laplace equation (5.5) can be written as
(r*¢/) =0, r>0, (5.9)

which integrates to give

o=2 (5.10)

T

where ¢ is a constant, and we have dropped an additive constant of integration by using
the gauge freedom to choose ¢(o0) = 0.
To determine the constant ¢, we integrate the Poisson equation (5.3) over the interior

Vg of a sphere of radius R centred on the origin, and use the divergence theorem:

Vipd3z = —dme | &3 (F)dPx = —4me,
VR VR
- Vé-dS = ai(g)dsi,
Sr Sr r
z'dS; n'dS;
_ _ 11
q /S = 9 TRE (5.11)
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where Sp is the surface of the sphere of radius R that bounds the volume Vg, and n' = ¢ /r

is the outward-pointing unit vector. Clearly we have
n'dS; = R%dSY, (5.12)

where df is the area element on the unit-radius sphere, and so

—q/ n'dS = —q/dQ = —4mq, (5.13)
Sr

r2

and so we conclude that g is equal to e, the charge on the point charge at r = 0.
Note that if the point charge e were located at 7', rather than at the origin, then by

trivially translating the coordinate system we will have the potential

e
7) = 14
8 = a7 (514)
and this will satisfy
V2 = —4med® (7 — 7). (5.15)

5.2 Electrostatic energy

In general, the energy density of an electromagnetic field is given by W = 1/(8) (Ez + éz)
A purely electrostatic system therefore has a field energy U given by

1
U = /Wd3:n:—/E2d3:n,
8T
= —L/E-§¢d3$,
8
_ (e BaBer X (o Brod
- 87T/v (Eqﬁ)da:—kgw/(v B)éd®z,
1.
_ ——/E¢-d5+%/p¢d3:n,
8t Js
= %/m&d%. (5.16)

Note that the surface integral over the sphere at infinity gives zero because the electric field
is assumed to die away to zero there. Thus we conclude that the electrostatic field energy
is given by

U= %/pqﬁd?’x. (5.17)

We can apply this formula to a system of N charges q,, located at points 7, for which

we shall have

N
p= Z Qa(ss(F_ Fa) : (518)

a=1
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However, a naive application of (5.17) would give nonsense, since we find

N N
=13 [P 6P = 1Y aoli), (5.19)
a=1

where ¢(7) is given by (5.14),

(5.20)

N
This means that (5.19) will give infinity since QS(T‘), not unreasonably, diverges at the location
of each point charge.

This is the classic “self-energy” problem, which one encounters even for a single point
charge. There is no totally satisfactory way around this in classical electromagnetism, and
so one has to adopt a “fudge.” The fudge consists of observing that the true self-energy
of a charge, whatever that might mean, is a constant. Naively, it appears to be an infinite
constant, but that is clearly the result of making the idealised assumption that the charge
is literally located at a single point. In any case, one can argue that the constant self-energy
will not be observable, as far as energy-conservation considerations are concerned, and so
one might as well just drop it for now. Thus the way to make sense of the ostensibly
divergent energy (5.19) for the system of point charges is to replace ¢(7,), which means the
potential at ¥ = 7, due to all the charges, by ¢,, which is defined to be the potential at
7 = 7, due to all the charges except the charge q, that is itself located at 7 = 7,. Thus we

have

(5.21)

¢G_Z|m

and so (5.19) is now interpreted to mean that the total energy of the system of charges is

1y Yy e (5.22)

a bta |7"a - 7"b|

— 7|’

5.3 Field of a uniformly moving charge

Suppose a charge e is moving with uniform velocity ¢ in the Lorentz frame S. We may
transform to a frame S’, moving with velocity o relative to S, in which the charge is at
rest. For convenience, we shall choose the origin of axes so that the charge is located at the
origin of the frame 5’

It follows that in the frame S’, the field due to the charge can be described purely by

the electric scalar potential ¢':

ms: ¢=S, A=o. (5.23)



(Note that the primes here all signify that the quantities are those of the primed frame S’.)

We know that A* = (¢, A) is a 4-vector, and so the components A* transform under

Lorentz boosts in exactly the same way as the components of z#. Thus we shall have

§=n(o-0 A, A=A+ L@ Di-vig, (5.24)

v

where v = (1 — v?)~1/2. Clearly the inverse Lorentz transformation is obtained by sending

v — —, and so we shall have

. L -1 .
b= (¢ +7-A), A:A’+7U2 (@ ANG+ 7. (5.25)

From (5.23), we therefore find that the potentials in the frame S, in which the particle is
moving with velocity ¥, are given by
p=v¢ ==L,  A=qvg = (5.26)
r r

Note that we still have r’ appearing in the denominator, which we would now like to
express in terms of the unprimed coordinates.

Suppose, for example, that we orient the axes so that ¢ lies along the x direction. Then
we shall have

/

€ :/7(:17_,015)7 y/:yv Z/:Z, (527)

and so

P =2 4y = —ut) P+ (5.28)

It follows therefore from (5.26) that the scalar and 3-vector potentials in the frame S are

given by
e - el
- A=—_ 5.29
b==. = (529)
where we have defined
RZ=(z—uvt)>+ (1 -0} + 7). (5.30)

The electric and magnetic fields can now be calculated in the standard way from ¢ and
A, asin (2.8). Alternatively, and equivalently, we can first calculate £” and B’ in the primed
frame, and then Lorentz transform these back to the unprimed frame. In the frame S’, we
shall of course have

The transformation to the unprimed frame is then given by inverting the standard results

(2.51) and (2.52) that express E' and B’ in terms of E and B. Again, this is simply achieved
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by interchanging the primed and unprimed fields, and sending ¢ to —¢. This gives

E = ~{F -vxB)- 2 (0-E") v,
B = ~yB' +vxFE)— 2 (7-B") 7, (5.32)
and so from (5.31), we find that E and B in the frame S are given by
>/ = 2
= enr y—1lev-7"
FEF = 74’3 — U2 74’3 v,
5 L= eyux 7!

Let us again assume that we orient the axes so that ¥/ lies along the x direction. Then

from the above we find that

ex’ evy' evz'
Bi="g, By=—g, B="7r (5.34)
and so
ey(x — vt) evy eyz
E:B — 774/3 5 Ey — TT, Ez — W . (535)

Since the charge is located at the point (vt, 0, 0) in the frame S, it follows that the vector

from the charge to the point 7= (z,y, 2) is
R=(z—uty,z). (5.36)

From (5.35), we then find that the electric field is given by

- eyR  e(1-v)R
E= = I , (5.37)

where R, was defined in (5.30).
If we now define € to be the angle between the vector R and the axis, then the

coordinates (z,y, z) of the observation point P will be such that
y? 4 22 = R?sin?4, where R? = |R? = (x — vt)? + % + 22. (5.38)
This implies, from (5.30), that
R? = R? — v*(y% + 22) = R?(1 — v*sin?9), (5.39)

and so the electric field due to the moving charge is

E=— . (5.40)



For an observation point P located on the x axis, the electric field will be E) (parallel
to the x axis), and given by setting § = 0 in (5.40). On the other hand, we can define the
electric field E| in the (y, z) plane (corresponding to § = 7/2). From (5.40) we therefore
have 2 2\—1/2
%, El:e(l_+2). (5.41)
Note that F) has the smallest magnitude, and E| has the largest magnitude, that E attains

By =

as a function of 6.

When the velocity is very small, the magnitude of the electric field is (as one would
expect) more or less independent of §. However, as v approaches 1 (the speed of light), we
find that F) decreases to zero, while F'| diverges. Thus for v near to the speed of light the
electric field is very sharply peaked around 6 = 7/2. If we set

T
=51, (5.42)

then
_ e(1 —?) (1Y)
T OR2(1—02cos2¢)3/2 T (1 -2+ 12)3/2

if v & 1. Thus the angular width of the peak is of the order of

W~ V/1— 02, (5.44)

E|

(5.43)

We saw previously that the magnetic field in the frame S is given by B= YU X E’. From

(5.33) we have ¥ x E = ~7 x E’, and so therefore

. o e(1-®)TxR
B:vxE:R—i (5.45)
Note that if |#/] << 1 we get the usual non-relativistic expressions
.  eR - elxR
E =~ ik B =~ 73 (5.46)

5.4 Motion of a charge in a Coulomb potential

We shall consider a particle of mass m and charge e moving in the field of a static charge
Q. The classic “Newtonian” result is very familiar, with the orbit of the particle being
a conic section; an ellipse, a parabola or a hyperbola, depending on the charges and the
orbital parameters. In this section we shall consider the fully relativistic problem, when the
velocity of the particle is not necessarily small compared with the speed of light.

The Lagrangian for the system is given by (2.79), with ¢ = Q/r and A = 0:
)2 eQ

L=-m(1—a'
.

; (5.47)

7



where ¢ = dx'/dt, and r? = 2'z'. The charges occur in the combination eQ throughout

the calculation, and so for convenience we shall define
g=eQ. (5.48)
It is convenient to introduce spherical polar coordinates in the standard way,
x =rsinfcosp, y =rsinfsingp, z=rcosl, (5.49)
and then the Lagrangian becomes

L=—m(1—7?—r20? —r?sin? 0?2 — T (5.50)
r

The Lagrangian is of the form L = L(g;, ¢;) for coordinates ¢; and velocities ¢; (don’t confuse

the coordinates ¢; with the product of charges ¢ = eQ!). The Euler-Lagrange equations are
oL d /0L
= —(—) =0. (5.51)
dq;  dt \dg;

Note that if L is independent of a particular coordinate, say ¢;, there is an associated

conserved quantity 0L/0¢q;:
4 oL _
dt dg;

The Euler-Lagrange equation for 6 gives

0. (5.52)

% (r29(1 — 72 1202 — 12 5in? 04,'02)_1/2) =0.
(5.53)

It can be seen that a solution to this equation is to take §# = /2, and 6 = 0. In other

72 sin 0 cos 0% (1— 2 —r26% — 12 sin? %) ~1/2 —

words, if the particle starts out moving in the § = 7/2 plane (i.e. the (z,y) plane at z = 0),
it will remain in this plane. This is just the familiar result that the motion of a particle
moving under a central force lies in a plane. We may therefore assume now, without loss
of generality, that § = /2 for all time. We are left with just r and ¢ as polar coordinates
in the (z,y) plane. The Lagrangian for the reduced system, where we consistently can set
0 = /2, is then simply

L=-m(l—?—r2p2)2_1, (5.54)
T

We note that L/d¢ = 0, and so there is a conserved quantity

g_sLb = mr2p(1 — 72 — 2% Y2 = g (5.55)

where £ is a constant. Since (1 — 72 — r2¢?)~1/2 = ~, we simply have
myr?p = L. (5.56)
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Note that we can also write this as

dp
2
A
TdT ’

since coordinate time ¢t and proper time 7 are related by dr = dt/~.

m (5.57)

Since the Lagrangian does not depend explicitly on ¢, the total energy £ is also conserved.

€:H:\/ﬁ2—|—m2+% (5.58)

Thus we have

is a constant. Here,

72 = m22 = mP2? 4 mPy 2R
dr\2 dp\ 2
_ 29 2 2(d¥
= m (dT) +mer (dT) , (5.59)

since, as usual, coordinate time and proper time are related by dr = dt/~.

We therefore have

q\2 _ -2 2 odry2 2 2dp\2 2
(5—;) =p°“+m —m(d—T) +m7‘(d—7_) +m”. (5.60)
We now perform the standard change of variables in orbit calculations, and let
1
—— .61
r=_ (5.61)

This implies

¢
d_T__ﬁd_T__’Lﬂd(pdT m
where we have used (5.57) and also we have defined

dr Ldu 1 dudp o (5.62)

/
u

d
ﬁ . (5.63)
It now follows that (5.60) becomes

(€ — qu)? = U + Pu? +m? . (5.64)

This ordinary differential equation can be solved in order to find u as a function of ¢, and
hence r as a function of ¢. The solution determines the shape of the orbit of the particle
around the fixed charge Q.

Rewriting (5.64) as'4

2 2 q€ 2 2 EXP
2u _(u,/qz_ez_ﬁ) -t (5.65)

This “completing of the square” is appropriate for the case where |£| < |g|. If instead |£| > |g|, we would

write

22
£2u,2:—(u (2_q2+L)2_m2+i‘
2 — g2 02 — g2
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we see that it is convenient to make a change of variable from u to w, defined by

s 2 q€ , EU2
uy/q? — ¢ _\/ﬁ:i m +mcoshw, (5.66)

where the + sign is chosen if ¢ < 0 (attractive potential), and the — sign if ¢ > 0 (repulsive
potential). We can then integrate (5.65), to obtain

14
N

(making a convenient choice, without loss of generality, for the constant of integration), and

(5.67)

hence we have

\/q2—€2u:i‘/m2+% coshKZ—z—l)lpcP} +\/%. (5.68)

In other words, the orbit is given, in terms of r = r(p), by

q2_£2
T

= +/€262 + m2(g2 — £2) cosh {((é—z - 1)1/2 go} s (5.69)

The solution (5.69) is presented for the case where |¢| < |g|. If instead |¢| > |g|, it

becomes

C-¢ = \/5262 —m2(£? — ¢2) cos [(1 - q_2)1/2

Finally, if |¢| = |¢|, it is easier to go back to the equation (5.65) and re-solve it directly

. o) - €. (5.70)

in this case, leading to
2¢€
% = &2 m? - E2,2. (5.71)
The situation described above for relativistic orbits should be contrasted with what
happens in the non-relativistic case. In this limit, the Lagrangian (after restricting to

motion in the (z,y) plane again) is simply given by

L= fm( +r%%) — 1. (5.72)

Note that this can be obtained from the relativisitic Lagrangian (5.54) we studied above,
by taking 7 and ¢ to be small compared to 1 (the speed of light), and then expanding the
square root to quadratic order in velocities. As discussed previously, one can ignore the
leading-order term —m in the expansion, since this is just a constant (the rest-mass energy
of the particle) and so it does not enter in the Euler-Lagrange equations. The analysis of
the Euler-Lagrange equations for the non-relativistic Lagrangian (5.72) is a standard one.

There are conserved quantities

E=im(i? + 2%+ 2, L=m%p. (5.73)
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Substituting the latter into the former give the standard radial equation, whose solution

implies closed elliptical orbits given by

1 mg 2E12
;—6—2(‘/1—1—”1—(]200590—1). (5.74)

(This is for the case E > —mq?/(202). If E < —mgq?/(2¢?) the orbits are hyperbolae, while
in the intermediate case E = —mgq?/(2¢%) the orbits are parabolic.)

The key difference in the relativistic case is that the orbits do not have a 2w periodicity
in ¢, even when |¢| > |g|, as in (5.70), for which the radius r is a trigonometric function of

. The reason for this is that the argument of the trigonometric function is

2
q°\1/2
(1 - 6—2) 0, (5.75)
and so ¢ has to increase through an angle Ay given by
2
q°\—1/2
Ap =27 (1 - 5_2) (5.76)

before the cosine completes one cycle. If we assume that |¢/¢| is small compared with 1,
then the shape of the orbit is still approximately like an ellipse, except that the “perihelion”

of the ellipse advances by an angle

sp=2m[(1-5) 1]~ 1L

(5.77)
per orbit. Generically, the orbits are not closed, although they will be in the special case
that ( — Z—;)_l/z is rational.

If on the other hand |¢| < |q|, then if ¢ < 0 (which means e@ < 0 and hence an attractive
force between the charges), the particle spirals inwards and eventually reaches » = 0 within
a finite time. This can never happen in the non-relativisitic case; the orbit of the particle
can never reach the origin at r = 0, unless the angular momentum ¢ is exactly zero. The
reason for this is that the centrifugal potential term ¢2/r? always throws the particle away
from the origin if r tries to get too small. By contrast, in the relativisitic case the effect
of the centrifugal term is reduced at large velocity, and it cannot prevent the collapse of
the orbit to r = 0. This can be seen by looking at the conserved quantity £ in the fully
relativisitic analysis, which, from our discussion above, can be written as

€= (m2+m2(3—:)2+f—2)1/2+%. (5.78)

First, consider the non-relativistic limit, for which the rest-mass term dominates inside the

square root:

Swm%—%m(%f—l—

02 q
53 + - (5.79)
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Here, we see that even if ¢ < 0 (an attractive force), the repulsive centrifugal term always
wins over the attractive charge term ¢/r at small enough 7.

On the other hand, if we keep the full relativistic expression (5.78), then at small
enough 7 the competition between the centrifugal term and the charge term becomes “evenly
matched,”

4, q

Em i, (5.80)

and clearly if ¢ < —|¢| the attraction between the charges wins the contest.
5.5 The multipole expansion

Consider the electrostatic potential of IV point charges q,, located at fixed positions 7. It

is given by

N q
S a
= E |F— = | . (5.81)
a=1 a

In the continuum limit, the potential due to a charge distrubution characterised by the
charge density p(7) is given by
1\ 32/
o(r) = / %- (5.82)
Since we shall assume that the charges are confined to a finite region, it is useful to
perform a multipole expansion of the potential far from the region where the charges are
located. This amounts to an expansion in inverse powers of r = |7]. This can be achieved
by performing a Taylor expansion of 1/|77 — 7|.

Recall that in one dimension, Taylor’s theorem gives

a® ad
flx+a)=f(z)+af'(x)+ af”(a:) + af”’(x) 4o (5.83)

In three dimensions, the analogous expansion is

1
f(F‘F ) (fj + aza f(F) + azaja 0; f( ) 3!aiajak8i6j8kf(f’) + - (5.84)
We now apply this 3-dimensional Taylor expansion to the function f(7) = 1/|F| = 1/r,
taking @ = —r”’. This gives
1 o 1 / 1 o 1 o
=7 8 + 5% ]88 TR x},0;0; ak (5.85)

Now since 2 = xjxj, it follows that 0;r? = 2r O;r = 2x;, and so

Ty

Or = (5.86)
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Note that we have (assuming r # 0) that

or, in other words
1
v2; =0. (5.88)

A consequence of this is that the multiple derivatives
1 1 1
aiaj; ) aiajak; ) 82-8j8k8@; , e (5.89)
are all traceless on any pair of indices:
1 1
51']'(92'(9]'; =0, 5,~j8i8j8k; =0, etc. (5.90)

We can use this property in order to replace the quantities

/) WA
T, TETTY e (5.91)

that multiply the derivative terms in (5.85) by the totally tracefree quantities

2 2
(zja’; — 26777, (zialxy, — Haid + a0k + w0307 (5.92)

2 1o

where 7’7 = xlz;. (We can do this because the trace terms that we are subtracting out

here give zero when they are contracted onto the multiple derivatives of 1/r in (5.85).) It

therefore follows from (5.82) and (5.85) that we have
o) = 3 [ — (07) [atpdr + (00:7) [l = §or) ot )7
r Y ¢ o vty 3T
1
_(aiajakF) /(dx;ﬂ?% — L{a}djn + 0 + 2p 02 )p(F)PF + L (5.93)

The expansion here can be written as

P(r) = g - piai% + %Qijaiaj% - %Qijkaiajak% + - (5.94)
where
Q = [odr,
b= [l
Qij = /(xﬁx; — %5ijrl2)p(F/)d3F/7
Qijk = /(mﬁx;xﬂf — [ibjk + 20 + 240,17 p (77 (5.95)
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and so on. The quantity @ is the total charge of the system, p; is the dipole moment, Q;;
is the quadrupole moment, and Q;jk, Qijke, etc., are the higher multipole moments. Note
that by construction, all the multipole moments with two or more indices are symmetric
and traceless on all indices.

Note that the terms in the multipole expansion (5.94) do indeed fall off with increasing
inverse powers of r. For example, the dipole term is given by

pz:Ez pini
73 72

¢Dipole = pza - s (596)

which falls off like 1/72, since n; = x;/r is a unit-length vector. The quadrupole term is
given by

x; x] n,nj

25
w _ 30,0 (5.97)

T

(bQuadrupolo = %Ql]alaj ) ng 3 QZ]

which falls off like 1/r3. (The penultimate equality above follows because Q;; is traceless.)

The total charge @ (the electric monopole moment) is of course a single quantity. The
dipole moment p; is a 3-vector, so it has three independent components in general. The
quadrupole moment ;; is a symmetric 2-index tensor in three dimensions, which would
mean 3 X 4/2 = 6 independent components. But it is also traceless, Q; = 0, which is one
condition. Thus there are 6 — 1 = 5 independent components.

The octopole moment ()5 is a 3-index symmetric tensor, which would mean 3 x 4 x
5/3! = 10 independent components. But it is also traceless, Q;;; = 0, which is 3 conditions.
Thus the octopole has in general 10 — 3 = 7 independent components. It is straightforward

to see in the same way that the 2‘-pole moment
Quiaeiy = [[ (@l -+, = traces)p ()7 (5.98)

has (2¢ + 1) independent components.
In fact, the multipole expansion (5.94) is equivalent to an expansion in spherical polar

coordinates, using the spherical harmonics Yy, (6, ¢):

(1,0, 0) = Z Z Com Yo (0, 0) 51“‘ (5.99)

(=0 m=—/
At a given value of ¢ the terms fall off like 7—*~!, and there are (2¢ + 1) of them, with
coefficients Cy,,, since m ranges over the integers —¢ < m < £. For each value of ¢, there is
a linear relationship between the (2¢ + 1) components of Cy,, and the (2¢+ 1) components
of the multipole moments Q, p;. Qij, Qijk, etc. Likewise, for each ¢ there is a linear

relationship between r—¢~1 Yo (0, ) and the set of functions 9;,9;, - - - 8ier_1.

84



Consider, for example, £ = 1. The three functions Z; = 9;r~! = —x;/r® are given by

sin @ cos
T2

_sin@singp, Z?):_cosz@’ (5.100)
r

Z = Zy =

r r2

when expressed in terms of spherical polar coordinates (see (5.49)). On the other hand, the

¢ =1 spherical harmonics are given by

[s . . /3 [3 . .
1 _ — _ 1
Yii=— 3 sinde'?, Yip = = cos@, Y1,-1 = oy sinfe ¥, (5.101)

Thus we see that

87 (Y11 — Y1_1) 87 (Vi1 + Y1._1) I Yio
7 ./ , 7, =T 1) 7y = —y/— ~2 . (5.102
! 3 22 ’ ! 3 20r2 3 3 2 (5102)

Analogous relations can be seen for all higher values of /.

6 Electromagnetic Waves

6.1 Wave equation

As discussed at the beginning of the course (see section 1.1), Maxwell’s equations admit
wave-like solutions. These solutions can esist in free space, in a region where there are no

source currents, for which the equations take the form

S5 -0 wxi-2%_y,
ot
L L B
V-B = 0, V><E+aa—t=o. (6.1)

As discussed in section 1.1, taking the curl of the V x E equation, and using the V x B

equation, one finds

. O’E
2
E——— — 2
and similarly,
= B
2
B— =0. .
\% BRI 0 (6.3)
Thus each component of E and each component of B satisfies d’Alembert’s equation
0% f
2
——==0. 6.4
\Y4 512 (6.4)
This can, of course, be written as
Of =0"0u.f =0, (6.5)
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which shows that d’Alembert’s operator is Lorentz invariant.

The wave equation (6.4) admits plane-wave solutions, where f depends on ¢ and on a
single linear combination of the x, y and z coordinates. By choosing the orientation of the
axes appropriately, we can make this linear combination become simply x. Thus we may

seek solutions of (6.4) of the form f = f(¢,x). The function f will then satisfy

0*f O*f
o2 o (65)
which can be written in the factorised form
0 dy\ /s 0 0
(3~ 30) (s + )70 =0. 60
Now introduce “light-cone coordinates”
u=x—t, v=x+t. (6.8)
We see that
0 0 0 0 0 0
o "B B oulow (69)
and so (6.7) becomes
0% f
oudv (6.10)
The general solution to this is
f= e+ [-(0) = fr(@—t) + [-(z +1), (6.11)

where f, and f_ are arbitrary functions.

The functions f+ determine the profile of a wave-like disturbance that propagates at the
speed of light (i.e. at speed 1). In the case of a wave described by fy(x—t), the disturbance
propagtes at the speed of light in the positive x direction. This can be seen from the fact that
if we sit at a given point on the profile (i.e. at a fixed value of the argument of the function
f+), then as t increases the x value must increase too. This means that the disturbance
moves, with speed 1, along the positive x direction. Likewise, a wave described by f_(z+1)
moves in the negative x direction as time increases.

More generally, we can consider a plane-wave disturbance moving along the direction of
a unit 3-vector n:

ft,7) = fr(@-7F—t)+ f_(7-7+1). (6.12)

The fi wave moves in the direction of 7 as t increases, while the f_ wave moves in the
direction of —7i. The previous case of propagation along the x axis, corresponds to taking

7 = (1,0,0).
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Let us now return to the discussion of electromagnetic waves. Following the discussion
above, there will exist plane-wave solutions of (6.2), propagating along the 7 direction, of

the form
E(Ft)=E@-7—t). (6.13)
From the Maxwell equation OB /ot = —V xE , we shall therefore have

0DB;
ot

= —E,'jkaj Ek(ngzltg — t) ,

= —eijkn]— E/(ngxg — t) s (6.14)

where E; denotes the derivative of Ej with respect to its argument. We also have that
OBy (ngxy —t)/0t = —E} (nexe — t), and so we can write (6.14) as

0B; 0

a—tl = €5k ’I’LjaEk(’l’Lg:Eg —t). (6.15)
This can be integrated with respect to ¢, dropping the constant of integration since an
additional static B field term is of no interest to us when discussing electromagnetic waves.

Thus we have

St

B; = ¢ijin;Ey, e B=ixE. (6.16)

The source-free Maxwell equation V-E=0 implies

=
Il
o

aiEi(an}j — t) = mEZ{(nja:j — t) = —%ﬁ . (617)

Again, we can drop the constant of integration, and conclude that for the plane wave
i E=0. (6.18)

Since B = ii x E, it immediately follows that 7 - B =0and E-B = 0 also. Thus we see that
for a plane electromagnetic wave propagating along the 7 direction, the E and B vectors

are orthogonal to 77 and also orthogonal to each other:

i-E=0, #@-B=0, E-B=0 (6.19)
It also follows from B = 77 x E that
|E| =|B|, ie. E=B. (6.20)
Thus we find that the energy density W is given by
Lo 2 Lo
W=—(E“+B")=—FE". (6.21)

8 47
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The Poynting flux S = (E x B)/(4r) is given by

1 1 1
Si = EeijkEjekﬁmnéE = EniEjEj — EEinjEj’
1
and so we have
1 - 1
W= —FE"? S=—AE?=aW. 6.23
4 el " (6:23)
Note that the argument 77 - ¥ — ¢ can be written as
n-r—t=mn,a", (6.24)
where n, = (—1,7) and hence
nt = (1,7). (6.25)
Since 7i is a unit vector, 7 - 7 = 1, we have
n*n, = nuntn” =0. (6.26)

nt is called a Null Vector. This is a non-vanishing vector whose norm n*n, vanishes.
Such vectors can arise because of the minus sign in the 79y component of the 4-metric.
By contrast, in a metric of positive-definite signature, such as the 3-dimensional Euclidean
metric d;5, a vector whose norm vanishes is itself necessarily zero.

We can now evaluate the various components of the energy-momentum tensor, which

are given by (4.110) and the equations that follow it. Thus we have

1 1
W)ZWZEWZEW,
T = T%=8=nW,
T = %@E@—&&+ﬁﬁ+§ﬂﬁ
= %(—EZEJ — €ikt€jmnNkNm Eo By + E252~j) ,
= %@&@—%ﬁ—mmm@—wwam+%mwm@
+ninjEyEy + nygng B By + E2(5,~j) ,
= %mwﬁ:mmw. (6.27)

Note that in deriving this last result, we have used the identity

€ike€jmn = 0ij0kmOm + OimOkn0sj + 0indkjOem — OimOkiden — 0ijOkndem — OinOkmde; . (6.28)
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The expressions for 7%, T% and T% can be combined into the single Lorentz-covariant
expression

™ =nktn"W. (6.29)

From this, we can compute the conserved 4-momentum

Pt = / Ty, = / TPy,
t=const.

= /n“Wd?’:E =nt /Wd?’:n, (6.30)
and hence we have
Pr=ntg, (6.31)
where
£ = / Wde (6.32)

the total energy of the electromagnetic field. Note that P* is also a null vector,

PiP, = E*ntn, =0. (6.33)

6.2 Monochromatic plane waves

In the discussion above, we considered plane electromagnetic waves with an arbitrary profile.
A special case is to consider the situation when the plane wave has a definite frequency w,

so that its time dependence is of the form coswt. Thus we can write

B=Byd®ren  §= By, (6.34)
where Eo and EO are (possibly complex) constants. The physical E and B fields are obtained
by taking the real parts of E and B. (Since the Maxwell equations are linear, we can always
choose to work in such a complex notation, with the understanding that we take the real
parts to get the physical quantities.)

As we shall discuss in some detail later, the more general plane-wave solutions discussed
previously, with an arbitrary profile for the wave, can be built up as linear combinations of
the monochromatic plane-wave solutions.

Of course, for the fields in (6.34) to solve the Maxwell equations, there must be relations
among the constants E, w, Ejy and By. Specifically, since E and B must satisfy the wave

equations (6.2) and (6.3), we must have

k2 = w?, (6.35)
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and since V-E =0 and V- B = 0, we must have

—

.By=0. (6.36)

]

k-Ey=0,

Finally, following the discussion in the more general case above, it follows from V x E+
OB/ot =0 and V x B — OE /ot = 0 that

. ExE

g="1E (6.37)

w

It is natural, therefore, to introduce the 4-vector
k= (w, k) = wnt, (6.38)

where n# = (1,7) and 7 = k/|k| = k/w. Equation (6.35) then becomes simply the statement
that k* is a null vector,

ktk, =0. (6.39)
Note that the argument of the exponentials in (6.34) can now be written as
ko7 —wt= kot (6.40)
which we shall commonly write as k - . Thus we may rewrite (6.34) more briefly as
E=FEyet**  B=Byeke, (6.41)

As usual, we have a plane transverse wave, propagating in the direction of the unit 3-vector
n = E/w The term “transverse” here signifies that E and B are perpendicular to the

direction in which the wave is propagating. In fact, we have
i-E=i7-B=0, B=ixE, (6.42)

and so we have also that E and B are perpendicular to each other, and that |E| = B.

Consider the case where Eo is taken to be real, which means that EO is real too. Then
the physical fields (obtained by taking the real parts of the fields given in (6.34)), are given
by

—

E = Ey cos(k - 7 — wt), B = By cos(k - 7 — wt) . (6.43)

The energy density is then given by

_ Lo o _ Lo o o
W_SW(E +B )—47TE0 cos“(k -7 — wt). (6.44)
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If we define the time average of W by
1 T
(W) = ~ / Wt (6.45)
T Jo

where T' = 27 /w is the period of the oscillation, then we shall have
1 1

W)= _—F3=_—B;. 6.46

W) = B = B (6.46)

Note that in terms of the complex expressions (6.34), we can write this as

1o - 14 =
(W)=—E.-E*=—B.B*, (6.47)

8T 8T
where the * denotes complex conjugation, since the time and position dependence of E or
B is cancelled when multiplied by the complex conjugate field.'®
In general, when Eo and EO are not real, we shall also have the same expressions (6.47)
for the time-averaged energy density.
In a similar manner, we can evaluate the time average of the Poynting flux vector

S = (E x B)/(4r). If we first consider the case where Ej is real, we shall have

s 1= = 13 5 2/ 4 R T P
S—4WEXB—47TEQ><BQCOS (-7 wt)—4ﬂnEocos (-7 —wt), (6.48)
and so
<§>—1E“x1§—1*E2 (6.49)
TR 0T gt '

In general, even if Ej and By are not real, we can write <§ ) in terms of the complex E and

B fields as

. 1 -~ - 1 o =
= _—FExB"=—qaE-FE* .
(S) & X & 7 , (6.50)
and so we have
(S) =i (W). (6.51)

6.3 Motion of a point charge in a linearly-polarised E.M. wave
Consider a plane wave propagating in the z direction, with
E = (Ep cosw(z —1),0,0), B = (0, Ep cosw(z —t),0). (6.52)

Suppose now that there is a particle of mass m and charge e in this field. By the Lorentz

force equation we shall have
i = .
d—’t’zeE+ez7>< B. (6.53)

15This “trick,” of expressing the time-averaged energy density in terms of the dot product of the complex

field with its complex conjugate, is rather specific to this situation, where the quantity being time-averaged

is quadratic in the electric and magnetic fields.

91



For simplicity, we shall make the assumption that the motion of the particle can be treated

non-relativistically, and so

dr
dt -’
Let us suppose that the particle is initially located at the point z = 0, and that it moves

—

p=miv=m

(6.54)

only by a small amount in comparison to the wavelength 27/w of the electromagnetic
wave. Therefore, to a good approximation, we can assume that the particle is sitting in
the uniform, although time-dependent, electromagnetic field obtained by setting z = 0 in
(6.52). Thus

— —

E = (Ep coswt,0,0), B = (0, Ey coswt,0), (6.55)

and so the Lorentz force equation gives

mi = eFycoswt— ezEycoswt ~ elycoswt,
my = 0,
mZ = ex FEycoswt. (6.56)

Note that the approximation in the first line follows from our assumption that the motion
of the particle is non-relativistic, so |Z| << 1.

With convenient and inessential choices for the constants of integration, first obtain

ek ek
i=—2 sinwt, x=— 02 cos wt , (6.57)
mw mw
Substituting into the z equation then gives
2 12 2 2
e“E, e‘E
P=— 0 sinwt cos wt = 20 sin 2wt , (6.58)
miw miw

which integrates to give (dropping inessential constants of integration)

62 E2

z= _W%OJ?’ sin 2wt . (6.59)

The motion in the y direction is purely linear, and since we are not interested in the case
where the particle drifts uniformly through space, we can just focus on the solution where
y is constant, say y = 0.

Thus the interesting motion of the particle in the electromagnetic field is of the form
T = acoswt, z = Bsin 2wt = 23 sin wt coswt , (6.60)
which means

z=—ux1——. (6.61)
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This describes a “figure of eight” lying on its side in the (x, z) plane. The assumptions we
made in deriving this, namely non-relativistic motion and a small z displacement relative
to the wavelength of the electromagnetic wave, can be seen to be satisfied provided the
amplitude FEj of the wave is sufficiently small.

The response of the charge particle to electromagnetic wave provides a model for how
the electrons in a receiving antenna behave in the presence of an electromagnetic wave.
This shows how the wave is converted into oscilliatory currents in the antenna, which are

then amplified and processed into the final output signal in a radio receiver.

6.4 Circular and elliptical polarisation

The electromagnetic wave described in section 6.2 is linearly polarised. For example, we

could consider the solution with
Ey = (0, Ey,0), By =(0,0,By), @ =(1,0,0). (6.62)

This corresponds to a linearly polarised electromagnetic wave propagating along the =z
direction.

By taking a linear superposition of waves propagating along a given direction 77, we can
obtain circularly polarised, or more generally, elliptically polarised, waves. Let € and f be

two orthogonal unit vectors, that are also both orthogonal to 7i:

gée¢ =1, f-f=1, #d-i=1,
ef =0, @-eé=0, #@-f=0. (6.63)

Suppose now we consider a plane wave given by

Sy

E=(Bye+ By fleé ") B=axFE, (6.64)

where Ey and E‘o are complex constants. If Fy and Eo both have the same phase (i.e. E‘o /Eo
is real), then we again have a linearly-polarised electromagnetic wave. If instead the phases
of Ey and E; are different, then the wave is in general elliptically polarised.

Consider as an example the case where
Ey=+iFy, (6.65)

(with Ej taken to be real, without loss of generality), for which the electric field will be

given by
E=Ey(e+if)e ket (6.66)



Taking the real part, to get the physical electric field, we obtain
E = Eyé cos(k - 7 — wt) T Eof sin(k - 7 — wt). (6.67)

For example, if we choose

—

7= (0,0,1), €= (1,0,0), f=1(0,1,0), (6.68)
then the electric field is given by
E, = Eycosw(z — t), E,=FEysinw(z —1). (6.69)
It is clear from this that the magnitude of the electric field is constant,
|E| = E. (6.70)

If we fix a value of z, then the E vector can be seen to be rotating around the z axis (the
direction of motion of the wave). This rotation is anticlockwise in the (x,y) plane if we
choose the plus sign in (6.65), and clockwise if we choose the minus sign instead. These
two choices correspond to having a circularly polarised wave of positive or negative helicity
respectively. (Positive helicity means the rotation is parallel to the direction of propagation,
while negative helicity means the rotation is anti-parallel to the direction of propagation.)

In more general cases, where the magnitudes of Ey and Eo are unequal, or where the
phase angle between them is not equal to 0 (linear polarisation) or 90 degrees, the elec-
tromagnetic wave will be elliptically polarised. Consider, for example, the case where the
electric field is given by

—

E = (a1, age!%2,0) !0 | (6.71)
with the propagtion direction being 7 = (0,0, 1). Then we shall have
B=1xE = (—age'®, ae'®,0) e (6.72)

The real constants a1, as, 41 and do determine the nature of this plane wave propagating
along the z direction. Of course the overall phase is unimportant, so really it is only the
difference 69 — 61 between the phase angles that is important.

The magnitude and phase information is sometimes expressed in terms of the Stokes

Parameters (sg, s1, 2, 83), which are defined by

so = E.E;+EyE:=al+a5, s1=EE;—EFE; =da—a3, (6.73)
sy = 2R(ELEy) = 2ajazcos(dy — 1), s3 = 2Q(ELEy) = 2a1a2sin(d2 — 01) .
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(The last two involve the real and imaginary parts of (£} E,) respectively.) The four Stokes

parameters are not independent:

s§ =57 +83+s5. (6.74)

The parameter sg characterises the intensity of the electromagnetic wave, while sy charac-

terises the amount of x polarisation versus y polarisation, with
—380 < S1 < S0 - (675)

The third independent parameter, which could be taken to be sy, characterises the phase
difference between the x and the y polarised waves. Circular polaristion with + helicity
corresponds to

S1 = O, SS9 = O, 83 = :|:S() . (676)

6.5 General superposition of plane waves

So far in the discussion of electromagnetic waves, we have considered the case where there is
a single direction of propagation (i.e. a plane wave), and a single frequency (monochromatic).
The most general wave-like solutions of the Maxwell equations can be expressed as linear
cobinations of these basic monochromatic plane-wave solutions.

In order to discuss the general wave solutions, it is helpful to work with the gauge
potential A* = (¢, /_f) Recall that we have the freedom to make gauge transformations
A, — A, + 0\, where A is an arbitrary function. For the present purposes, of describing
wave solutions, a convenient choice of gauge is to set ¢ = 0. Such a gauge choice would not
be convenient when discussing solutions in electrostatics, but in the present case, where we
know that the wave solutions are necessarily time-dependent, it is quite helpful.

Thus, we shall first write a single monochromatic plane wave in terms of the 3-vector
potential, as

A = qé el Fr—et) , (6.77)

where € is a unit polarisation vector, and a is a constant. As usual, we must have |k|? = w?.

The electric and magnetic fields will be given by

—

. - 9A o

E = —V¢-— 5= iawee ket

" . - - kx E

B = VxA=iakxeeFErwn _ KX (6.78)
w

We can immediately see that E and B satisfy the wave equation, and that we must impose

&k =0 in order to satisfy V-E=0.
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We have established, therefore, that (6.77) describes a monochromatic plane wave prop-
agating along the k direction, with electric field along €, provided that €- k =0 and ]E | = w.
More precisely, the gauge potential that gives the physical (i.e. real) electric and magnetic
fields is given by taking the real part of A in (6.77). Thus, when we want to describe the

actual physical quantities, we shall write
A = qge Fr=wt) | grge=i(Riwt) (6.79)

(We have absorbed a factor of % here into a rescaling of a, in order to avoid carrying %
factors around in all the subsequent equations.) For brevity, we shall usually write the
“physical” A as

A=ageFm=et) | cc. , (6.80)

where c.c stands for “complex conjugate.”
Now consider a general linear superposition of monochromatic plane waves, with differ-
ent wave-vectors E, different polarisation vectors €, and different amplitudes a. We shall

therefore label the polarisation vectors and amplitudes as follows:

—

e—a(k), a— ax(k). (6.81)

Here A is an index which ranges over the values 1 and 2, which labels 2 real orthonormal
vectors & (k) and (k) that span the 2-plane perpendicular to k. The general wave solution
can then be written as the sum over all such monochromatic plane waves of the form (6.80).
Since a continuous range of wave-vectors is allowed, the summation over these will be a

3-dimensional integral. Thus we can write

A=y / i) [E3(F) ax () e BT 4 c.c | (6.82)
P (27‘1’)3 A A .C.|, .
where w = |k|, and
k-ex(k)=0,  &(k) ev(k)=dw. (6.83)

For many purposes, it will be convenient to expand A in a basis of circularly-polarised
monochromatic plane waves, rather than linearly-polarised waves. In this case, we should

choose the 2-dimensional basis of polarisation vectors €4, related to the previous basis by

(& +ié). (6.84)

€+‘€+:O, 5_'5_20, €+'€_:1. (685)



Note that €4 * = €. We can label the €4 basis vectors by €, where A is now understood

to take the two “values” + and —. We then write the general wave solution as
. A3k e e
A=Y / B T (R ax(R) & FTn 4 e,
3 9
iRUNCL)) [ }
Of course, we also have k - & = 0, and w = ||

6.5.1 Helicity and energy of circularly-polarised waves

The angular-momentum tensor M*" for the electromagnetic field is defined by
M*¥ = / (xhTVP — 2" THP)dY,
t=const
and so the three-dimensional components M% are
MY = / (&' TP — 2IT)dS, = /(xiTjO — 2Ty,
t=const

= /(:EiSj — 27 S8Hd3x .

(6.86)

(6.87)

(6.88)

Thus, since § = (E x B)/(4x), the three-dimensional angular momentum L; = e MIF is

given by
Li = /Eijkiﬂjsk d3$,

i.e.

o 1 S o
L:E/FX(EXB)CZ%.

Now, since B =V x A, we have

[Fx (ExB); = €ijk€kem TjEo By,
= €ijk€htmEmpq T EeOpAq
= eijk(ékpégq — (5kq5gp) ijgapAq s

= €k TjEOL Ay — €551 TjEpOp Ay,
and so

1
L, = e /(Eijk 2 EpOp Ay — €ij 7 B0 Ay )d

1

T i / ( — €ijk Ok (2 ) Ag + Op(x; Ey) Ak)d?’x,
1

= ar / ( — €ijk (O Ey) Ar + € EjAk)dffx,

(6.89)

(6.90)

(6.91)

(6.92)

Note that in performing the integrations by parts here, we have, as usual, assumed that

the fields fall off fast enough at infinity that the surface term can be dropped. We have

97



also used the source-free Maxwell equation 0pFy = 0 in getting to the final line. Thus, we
conclude that the angular momentum 3-vector can be expressed as

5 1 S o -
L= /(E x A— A; (F x V)E;)d>z . (6.93)

The two terms in (6.93) can be interpreted as follows. The second term can be viewed
as an “orbital angular momentum,” since it clearly depends on the choice of origin. It is
rather analogous to an 7 x p’ contribution to the angular momentum of a system of particles.
On the other hand, the first term in (6.93) can be viewed as an “intrinsic spin” term, since
it is constructed purely from the electromagnetic fields themselves, and is independent of

the choice of origin. We shall calculate this spin contribution,
- 1 [ = oo
Fopin = — / B x Adéx (6.94)
4

to the angular momentum in the case of the sum over circularly-polarised waves that we
introduced in the previous section. Recall that for this sum, the 3-vector potential is given

by
371./ LT = /
= Z / i k k') ax (k') e ) +C'C'}’ (6.95)

The electric field is then given by
- 04 a3k e
= —_—— = 1 = l(k-r—wt)
B G- X [ o bea®@a@et e o

Note that we have put primes on the summation and integration variables A and k in the
expression for A. This is so that we can take the product E x A and not have a clash
of “dummy” summation variables, in what will follow below. We have also written the
frequency as w’ = |k’| in the expression for A.

Our interest will be to calculate the time average
<Espin> = T Espindt . (6.97)
0

Since we are considering a wave solution with an entire “chorus” of frequencies now, we
define the time average by taking 7' to infinity. (It is easily seen that this coincides with
the previous definition of the time average for a monochromatic wave of frequency w, where
T was taken to be 27/w.) Note that the time average will be zero for any quantity whose

time dependence is of the oscilliatory form e'**, because we would have

T/ B 11/T( et - 1), (6.98)
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which clearly goes to zero as T goes to infinity. Since the time dependence of all the
quantities we shall consider is precisely of the form e™?, it follows that in order to survive
the time averaging, it must be that v = 0. Thus we have (e!*!) = 0 if v # 0 and {(e!"?) = 1
if v =0.

We are interested in calculating the time average of E x ff, where A and E are given
by (6.95) and (6.96). The quantities w appearing there are, by definition, positive, since
we have defined w = \/2] The only way that we shall get terms in E x A that have zero
frequency (i.e. v = 0) is from the product of one of the terms that is explicitly written times
one of the “c.c.” terms, since these, of course, have the opposite sign for their frequency
dependence.

The upshot of this discussion is that when we evaluate the time average of E x ff, with
A and E given by (6.95) and (6.96), the only terms that survive will be coming from the
product of the explicitly-written term for E times the “c.c.” term for ff, plus the “c.c.”
term for E times the explicitly-written term for A. Furthermore, in order for the products
to have zero frequency, and therefore survive the time averaging, it must be that ' = w.
We therefore find

(E x A) Z/ dgk d%/ w [E3(F) x &5 (R ax(R)ax, (k') el E=FO T

AN

*

A

—
ol

~—
X

™y

&v(R")a (F)ax (F") e {FF07] (6.99)

-,

We now need to integrate <E x A) over all 3-space, which we shall write as
/ (E x A) d>F. (6.100)
We now make use of the result from the theory of delta functions that
/ e F=R)T 37 = (2m)3 83 (% — k). (6.101)

Therefore, from (6.99) we find

— —. 3 - - - -
JEx<dar = 3 [ Ch o [ ) x 23 (Broa ey ()

AN
—53(12) x &y (F)as(Bax (F)] . (6.102)

Finally, we recall that the polarization vectors Ei(g) span the 2-dimensional space or-
thogonal to the wave-vector k. In terms of the original real basis unit vectors él(g) and
& (k) we have

g1(k) x &(k) = =, (6.103)

IS =
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and so it follows from (6.84) that

aFxen®=—L  e@xedy =t (6.104)
w w
From this, it follows that (6.102) becomes
A N\ 132 d?’]g 7 TN K (T N % (T

/ (B x A) 7 =2 / s F s (R)a () — a_(Ra (F), (6.105)

and so we have -
= o 1 d k g =, 2 g 2
(Loin) = 57 [ gy ¥ (10 B ~ - (B)F). (6.106)

It can be seen from this result that the modes associated with the coefficients a+(l;)
correspond to circularly-polarised waves of positive helicity; i.e. their spin is parallel to
the wave-vector k. Conversely, the modes with coefficients a_(E) correspond to circularly-

polarised waves of negative helicity; i.e. with spin that is anti-parallel to the wave-vector

—

k.
In a similar fashion, we may evaluate the energy of the general wave solution as a sum

over the individual modes. The total energy & is given by!6

1 1
= — [(E*+ BY)d&® —/E2d3 . 1
£ SW/( + B — — . (6.107)

Since E = —9A/dt here, we have

2 d3E d3El 20 = /1N =% /101 N % () i(l;—l;’)-?
(B = Y / oy (5 (R - €3 (F ") ax(R)ag (R e
AN

+E5F) - (k) a5 (Fax (8") e EFI7] | (6.108)

where again, the time-averaging has picked out only the terms whose total frequency adds

to zero. The integration over all space then again gives a three-dimensional delta function

16We are being a little bit sloppy here, in invoking the result, shown earlier for a single monochromatic
plane wave, that the electric and magnetic fields give equal contributions to the energy. It is certainly not
true any longer that E? = B? for a general superposition of plane waves. However, after integrating over
all space and performing a time averaging, as we shall do below, the contribution of the electric field to the
final result will just be a sum over the contributions of all the individual modes. Likewise, the contribution
of the magnetic field will be a sum over all the individual modes. It is now true that the electric and
magnetic contributions of each mode will be equal, and so one does indeed get the correct answer by simply
doubling the result for the electric field alone. Any reader who has doubts about this is invited to perform
the somewhat more complicated direct calculation of the contribution from the magnetic field, to confirm

that it is true.
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53 (k — k'), and so we find

3_) - - - -
JiEner = 3 [ S b a® @ a@a®
+&5(R) - & () ai (K)ax (F)| (6.109)

Finally, using the orthogonality relations (6.85), and the conjugation identity €y = €%, we

obtain

1 d3E 2 g 2 ad 2
€ =57 | Gy (s BP + la-(BIP) (6.110)
From the two results (6.106) and (6.110), we see that for a given mode characterised by

helicity A and wave-vector E, we have

- 1 - . _
(Lspin)gy = 5k lax(k)|? (sign A)
’ T
L 5 N2
Era = F-@ laa®)F, (6.111)
where (sign \) is +1 for A = 4+ and —1 for A = —. The helicity o, which is the component

of spin along the direction of the wave-vector E, is therefore given by

1 -
o = oIk |ax(k)|? (sign A)

1 > .
= wla® (s,

= % ()7 (sign \) . (6.112)

In other words, we have that

energy = =+ (helicity) w, (6.113)

and so we can write

E=lolw. (6.114)
This can be compared with the result in quantum mechanics, that

E=hw. (6.115)

Planck’s constant i has the units of angular momentum, and in fact the basic “unit” of
angular momentum for the photon is one unit of A. In the transition from classical to

quantum physics, the helicity of the electromagnetic field becomes the spin of the photon.
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6.6 Gauge invariance and electromagnetic fields

In the previous discussion, we described electromagnetic waves in terms of the gauge po-

tential A, = (—¢, A), working in the gauge where ¢ = 0, i.e. Ay = 0. Since the gauge

symmetry of Maxwell’s equations is
Ay — A+ 0L, (6.116)

one might think that all the gauge freedom had been used up when we imposed the condition
¢ = 0, on the grounds that one arbitrary function (the gauge parameter \) has been used
in order to set one function (the scalar potential ¢) to zero. This is, in fact, not the case.
To see this, recall that for the electromagnetic wave we wrote Aasa superposition of terms

of the form

A =geibr—wt) (6.117)
which implied that
L 9A Lo
E=—— =iwe (ker=wt) (6.118)
From this we have
V. B = —wk-ael Frwt) (6.119)

k-A=0. (6.120)

This means that as well as having Ay = —¢ = 0, we also have a component of A vanishing,
namely the projection along k.
To see how this can happen, it is helpful to go back to a Lorentz-covariant gauge choice

instead. First, consider the Maxwell field equation, in the absence of source currents:
" F =0. (6.121)
Since F),, = d,A, — 0, A, this implies
0"o,A, —0"9,A, =0. (6.122)
We now choose the Lorenz gauge condition,
0"A, =0. (6.123)
The field equation (6.122) then reduces to
o0"0,A, =0, ie. A, =0. (6.124)
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One might again think that all the gauge symmetry had been “used up” in imposing the
Lorenz gauge condition (6.123), on the grounds that the arbitrary function A in the gauge
transformation

Ay — Ay + O\ (6.125)

that allowed one to impose (6.123) would no longer allow any freedom to impose further
conditions on A,. This is not quite true, however.

To see this, let us suppose we are already in Lorenz gauge, and then try performing a
further gauge transformation, as in (6.125), insisting that we must remain in the Lorenz

gauge. This means that A should satisfy
oMoN=0, ie. LOA=0. (6.126)

Non-trivial such functions A can of course exist; any solution of the wave equation will work.
To see what this implies, let us begin with a general solution of the wave equation
(6.124), working in the Lorenz gauge (6.123). We can decompose this solution as a sum

over plane waves, where a typical mode in the sum is
A, =a,¢é (R—wt) _ a, et =q, kT (6.127)
where a, and k, are constant. Substituting into the wave equation (6.124) we find
0=0A4, = 3°09,(a, ™) = k%%, a, k", (6.128)
whilst the Lorenz gauge condition (6.123) implies
0=0'A, =0"(a, ™) =ikia, e (6.129)
In other words, k,, and a, must satisfy

Kk, =0,  k'a,=0. (6.130)

The first of these equations implies that k* is a null vector, as we had seen earlier. The sec-
ond equation implies that 1 of the 4 independent components that a 4-vector a, generically
has is restricted in this case, so that a, has only 3 independent components.

Now we perform the further gauge transformation A, — A, + 9, A, where, as discussed
above, LJXA = 0 so that we keep the gauge-transformed A, in Lorenz gauge. Specifically, we
shall choose

A =ihekre (6.131)
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where h is a constant. Thus we shall have
Ay — Ay — ket (6.132)

With A, given by (6.127) this means we shall have

ikyx¥ ikyx¥ ikya¥
a,e™* —a, e — hk, e (6.133)

which implies

a, — a, —hk,. (6.134)

As a check, we can see that the redefined a, indeed still satisfies k*a, = 0, as it should,
since k* is a null vector.

The upshot of this discussion is that the freedom to take the constant A to be anything we
like allows us to place a second restriction on the components of a,,. Thus not merely are its
ostensible 4 components reduced to 3 by virtue of k#a, = 0, but a further component can be
eliminated by means of the residual gauge freedom, leaving just 2 independent components
in the polarisation vector a,. Since the physical degrees of freedom are, by definition, the
independent quantities that cannot be changed by making gauge transformations, we see
that there are 2 degrees of freedom in the electromagnetic wave, and not 3 as one might
naively have supposed.

These 2 physical degrees of freedom can be organised as the + and — helicity states,
just as we did in our earlier discussion. These are the circularly-polarised waves rotating
anti-clockwise and clockwise, respectively. In other words, these are the states whose spin is
eiether parallel, or anti-parallel, to the direction of propagation. One way of understanding
why we have only 2, and not 3, allowed states is that the wave is travelling at the speed of
light, and so it is not possible for it to have a helicity that projects other than fully parallel
or anti-parallel to its direction of propagation.

We can make contact with the ¢ = 0 gauge choice that we made in our previous
discussion of electromagnetic waves. Starting in Lorenz gauge, we make use of the residual
gauge transformation (6.134) by choosing h so that

ao—hko=0, i h:—%. (6.135)
this means that after performing the residual gauge transformation we shall have
ag =0, (6.136)
and so, from (6.127), we shall have

Ag=0, ie.  ¢=0. (6.137)

104



The original Lorenz gauge condition (6.123) then reduces to

%A =0, e V-A=0. (6.138)

This implies kA= 0, and so we have reproduced precisely the ¢ = 0, kE-A=0 gauge

conditions that we used previously in our analysis of the general electromagnetic wave
solutions. The choice ¢ = 0 amd V- A =0 is known as Radiation Gauge.

In D spacetime dimensions, the analogous result can easily be seen to be that the

electromagnetic wave has (D — 2) degrees of freedom.

6.7 Fourier decomposition of electrostatic fields

We saw earlier in 6.5 that an electromagnetic wave, expressed in the radiation gauge in
terms of the 3-vector potential ff, could be decomposed into Fourier modes as in (6.86).
For each mode fT(E N in the sum, we have E}\(E) .k =0, and so each mode of the electric

field E(E,A

—

)= —8A(E /\)/ Ot satisfies the transversality condition

k-Eg, =0. (6.139)

By constrast, an electrostatic field E is longitudinal. Consider, for example, a point

charge at the origin, whose potential therefore satisfies
V2 = —4me 53 (7). (6.140)

We can express ¢(7) in terms of its Fourier transform ®(k) as

3L R
o(F) = / %@(k}) e (6.141)

This is clearly a sum over zero-frequency waves, as one would expect since the fields are
static.

It follows from (6.141) that

3_’ — — e -
V%MF):—:/(Z£3k2¢@Qéhr. (6.142)

We also note that the delta-function in (6.140) can be written as

Pk g

3 (= ik

= | —= . .14
6°(7) /(2%)3 € (6.143)
It follows that if we substitute (6.141) into (6.140) we shall obtain —k 2®(k) = —4re, and

hence

(6.144)



The electric field is given by E= —ﬁqﬁ, and so

E=—i /ﬁ koK) ek (6.145)
= (27‘()3 e . .

If we define G(k) to be the Fourier transform of E, so that

3_’ L7 o
E(F) = / 'k G(k)err, (6.146)

then we see that

k. (6.147)

Thus we see that G (E) is parallel to lg, which proves that the electrostatic field is Longitu-

dinal.

6.8 Waveguides

For our purposes, we shall define a waveguide to be a hollow, perfectly conducting, cylinder,
essentially of infinite length. For convenience we shall take the axis of the cylinder to lie
along the z direction. The cross-section of the cylinder, in the (z,y) plane, can for now be
arbitrary, but it is the same for all values of z. Thus, the cross-section through the cylinder
is a closed curve.

We shall consider an electromagnetic wave propagting down the cylinder, with angular

frequency w. It will therefore have z and ¢ dependence of the form
el (kemwt) (6.148)

Note that k and w will not in general be equal; i.e. , the wave will not propagate at the
speed of light. Note that with the z and ¢ dependence of the form (6.148), we shall have

the replacements

9,
o

The source-free Maxwell equations (which hold inside the waveguide), therefore imply

—iw, % —ik. (6.149)

V-E =0, VxE=iwB,
V-B = 0, VxB=-iwE. (6.150)

Because of the assumed form of the z dependence in (6.148), we may write

E(:E, Y, 2, t) = E(m, y)el (kz—wt) é(m, Y, z,t) = ﬁ(m, y)el (kz—wt) (6.151)
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It is convenient also to define the unit vector 7 in the z direction (the axis of the
waveguide),

i = (0,0,1), (6.152)

and certain transverse quantities, denoted with a L subscript, as follows:

- o 0

Vi = (5,50
1 (83:7 ay7 ) )

E = E, +mE,, B=B, +mB,. (6.153)

(Note that therefore E, = (Ey, Ey,0) and B, = (Bz, By,0).) From (6.150), the Maxwell

equations become

V,-E, = —ikE,,
V,-B, = -ikB,,
ikEL+ime§l = 6J_EZ,

ﬁr(ﬁLxEl) = inz,
ikgL—imeEl = 6J_BZ,
m- (V. xB)) = —iwE,. (6.154)

Note that the cross product of any pair of transverse vectors, U X VJ_, lies purely in the z

direction, i.e. parallel to m. In components, the last four lines in (6.154) are:
ikE, —iwB, = 0,E., ikE,+iwB, =0,E.,
0. By —0yE, = iwB,,
ikB, +iwEk, = 0,B., ikBy, —iwE, = 0,B,,

0,B,—8,B, = —iwE,, (6.155)

where 0, = 0/0z and 0, = 0/0y.

6.8.1 TEM modes

There are various types of modes that can be considered. First, we may dispose of an
“uninteresting” possibility, called TEM modes. The acronym stands for “transverse electric
and magnetic,” meaning that

E.=0, B.=0. (6.156)

From the equations in (6.154) for E | , we see that

Vi-E =0, V,xE =0. (6.157)



These are the equations for electrostatics in the 2-dimensional (x,y) plane. The second
equation implies we can write E = v 10, and then the first equation implies that the

electrostatic potential ¢ satisfies the 2-dimensional Laplace equation

»Po ¢
Vig=—-—+-- =0. 6.158
Since the cross-section of the waveguide in the (z,y) plane is a closed curve, at a fixed
potential (since it is a conductor), we can deduce that ¢ is constant everywhere inside the

conductor:
0= /d:rdy SV = — /d:rdy V62, (6.159)

which implies v 1¢ = 0 inside the waveguide, and hence ¢ = constant and so E =0.

Similar considerations imply B =0 for the TEM mode also.!”

6.8.2 TE and TM modes

In order to have non-trivial modes propagating in the waveguide, we must relax the TEM
assumption. There are two basic types of non-trivial modes we may consider, where either
E or B (but not both) are taken to be transverse. These are called TE modes and TM
modes respectively.

To analyse these modes, we first need to consider the boundary conditions at the con-
ducting surface of the cylinder. The component of E parallel to the surface must vanish
(seen by integrating E around a loop comprising a line segment just inside the waveguide,
and closed by a line segment just inside the conductor, where E=0 by definition). Then, if
we define 7 to be the unit normal vector at the surface, we may say that 77 x E =0. Next,

taking the scalar product of 77 with the V x E = iw B Maxwell equation, we get

- —

iwii-B=7-(VxE)=-V-(ixE)=0. (6.160)

Thus, we have

ixE=0, #-B=0 (6.161)

on the surface of the waveguide. We may restate these boundary conditions as
E, =0, n-B| =0, (6.162)

where S denotes the surface of the cylindrical waveguide.

171f the waveguide were replaced by coaxial conducting cylinders then TEM modes could exist in the gap

between the innner and outer cylinder, since the potentials on the two cylinder need not be equal.
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The two boundary conditions above imply also that

-V, B,

,=0. (6.163)

This follows by taking the scalar product of 7 with the penultimate equation in (6.154):

VB, = ikii-B, —iwii-(mxE|),
= ikii-B| +iwm-(ixE,), (6.164)
and then restricting to the surface S of the cylinder. The condition (6.163) may be rewritten
as

OB,|
5 1g=0: (6.165)

where 8/0n = 7 - V is the normal derivative.

With the assumption (6.148), the wave equations for E and B become
VZE+ W —k)E=0, V2 B+ (W -k)B=0, (6.166)

where V2 = 02022+ 0?/0y? is the 2-dimensional Laplacian. The four equations appearing
in the first and third lines of (6.155) can be solved for E,, E,, B, and By in terms of E,
and B,, giving

i

e = o (w8,B. +KO.E.),
By = o (w0B. +EO,E),
B, — ﬁ(—w(‘)yEz—kk@sz),
B, — ﬁ(w@mEz+k8sz). (6.167)

This means that we can concentrate on solving for E, and B,; after having done so, sub-
stitution into (6.167) gives the expressions for E,, E,, B, and By
As mentioned earlier, we can now distinguish two different categories of wave solution

in the waveguide. These are

TE waves : E, =0, and OB, )
on s
- ik S S S w
1 w2—]€2VBZ7 E:EJ_:—EmXBJ_, (6168)
TM waves : B,=0, and E, S:O,
- ik S . w _, =
J__w2_k2VEZ, B:Bl:EmXEJ_ (6169)



Note that the vanishing of E, or B, in the two cases means by definition that this field com-
ponent vanishes everywhere inside the waveguide, and not just on the cylindrical conductor.
Note also that the second condition in each case is just the residual content of the boundary
conditions in (6.162) and (6.163), after having imposed the transversality condition E, = 0
or B, = 0 respectively. The second line in each of the TE and TM cases gives the results
from (6.167), written now in a slightly more compact way. In each case, the basic wave

solution is given by solving the 2-dimensional Helmholtz equation

Py 0% o
72 T TV =0, (6.170)
where
02 =w? —k?, (6.171)

and ¢ is equal to B, or E, in the case of TE or TM waves respectively. We also have the

boundary conditions:

TE waves : o) _ 0, (6.172)

onls

TM waves : ¥ ‘S =0. (6.173)

Equation (6.170), together with the boundary condition (6.172) or (6.173), defines an
eigenfunction/eigenvalue problem. Since the the cross-section of the waveguide is a closed
loop in the (x,y) plane, the equation (6.170) is to be solved in a compact closed region, and
so the eigenvalue specture for Q2 will be discrete; there will be a semi-infinite number of
eigenvalues, unbounded above, discretely separated from each other.

Consider, as an example, TM waves propagating down a waveguide with rectangular
cross-section:

0<z<a, 0<y<b. (6.174)

For TM waves, we must satisfy the boundary condition that i vanishes on the edges of
the rectangle. It follows from an elementary calculation, in which one separates variables
in (6.170) by writing ¥(z,y) = X (2)Y (y), that the eigenfunctions and eigenvalues, labelled

by integers (m,n), are given by'8

L e sin (VTR o (7T
Vmn = Emn sm( " )sm( 2 ),
2.2 2.2
9 _omfm nem
Q. = 2 + R (6.175)

181f we were instead solving for TE modes, we would have the boundary condition 9v/0n = 0 on the
edges of the rectangle, rather than 1) = 0 on the edges. This would give different eigenfunctions, involving

cosines rather than sines.
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The wave-number k£ and the angular frequency w for the (m,n) mode are then related by
k2 =w?— Q2 . (6.176)

Notice that this means there is a minimum frequency wmin = Qmn at which a wave can
propagate down the waveguide in the (m,n) mode. If one tried to transmit a lower-frequency
wave in this mode, it would have imaginary wave-number, and so from (6.151) it would die
off exponentially with z. This is called an evanescent wave.

The absolute lowest bound on the angular frequency that can propagate down the
waveguide is clearly given by €21 ;. In other words, the lowest angular frequency of TM

wave that can propagate down the rectangular waveguide is given by

1 1

In view of the relation (6.171) between the angular frequency and the wave-number, we

see that the phase velocity vpn and the group velocity vg, are given by

_ Y-y

Uph = ko w?
dw 0%\1/2
v = o= (1 - F) . (6.178)

Note that because of the particular form of the dispersion relation, i.e. the equation (6.171)

relating w to k, it is the case here that
Uph VUgr = 1. (6.179)
We see that while the group velocity satisfies
Vg < 1, (6.180)

the phase velocity satisfies

vph > 1. (6.181)

There is nothing wrong with this, even though it means the phase velocity exceeds the
speed of light, since nothing material, and no signal, is transferred faster than the speed of
light. In fact, as we shall now verify, energy and information travel at the group velocity
Ugr, Which is always less than or equal to the speed of light.

Note that the group velocity approaches the speed of light (from below) as w goes
to infinity. To be more precise, the group velocity approaches the speed of light as w

becomes large compared to the eigenvalue €2 associated with the mode of propagation under
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discussion. An example where this limit is (easily) approached is if you look through a length
of metal drainpipe. Electromagnetic waves in the visible spectrum have a frequency vastly
greater than the lowest TM or TE modes of the drainpipe, and they propagate through the
pipe as if it wasn’t there. The story would be different if one tried to channel waves from
a microwave down the drainpipe.

Let us now investigate the flow of energy down the waveguide. This is obtained by

working out the time average of the Poynting flux,
. 1 - =,
(S) = %(S—WE x B*). (6.182)

Note that here the fields E and B are taken to be complex, and we are using the result
discussed earlier about taking time averages of quadratic products of the physical E and B
fields.

If we consider TM modes, then we shall have

. ik o
E, = @vw, E. =19,
B, = %mxﬁl:%mxw, B.=0. (6.183)

(Recall that 77 = (0,0,1).) Note that the expressions for E and B can be condensed down

to
o ik o N S dw L, o
E=5Vetmy,  B=gmx Ve, (6.184)
We therefore have
— —-\* 1]{7 hd — lw — = *
Ex B :(@V¢+m¢)x(—@mwi). (6.185)
Using the vector identity A x (B x C) = (A-C)B — (A - B) C, we then find
S =, Wk oo o L, w2,
Ex B :m(w-w)er@quﬁ, (6.186)

since 1% - 61/1 = 0. Along the z direction (i.e. along m), we therefore have

. koo
(S): = ot (V0 - Vo) =

wk o
ey V|2 (6.187)

(The second term in (6.186) describes the circulation of energy within the cross-sectional
plane of the waveguide.)
The total transmitted power P is obtained by integrating (5‘ )» over the cross-sectional

area Y of the waveguide. This gives

S wk e
P — /Eda;dy(s>zzgm4 /dedva ¥y,
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k o -
= %/dwdy v-(w*W)—w*V%)j

- = f T Q4fdxdyw V2,
_ 2.
= 5 94/dxdyz/z V2 = = Q2 /dxdyw ¥, (6.188)
and so we have
=3 Qz / dxdy [¢)? . (6.189)

Not that in (6.188), the boundary term over the closed loop C' that forms the boundary of
the waveguide in the (z,y) plane gives zero because 1) vanishes everywhere on the cylinder.
The remaining term was then simplified by using (6.170).

We may also work out the total energy per unit length of the waveguide. The total

time-averaged energy density is given by

1 = =, 1 ik‘ - . ik = . . .
k72
= g Vv vw+—ww (6.190)

The energy per unit length U is then obtained by integrating (W) over the cross-sectional

area, which gives

U = /d:ndy( /dxdszZ) V¢+—/d$d@/|¢|2

SQ4

= = 92 /d:pdy|¢|2+—/d:ndy|¢|2 (6.191)

where we have again integrated by parts in the first term, dropped the boundary term

because 1 vanishes on the cylinder, and used (6.170) to simplify the result. Thus we find

=3 Q2 / dxdy |]? . (6.192)

Having obtained the expression (6.189) for the power P passing through the waveguide,
and the expression (6.192) for the energy per unit length in the waveguide, we may note
that

k

p=fu-Lu_..u. 6.193
w Voh Vg ( )

This demonstrates that the energy flows down the waveguide at the group velocity vg,.

6.9 Resonant cavities

A resonant cavity is a hollow, closed conducting “container,” inside which is an electromag-

netic field. A simple example would be to take a length of waveguide of the sort we have
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considered in section 6.8, and turn it into a closed cavity by attaching conducting plates at
each end of the cylinder. Let us suppose that the length of the cavity is d.
Consider, as an example, TM modes in the cavity. We solve the same 2-dimensional

Helmholtz equation (6.170) as before,

O 02
a—;§+a—;§+92¢:0, (6.194)

subject again to the TM boundary condition that i must vanish on the surface of the

cyliner. The E and B fields are given, as before, by

il ik i(kz—wt) v i(kz—w
Ey = e Vy, B =gt
B = %rﬁx oI (6.195)

where m = (0,0,1). Now, however, we have the additional boundary conditions that E i
must vanish on the two conductiung plates, which we shall take to be at z = 0 and z = d.
This is because the component of E parallel to a conductor must vanish at the conducting
surface.

In order to arrange that E | vanish, for all £, at z = 0 and z = d, it must be that there
is a superposition of right-moving and left-moving waves. (These correspond to z and ¢

+rz—wt)

dependences el respectively.) Thus we need to take the combination that makes a

standing wave,

., ko it
E| =gz sinkze VY, (6.196)

in order to have EZ_ = 0 at z = 0. Furthermore, in order to have also that EZ_ =0at z =d,

it must be that the wave-number & is now quantised, according to
k=1 (6.197)
where p is an integer. Note that we also have
E, =1 coskze ¥, (6.198)

Recall that in the waveguide, we had already found that Q2 = w? — k? was quantised, be-
ing restricted to a semi-infinite discrete set of eigenvalues for the 2-dimensional Helmoholtz
equation. In the waveguide, that still allowed k£ and w to take continuous values, subject to

the constraint (dispersion relation)

W =02+ k% (6.199)
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In the resonant cavity we now have the further restriction that k is quantised, according to
(6.197). This means that the spectrum of allowed frequencies w is now discrete, and given

by
p27T2
a2

If, for example, we consider the previous example of TM modes in a rectangular waveg-

w? =%+ (6.200)
uide whose cross-section has sides of lengths a and b, but now with the added end-caps at

z =0 and z = d, then Q2 is given by (6.175), and so the resonant frequencies in the cavity

are given b
& Y 2 2 2

2 2(M n p
W= (?er_fr?)’ (6.201)

for positive integers (m,n,p).

7 Fields Due to Moving Charges

7.1 Retarded potentials

If we solve the Bianchi identity by writing F,, = 0,4, — d,A,, the remaining Maxwell
equation (i.e. the field equation)

O F" = —4rJ” (7.1)

becomes

D" AY — 0,0” AP = —Am ]V . (7.2)

If we choose to work in the Lorenz gauge,
0, A" =0, (7.3)

then (7.2) becomes simply
OA" = —4zJ". (7.4)

—, =

Since A* = (¢, A) and J* = (p, J), this means we shall have
o = —4mp, OA = —4x J, (7.5)
or, in the three-dimensional language,

9 . 24 B,

\% — oz =4, VA - — = —4n J. (7.6)

In general, we can write the solutions to (7.6) as the sums of a particular integral of

the inhomogeneous equation (i.e. the one with the source term on the right-hand side) plus
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the general solution of the homogeneous equation (the one with the right-hand side set to
zero). Our interest now will be in finding the particular integral. Solving this problem in the
case of static sources and fields will be very familiar from electrostatics and magnetostatics.
Now, however, we wish to solve for the particular integral in the case where there is time
dependence too. Consider the equation for ¢ first.

First consider the situation where there is just an infinitesimal amount of charge de(t)
in an infinitesimal volume. (We allow for it to be time dependent, in general.) Thus the
charge density is

p=de(t) 5 (R), (7.7)

where R is the position vector from the origin to the location of the infinitesimal charge.

We therefore wish to solve

V2 — % = —4m be(t) 6 (R) . (7.8)

When R # 0. we have simply V2¢ — 82¢/0t2 = 0.
Clearly, ¢ depends on E only through its magnitude R = |ﬁ|, and so ¢ = ¢(t, R). Now,

with R = (w1, 22, 23), we have R? = z;x; and so 0;R = x;/R. Consequently, we shall have

"y
O = = ¢ 7.9
o="19, (79)
where ¢/ = 0¢/OR, and then
2
Vi =000 ="+ 5 ¢ (7.10)
Letting ® = R ¢, we have
/ 1 / 1 /1 1 " 2 / 2
=—¢' - = =—¢" - P+ D A1
This means that for R # 0, we shall have
?e 9’
Z T - = 12
OR?  0Ot? (7.12)
The general solution to this equation is
®(t,R) = f1(t — R) + f2(t+ R), (7.13)

where f; and f5 are arbitrary functions.
The solution with f; is called the retarded solution, and the solution with fy is called

the advanced solution. The reason for this terminology is that in the retarded solution, the
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“effect” occurs after the “cause,” in the sense that the profile of the function f; propagates
outwards from the origin where the charge de(t) is located. By contrast, in the advanced
solution the effect precedes the cause; the disturbance propagates inwards as time increases.
The advanced solution is acausal, and therefore unphysical, and so we shall keep only the

causal solution, i.e. the retarded solution. The upshot is that for R # 0, the solution is

6= 5 (- R). (7.14)

We clearly expect that ¢ will go to infinity as R approaches zero, since the charge (albeit
infinitesimal) is located there. Consequently, it will be the case that the derivatives 9/9R
will dominate over the time derivatives 0/0t near to R = 0, and so in that region we can

write

V2 ~ —4mde(t) 6°(R) . (7.15)

This therefore has the usual solution that is familiar from electrostatics, namely

de(t)
s 7.16
o~ (7.16)
or, in other words,
O ~ de(t) (7.17)

near R = 0. Since ® is already eastablished to depend on ¢t and R only through ® = ®(t—R),

we can therefore immediately write down the solution valid for all R, namely

&(t— R) =de(t — R). (7.18)
From (7.14), we therefore have that

(R, t) = ——F—. (7.19)

This solution is valid for the particular case of an infinitesimal charge de(t) located
at R = 0. For a general time-dependent charge distribution p(7,t), we just exploit the
linearity of the Maxwell equations and sum up the contributions from all the charges in the
distribution. This therefore gives

B(F,t) = / wcﬁf’, (7.20)

where R = 7 — 7. This solution of the inhomogeneous equation is the one that is “forced”

by the source term, in the sense that it vanishes if the source charge density p vanishes.
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The general solution is given by this particular integral plus an arbitrary solution of the

homogeneous equation [l¢ = 0. The solution (7.20) can be written as

G t_‘r_r D g7 (7.21)

7"—7‘

In an identical fashion, we can see that the solution for the 3-vector potential A in the

presence of a 3-vector current source .J| (7,t) will be

=/

=/ _ —»_
A7) 1) :/J(r b= P =) g (7.22)

— —»,‘

r—r

The solutions for ¢(7,¢) and A(,t) that we have obtained here are called the Retarded
Potentials. The analogous “advanced potentials” would correspond to having ¢ + |77 — 7’|
instead of ¢t — | — 7’| as the time argument of the charge and current densities inside the
integrals. It is clear that the retarded potentials are the physically sensible ones, in that
the potentials at the present time ¢ depend upon the charge and current densities at times
< t. In the advanced potentials, by contrast, the potentials at the current time ¢ would be
influenced by what the charge and current densities will be in the future. This would be
unphysical, since it would violate causality.

Since the procedure by which we arrived at the retarded potential solutions(7.21) and

9

(7.22) may have seemed slightly “unrigorous,” it is perhaps worthwhile to go back and check
that they are indeed correct. This can be done straightforwardly, simply by substituting
them into the original wave equations (7.6). One finds that they do indeed yield exact

solutions of the equations. We leave this as an exercise for the reader.

7.2 Lienard-Wiechert potentials

We now turn to a discussion of the electromagnetic fields produced by a point charge e
moving along an arbitrary path 7 = 7(t). We already considered a special case of this in
section 5.3, where we worked out the fields produced by a charge in uniform motion (i.e.
moving at constant velocity). In that case, we could work out the electromagnetic fields by
using the trick of transforming to the Lorentz frame in which the particle was at rest, doing
the very simple calculation of the fields in that frame, and then transforming back to the
frame where the particle was in uniform motion.

Now, we are going to study the more general case where the particle can be accelerating;
i.e. , where its velocity is not uniform. This means that there does not exist an inertial

frame in which the particle is at rest for all time, and so we cannot use the previous trick.
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It is worth emphasising that even though the particle is accelerating, this does not mean
that we cannot solve the problem using special relativity. The point is that we shall only
ever study the fields from the viewpoint of an observer who is in an inertial frame, and
so for this observer, the laws of special relativity apply. Only if we wanted to study the
problem from the viewpoint of an observer in an accelerating frame, such as the rest-frame
of the particle, would we need to use the laws of general relativity.

Note that although we cannot use special relativity to study the problem in the rest frame
of the accelerating particle, we can, and sometimes will, make use of an instantaneous rest
frame. This is an inertial frame whose velocity just happens to match exactly the velocity
of the particle at a particular instant of time. Since the particle is accelerating, then a
moment later the particle will no longer be at rest in this frame. We could, if we wished,
then choose an “updated” instantaneous rest frame, and use special relativity to study the
problem (for an instant) in the new inertial frame. We shall find it expedient at times to
make use of the concept of an instantaneous rest frame, in order to simply intermediate
calculations. Ultimately, of course, we do not want to restrict ourselves to having to hop
onto a new instantaneous rest frame every time we discuss the problem, and so the goal is
to obtain results that are valid in any inertial frame.

Now, on with the problem. We might expect, on grounds of causality, that the elec-
tromagnetic fields at (7, ¢) will be determined by the position and state of motion of the
particle at earlier times ¢, as measured in the chosen inertial frame, for which the time of
propagation of information from 7 (¢'), where the particle was at time ', to 7 at the time ¢

is t —¢’. (But see the comments after this derivation.) It is useful therefore to define

—

Rt =7—7o(t). (7.23)

This is the radius vector from the location 7(¢') of the charge at the time ¢’ to the obser-

vation point r. The time ¢’ is then determined by
t—t'=R({),  where R()=|R({)|. (7.24)

There is one solution for ¢/, for each choice of t.
In the Lorentz frame where the particle is at rest at the particular instant ¢, the potential

at time ¢ will, according to the argument above, be given by

e —
=—, A=0. 7.25
We can determine the 4-vector potential A* in an arbitrary Lorentz frame simply by invent-
ing a 4-vector expression that reduces to (7.25) under the specialisation that the velocity

0 =dr'/dt’ of the charge is zero at time t'.
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Let the 4-velocity of the charge, in the observer’s inertial frame, be U*. If the charge is
at rest, its 4-velocity will be
U* = (1,0). (7.26)

—,

Thus to write a 4-vector expression for A* = (¢, A) that reduces to (7.25) if U* is given by
(7.26), we just have to find a scalar f such that

Ab = FUM, (7.27)
with f becoming e/R(t') in the special case. Let us define the 4-vector
Rt =(t—t,F—t)) = (t—t,R({)). (7.28)

(This is clearly a 4-vector, because (t,7) is a 4-vector, and (¢',7(t'), the spacetime coordi-

nates of the particle, is a 4-vector.) Then, we can write f as the scalar

e eUH
- ¢ d A = —
/ (—UR,) e (U'R,)’

(7.29)

since clearly if U* is given by (7.26), we shall have —U” R, = —Ry = R* =t —t' = R(t).
Having written A* as a 4-vector expression that reduces to (7.25) under the specialisation

(7.26), we know that it must be the correct expression in any Lorentz frame. Now, we have

1
U¥ = (y,v7), where v = Wk (7.30)

and so we see that

ol = A= e o=
t—t)y—yv-R t—t'—-v-R R-U-R
AFt) = av °’ (7.31)

(t—t")yy—~7-R R-7-R’
To summarise, we have concluded that the gauge potentials for a charge e moving along

the path 7= 7(t’), as seen from the point 7 at time ¢, are given by

G(Ft) = — A(rt) = —©

= ) — 9 (732)
R—-7-R R—-v-R

L] <y

where all quantities on the right-hand sides are evaluated at the time #', i.e. B means ﬁ(t’)
and ¢ means dry(t')/dt’, with

Rt =7—(t), (7.33)
and t’ is determined by solving the equation
R)=t—t, where R()=|R(). (7.34)
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These potentials are known as the Lienard-Wiechert potentials.

The next step will be to calculate the electric and magnetic fields from the Lienard-
Wiechert potentials. However, before doing so, it is perhaps worthwhile to pause and give
an alternative derivation of the result for the potentials. People’s taste in what constitutes
a satisfying proof of a result can differ, but I have to say that I personally find the derivation
above rather unsatisfying. I would regard it as a bit of hand-waving argument, which one
maybe would use after having first given a proper derivation, in order to try to give a
physical picture of what is going on. The basic premise of the derivation above is that the
potentials “here and now” will be given precisely by applying Coulomb’s law to the position
the particle was in “a light-travel time” ago. I find it far from obvious that this should give
the right answer.'® It is in fact very interesting that this does give the right answer, I would
view this as a remarkable fact that emerges only after one has first given a proper derivation
of the result, rather than as a solid derivation in its own right.

A “proper” derivation of the Lienard-Wiechert potentials can be given as follows. We
take as the starting point the expressions (7.21) and (7.22) for the retarded potentials due to
a time-dependent charge and current source. These expressions can themselves be regarded
as solid and rigorous, since one only has to verify by direct substitution into (7.6) that they
are indeed correct. Consider first the retarded potential for ¢, given in (7.21). We can
rewrite this as a 4-dimensional integral by introducing a delta-function in the time variable,

so that
t//
// S O [ (7.35)
The charge density for a point charge e moving along the path 7= 7(t) is given by

p(Ft) = e 33 (F — (1)) . (7.36)

This means that we shall have

3 "
// 6(5 TQ t )) 5(75” —t4 |,r—,»_7—‘»/|)dt/ld3,r—,»/’ (737)

7"—7’

and so after performing the spatial integrations we obtain

>N € "o S =l "
gb(r,t)—/‘F_Fo(t//)‘&(t £ |7 — Fo (")) de” . (7.38)

9Tn particular, I think causality can really only be used to argue that the potentials at (t,7) could, a
priori, depend on the entire past history of the particle that is in causal contact with the spacetime point
(t, 7). Thus, although one can say that any part of its history that lies “outside the light cone” cannot affect
the potentials at (¢,7), I don’t see that, based on causality, one can say that only the instant when the

particle was a light-travel distance away could be relevant for determining the potentials at (¢, ).
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To evaluate the time integral, we need to make use of a basic result about the Dirac

delta-function, namely that if a function f(z) has as zero at x = xq, then?"

57 (@) = 8z~ 20) | &

-1
(7.39)

)
T=x0

where df /dx is evaluated at x = z¢. (The result given here is valid if f(z) vanishes only at
the point x = xg. If it vanishes at more than one point, then there will be a sum of terms
of the type given in (7.39).)

To evaluate (7.38), we note that

%(t// —t+ ’f’_ Fo(t//)’) = 14+ %((F— _»O(t//)) (7 — _;O(t//)))l/z,
= 1 (7= ) (- ) - ey - 2
_ T (T=1(")
)]
B - R’ t”)
- TR t) (7.40)

where 0 = drip(t”)/dt”. Following the rule (7.39) for handling a “delta-function of a func-
tion,” we therefore take the function in the integrand of (7.38) that multiplies the delta-
function, evaluate it at the time ¢ for which the argument of the delta-function vanishes,
and divide by the absolute value of the derivative of the argument of the delta-function.

This therefore gives
e

$(7,t) = R 7 B (7.41)

where ¢’ is the solution of t —t' = R(t'), and so we have reproduced the previous expression

for the Lienard-Wiechert potential for ¢ in (7.32). The derivation for A is very similar.

**To prove this, consider the integral I = [ dah(z)§(f(z)) for an arbitrary function h(z). Next, change
variable to z = f(x), so dx = dz/(df /dx). Then we have

I= /dzh(m) |df”(/il)x| = h(xzo)/|df /dx| /5(z)dz = h(xzo)/|df /dx|,

where df /dz is evaluated at © = xo. Thus we have

0(x — xo)
|df /dazy

which proves (7.39). (The reason for the absolute-value on |df /dz| is that it is to be understood that the

T = hzo),/|df ]y = / deh(z)

direction of the limits of the z integration should be the standard one (negative to positive). If the gradient
of f is negative at x = xo then one has to insert a minus sign to achieve this. This is therefore handled by

the absolute-value sign.)
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7.3 Electric and magnetic fields of a moving charge

Having obtained the Lienard-Wiechert potentials ¢ and Aofa moving charge, the next step

is to calculate the associated electric and magnetic fields,

E:-ﬁ%@?, B=%xA. (7.42)
To do this, we shall need the following results. First, we note that
OR  OR Ot
ez 4
ot ot o’ (7.43)
and so, since R? = R; R; we have
. . (Y R 7. B
Z?R_&@Rz__vl(t)RZ:_v R' (7.44)

o RO R R
(Recall that R means R(t'), and that it is given by (7.33).) Equation (7.43) therefore

becomes .
OR v-R ot
= it A4
ot R ot’ (7.45)
and so, since we have from (7.34) that R(¢') =t — ¢/, it follows that
o i-Rot
= - A4
ot R ot (7.46)
Solving for 9t'/dt, we therefore have the results that
o’ 7 Ry-1
- = (1= A4
5 = (1——F) (7.47)
OR VR
_— = ——. 7.48
ot R-7-R (7.48)

Some other expressions we shall also need are as follows. First, from ¢t —t' = R(t') it

follows that 9;t' = —9;R(t'). Now R(t') = 7 — 7 (t'), and so

[e=]

R? = (a; — a9(t")) (2 — (). (7.49)

<

From this, by acting with 0;, we obtain

2ROR = 2(8;j — 0 () (w; — 29(t)),

j
02" ot
20 8 (0 —a)),

— 2R, —27- ROt (7.50)

= 2R; -2

From this and 9;t' = —9; R(t') it follows that

ot =——" _ gR=—"__ (7.51)
R—7-R R—7-R
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Further results that follow straightforwardly are

029(t") v R;
0 (]
O;R; 32‘(339'—5’33'(’5/)):5“_#6@,_5ij+R_jq7.R’
v, v; R;
Orv; T gyt = — it
T R—7- R
ovi _ Oui ot R
ot o 0t R—7-R’
OR _ R
ot R-7-R’
OR OR ot o’ 7R
= - =T 7.52
ot o ot~ ot R-7 B (7:52)
Note that v; means dv;/0t’; we shall define the acceleration a of the particle by
Lo
i=ss. (7.53)

We are now ready to evaluate the electric and magnetic fields. From (7.32) and the

results above, we have

0A;
B = —0ip— 2",
¢ ot
e e ov; ev; OR 9(7-R)
(R—aRP( (vi %)) R—7-R 0Ot (R—aRﬁ(m ot )
= —— (R —w(R-7 R)~v*Ri+d KR —a;R(R— 7 )
(R—7-R)?
—v; V- R —wv;d FER—H)QU,R},
1—v?) (R — v qa-R(R;—vR)—a(R—7-R
_ e( v)(quR)+e[a R(R; —v; R) ci(R 0] R)R]. (750)
(R—7v-R)3 (R—7v-R)3
This can be rewritten as
. 1— ) (R-7 R R 7t
E:e( v)(quR)_i_eRx[(R vﬁ?)xa]' (7.55)
(R—7v-R)3 (R—7v-R)3
An analogous calculation of B shows that it can be written as
-~ RxE
:R; . (7.56)

Note that this means that B is perpendicular to E.

The first term in (7.55) is independent of the acceleration @, and so it represents a
contribution that is present even if the charge is in uniform motion. It is easily seen that
at large distance, where R — oo, it falls off like 1/R2. If the charge is moving with uniform

velocity ' then we shall have

(7.57)



and so

= R(). (7.58)

In other words, in this case of uniform motion, R(#) — @ R(') is equal to the vector R(t)
that gives the line joining the charge to the point of observation at the time the observation

1s made. We shall also then have
R —7-R(t") = R(')—v*R({t')—7-R(t),
= (1-v)R{)—7-R(t). (7.59)

If we now introduce the angle 6 between @ and R(t), we shall have - R(t) = v R(t) cos#.

Since, as we saw above, E(t') = 7 R(t') + R(t), we obtain, by squaring,
R%(t") = v2R%(t") + 20R(t)R(t') cos § + R?(t), (7.60)

and this quadratic equation for R(t') can be solved to give

vR(t)cos§ + R(t)V1 —v2sin 0

N
R(t) = 1—2

(7.61)

Equation (7.59) then gives

R(t")—7-R(t'") = vR(t) cos 0+ R(t)\/1 — v sin® —vR(t) cos § = R(t)\/1 — v2sin? 0. (7.62)

For a uniformly moving charge we therefore obtain the result

eR(t) 1—0?

E =
R3(t) (1 —v2sin?0)3/2”’

(7.63)

which has reproduced the result (5.40) that we had previously obtained by boosting from
the rest frame of the charged particle.

The second term in (7.55) is proportional to @, and so it occurs only for an accelerating
charge. At large distance, this term falls off like 1/R, in other words, much less rapidly
than the 1/R? fall-off of the first term in (7.55). In fact the 1/R fall-off of the acceleration

term is characteristic of an electromagnetic wave, as we shall now discuss.
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7.4 Radiation by accelerated charges

A charge at rest generates a purely electric field, and if it is in uniform motion it generates
both E and B fields. In neither case, of course, does it radiate any energy. However, if the
charge is accelerating, then it actually emits electromagnetic radiation.

The easiest case to consider is when the velocity of the charge is small compared with

the speed of light. In this case the acceleration term in (7.55) is approximated by

- eRx(Rxa) enx(Axa)
E = = .64
R3 R ’ (7.64)

where

(7.65)

n=

Note that 7 - E = 0, and that E is also perpendicular to 77 x d. This means that the
polarisation of E lies in the plane containing 77 and @, and is perpendicular to 7.
From (7.56) we shall also have
B=7ixE. (7.66)
As usual, all quantities here in the expressions for E and B are evaluated at the retarded
time t'.

The energy flux, given by the Poynting vector, is given by

o001 2 -1 - . 1 1 R
= —ExB=—Ex(ixE)=—FEfi—-—(i-E)E .
S L i X (1 x F) B 47T(n VE, (7.67)
and so, since 7i - E = 0 we have
- 1
S=_—_FE*7. (7.68)
A7

Let us define 6 to be the angle between the unit vector 77 and the acceleration @. Then

we shall have

E:%((ﬁ-&)ﬁ—@):%(aﬁcose—a), (7.69)
and so ) Yy g
in~ 6
E? = % (a® cos? @ — 2a” cos® 0 + a?) = % , (7.70)
implying that the energy flux is
g_ e2a?sin’6 (7.71)
~ 47R? ’
The area element d3 can be written as
dS = R*7dS, (7.72)
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where dQ2 = sinfdfdy is the area element on the unit-radius sphere (i.e. the solid angle
element). The power radiated into the area element dSisdP =8 -d% = R*i- S df2, and
so we find that ) s

dP e“a”* . o

m = ? Sin 9 (773)
is the power radiated per unit solid angle.

The total power radiated in all directions is given by

dP €2CL2 T 2m
P = [—dy=— [ sin®’0df | d
= T [ o [ e,
s 1
= 1e%d? / sin® 0 df = Le%a® / (1—c*)de = %e2a2 , (7.74)
0 -1

where, to evaluate the 0 integral we change variable to ¢ = cosf. The expression

P =242 (7.75)

w0

is known as the Larmor Formula for a non-relativistic accelerating charge.

The Larmor formula can be generalised to the relativistic result fairly easily. In principle,
we could simply repeat the argument given above, but without making the approximation
that v is small compared to 1 (the speed of light). Note that in terms of the unit vector
it = R/R, the expression (7.55) for the electric field becomes

1- )R —17) el x (i —¥) x d
R2(1—ii-0) R(1—m 03

(7.76)

We can, in fact, obtain the relativisitic Larmor formula by a simple trick. First, we note from
(7.76) that since S = (E x B)/(47) and B = @i x E, the energy flux from the acceleration
term must be quadratic in the acceleration @. We can also note that the total radiated
power P is a Lorentz scalar (since it is energy per unit time, and each of these quantities
transforms as the 0 component of a 4-vector). Thus, the task is to find a Lorentz-invariant
expression for P that reduces to the non-relativisitic Larmor result (7.75) in the limit when
v goes to zero.
First, we note that the non-relativistic Larmor formula (7.75) can be written as

22 /dp\2
2,2 2

There is only one Lorentz-invariant quantity, quadratic in @, that reduces to this expression

in the limit that v goes to zero. It is given by

2e? dpt dp
p=_—-_2r .
3m2 dr dr’ (7.78)
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where p* is the 4-momentum of the particle and 7 is the proper time along its path. Noting

that p#* = m(y,yv), we see that

dp*  dp*
L (3T @73 @) T+ d) (7.79)
dr dt
and so
dp* d
T = w0 950 )+ 2 @) + 7%,

= m*PR(T-a)? + %) (7.80)

Now consider the quantity

a> — (Txa)? = a®— €ijk€itmVjAkVICm
2
= -2+ (7-d)° = % + (7 a)?, (7.81)
which shows that we can write
dp* d 2
C% % = m276(% + (7 @)%) = m*[a® — (T x 37, (7.82)
Thus we see that the scalar P given in (7.78) is given by
P = 2e*9%1a® — (¥ x @)?]. (7.83)

This indeed reduces to the non-relativistic Larmor formula (7.75) if the velocity ¥ is sent to
zero. For the reasons we described above, it must therefore be the correct fully-relativistic
Larmor result for the total power radiated by an accelerating charge.

7.5 Applications of Larmor formula

7.5.1 Linear accelerator

In a linear accelerator, a charged massive particle is accelerated along a straight-line tra-

jectory, and so its velocity ¥ and acceleration @ are parallel. Defining p = |p] = m~|0], we

have
% = mv% + mvcjl—z ) (7.84)
where v = |#] and y = (1 — v?)~/2. Clearly we have
v%:ﬁ'-%:ﬁ'&':va, Z—Zzygﬁ-%:v%a, (7.85)
and so
% = my3a. (7.86)



With ¢ and @ parallel, the relativisitic Larmor formula (7.83) gives P = %62"}/6CL2, and so we

have

_ ;_;;(%)2. (7.87)

The expression (7.87) gives the power that is radiated by the charge as it is accelerated
along a straight line trajectory. In a particle accelerator, the goal, obviously, is to accelerate
the particles to as high a velocity as possible. Equation (7.87) describes the the power that
is lost through radiation when the particle is being accelerated. The energy &£ of the particle

is related to its rest mass m and 3-momentum p by the standard formula
&2 =p*+m?. (7.88)

The rate of change of energy with distance travelled, d€/dx, is therefore given by

€ dp
E—=p— 7.89
T =Py (7.89)
and so we have
¢ _pdp _myvdp _ dp _dvdp _ dp (7.90)
dx_é'dx_m’yda:_vda:_dtda:_dt' ’
This means that (7.87) can be rewritten as
2e% /dEN?2
=—= (=) . 7.91
3m? (da:) (7:91)

The “energy-loss factor” of the accelerator can be judged by taking the ratio of the
power radiated divided by the power supplied. By energy conservation, the power supplied
is equal to the rate of change of energy of the particle, d€/dt. Thus we have

Power radiated P P di P
Power supplied — (d€/dt)  (d€/dx)dx v (d€/dx)’
2e? dE
= 3% dr (7.92)

In the relativistic limit, where v is very close to the speed of light (as is typically achieved
in a powerful linear accelerator), we therefore have

Power radiated N 2e% dE

~ —— 7.93
Power supplied ~ 3m? dx (7.93)

A typical electron linear accelerator achieves an energy input of about 10 MeV per metre,
and this translates into an energy-loss factor of about 107'3. In other words, very little of

the applied power being used to accelerate the electron is lost through Larmor radiation.
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7.5.2 Circular accelerator

The situation is very different in the case of a circular accelerator, since the transverse ac-
celeration necessary to keep the particle in a circular orbit is typically very much larger than
the linear acceleration discussed above. In other words, the direction of the 3-momemtum
P is changing rapidly, while, by contrast, the energy, and hence the magnitude of p is rela-
tively slowly-changing. In fact the change in |p] per revolution is rather small, and we can
study the power loss by assuming that the particle is in an orbit of fixed angular frequency

w. This means that we shall have

’2_7:’ = wlpl, (7.94)
and so .
2| =l (7.95)

where dr = dt/~ is the proper-time interval. Since the energy is constant in this approxi-
mation, we therefore have

dp® B

dp" dp, _ (dp\2 5 9 o
o 0, and so ———(—) =y wp”. (7.96)

dr dr dr

Using equation (7.78) for the Larmor power radiation, we therefore have

2¢?
= W72w2p2 = Ze2ylw?. (7.97)
If the radius of the accelerator is R then the angular and linear velocities of the particle are
related by w = v/R and so the power loss is given by
9262~y
P=————. 7.98
The radiative energy loss per revolution, A&, is given by the product of P with the

period of the orbit, namely
2rRP 4me2~ty?
v 3R

A typical example would be a 10 GeV electron synchrotron, for which the radius R is about

A€ =

(7.99)

100 metres. Plugging in the numbers, this implies an energy loss of about 10 MeV per
revolution, or about 0.1% of the energy of the particle. Bearing in mind that the time
taken to complete an orbit is very small (the electron is travelling at nearly the speed of
light), it is necessary to supply energy at a very high rate in order to replenish the radiative
loss. It also implies that there will be a considerable amount of radiation being emitted by

the accelerator.
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7.6 Angular distribution of the radiated power

We saw previously that for a non-relativistic charged particle whose acceleration @ makes
an angle 6 with respect to the position vector ﬁ, the angular distribution of the radiated

power is given by (see (7.73))
—— sin?4. (7.100)

In the general (i.e. relativistic) case, where the velocity ¥ is large, the we have, from (7.76),

the large-R radiation-field term is

erl X [(7i — ) x a| =

E = B=ixE. 7.101
RO —7i-5)7 " (7.101)

The Poynting vector is therefore given by

. 1 - = 1 - .
S = —(ExB)=—[Ex(iixE),
47 47
1
= —fAE? 7.102
B, (7.102)

since 7 - E = 0. Thus S is in the radial direction (parallel to ﬁ(t’ ), and we have

e? ‘ﬁx (ﬁ—’[)’)xd’]r
3

[
47 R? (1—7-7)

i S = , (7.103)

where as usual all quantities on the right-hand side are evaluated at the retarded time t’
calculated from the equation ¢ — ¢/ = R(t), with R(t') = ¥ — 7(¢'). It is conventional to
denote the quantity in (7.103) by [7 - g]mt., to indicate that it is evaluated at the retarded
time #'. Since d¥ = 7 R? dS), we shall have
dP(t -
_dé) = [ - SRt - (7.104)

The associated energy radiated during the time interval from ¢t = T} to t = 75 is therefore

given by
dg T2 2 =
A i - re dt7 1
70 " [R* 7 - S]ret. (7.105)
Defining the corresponding retarded times ¢’ = 77, the integral can therefore be rewritten
as2!
d& 7 L o= dt
= [R%-S]mt,@dt/. (7.106)
1

2L All that is really being said here is that we can relate the previously-defined quantity dP(t)/dQ2 (power
per unit solid angle as measured by the observer at time t) to dP(¢')/dQ) (power per unit solid angle as

measured at the particle, at retarded time t') by dP/dQ2dt = dP/dQ) (dt/dt") dt' = dP(t')/d2dt’.
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The quantity [R?7 - S|yt (dt/dt’) is the power radiated per unit solid angle, as measured

with respect to the charge’s retarded time t’, and so we have the result that

dP(t' L oo dt Lo -
d&% ) = [R2 n- S]ret-@ = (-7 U)[R2 7+ Slret. - (7.107)

(Note that we used the result (7.47) here.)

7.6.1 Angular power distribution for linear acceleration

As an example, consider the situation when the charge is accelerated uniformly for only a
short time, so that ¥ as well as @ are approximately constant during the time interval of the
acceleration. This means that 77 and R are approximately constant, and so from (7.103)
and (7.107) we obtain the angular distribution

dP(t)) & it x [(T = 7) x >
aQ i (1-7-0)p

(7.108)

If we now suppose that the acceleration is linear, i.e. that ¥ and d are parallel, then we

obtain ) s )
dP(t") e®a sin® 6
= 1
aQ 47 (1 —wvcosh)>’ (7.109)

where as before we define 6 to be the angle between @ and 7.

When |v| << 1, the expression (7.109) clearly reduces to the non-relativistic result given
in (7.73). In this limit, the angular radiated power distribution is described by a figure-of-
eight, oriented perpendicularly to the direction of the acceleration. As the velocity becomes
larger, the two lobes of the figure-of-eight start to tilt forwards, along the direction of the
acceleration. This is illustrated for the non-relativistic and relativisitic cases in Figures 1

and 2 below. In each case, the acceleration is to the right along the horizontal axis.

The angle at which the radiated power is largest is found by solving d(dP/dS?)/df = 0.
This gives
2(1 —vcosf) cosf — 5usin® 6 =0, (7.110)
and hence

V141502 — 1)
3v '

In the case of a highly relativistic particle, for which v is very close to the speed of light,

O max. = arccos ( (7.111)

the velocity itself is not a very convenient parameter, and instead we can more usefully
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Figure 1: The angular power distribution in the non-relativistic case

characterise it by v = (1 — 1)2)_1/ 2 which becomes very large in the relativistic limit. Thus,

substituting v = \/1 — 72 into (7.111), we obtain

4@—1)
; .

Omax. = arccos ( = (7.112)
At large « we can expand the argument as a power series in y~2, finding that
Omax. ~ arccos(1l — %7_2) . (7.113)

This implies that 0., is close to 0 when ~y is very large. In this regime we have cos Oyax. =

1— %H%ax., and so in the highly relativistic case we have

B, ~ % . (7.114)

We see that the lobes of the angular power distribution tilt forward sharply, so that they
are directed nearly parallel to the direction of acceleration of the particle.

Continuing with the highly-relativistic limit, we may consider the profile of the angular

power distribution for all small angles 6. Substituting

v=1/1—~"2, sinf ~ 6, cosf ~ 1 — 36 (7.115)
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Figure 2: The angular power distribution in the relativistic case (v = 4/5)

into (7.109), and expanding in inverse powers of -y, we find that

dP(t') _ e2a%6? . 8e%a?h? 7116
aQ 3 1921)° - 7T("y_2 +92)5 ’ (. )
ar(1- VT=772(1 - 162))
which can be written as ) 5 g )
dP(t 0

aQ = r [+
This shows that indeed there are two lobes, of characteristic width A8 ~ 1/, on each side
of 8 = 0. The radiated power is zero in the exactly forward direction 6 = 0.
We can straightforwardly integrate our result (7.109) for the angular power distribution
for a linearly-accelerated particle, to find the total radiated power. We obtain

_rdrPt) . e%d? T sin?6 ) 129 [P (=)
P—/ a0 dQ—?2ﬂ' 0 m81n9d9—§ea /_1m, (7118)

where ¢ = cos 6. The integral is elementary, giving the result

P = 2e*v%q%. (7.119)
This can be seen to be in agreement with our earlier result (7.83), under the specialisation
that @ and ¥ are parallel.

7.6.2 Angular power distribution for circular motion

For a second example, consider the situation of a charge that is in uniform circular motion.
For these purposes, we need only assume that it is instantaneously in such motion; the
complete path of the particle could be something more complicated than a circle, but such

that at some instant it can be described by a circular motion.
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Circular motion implies that the velocity ¥ and the acceleration @ are perpendicular.
At the instant under consideration, we may choose a system of Cartesian axes oriented so
that the velocity ¢ lies along the z direction, and the acceleration lies along the x direction.
The unit vector 77 = ﬁ/ R can then be parameterised by spherical polar coordinates (6, ¢)
defined in the usual way; i.e. 8 measures the angle between 77 and the z axis, and ¢ is the
azimuthal angle, measured from the z axis, of the projection of 7 onto the (z,y) plane.

Thus we shall have
7l = (sin @ cos p,sin @ sin ¢, cos ) , v =(0,0,v), a=(a,0,0). (7.120)

Of course, in particular, we have 71 - ¥ = v cos 6.
From (7.103) and (7.107), we have the general expression

dP(t) ¢ |t x [(i — ¥) x ]2

dQ  4r 1-a-v)> (7.121)

for the angular distribution of the radiated power. Using the fact that ¥- @ = 0 in the case

of circular motion, we have

i x (i —9) x @’ = [(@-&)7—7)~ (-7 D)a?,

= —(-a)*1—-v))+ (1 -7 9)%?,

= (1—wvcosf)?a® — vy 2a*sin?0 cos® ¢, (7.122)

and so for instantaneous circular motion we have

dP(t') e2a? [1 B sin? 6 cos? ¢ }

o 12
d2 4m(1 —vcos)? 2 (1 —vcosh)? (7.123)

We see that as v tends to 1, the angular distribution is peaked in the forward direction i.e.
in the direction of the velocity ¢, meaning that 6 is close to 0.

The total power is obtained by integrating dl;g/) over all solid angles:

dP(t')
o

dP(t')
dQ

2 T
P(t) — dip / sin 66

2 sin? @ cos? ¢
= 1—
/ d¢ / Sln0d0 (1 —vcos@) [ 72 (1 —UCOSH)2}
2

€ a2 sin? 6
= in 0do —
/0 S 2(1 —vcosh)3 [ 292 (1 —vcos@)2}
e2a? 1—c?

1
/_1 2(1 —wve)3 [1 © 292(1 — ve)?

| de, (7.124)
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where ¢ = cos 6. After performing the integration, we obtain
Pt') = 2e*y%a”. (7.125)

This expression can be compared with the general result (7.83), specialised to the case

where ¢ and @ are perpendicular. Noting that then
(U x d’)2 = €1jk€itmVjARVEAm = VjUjARAL — Vj0jVp0E = VjVj0K0), = v2a?, (7.126)

we see that (7.83) indeed agrees with (7.125) in this case.

The total power radiated in the case of linear acceleration, with its 4% factor as in
(7.119), is larger by a factor of 42 than the total power radiated in the case of circular
motion, provided we take the acceleration a to be the same in the two cases. However, this
is not always the most relevant comparison to make. Another way to make the comparison
is to take the magnitude of the applied force, |dp/dt|, to be the same in the two cases. For
circular motion we have that v is constant, and so

dp dv

—s 12
at g T (7.127)

Thus for circular motion, we have from (7.125) that

2
P(t') = 236m’; |2 < dj (7.128)
By contrast, for linear acceleration, where ¢’ is parallel to @, we have
Z—Zj = md + m (T - @)0 = my’a, (7.129)
and so this gives
P(t) = 3m2 ‘ o ‘ (7.130)

Thus if we hold |dp)/dt| fixed when comparing the two, we see that it is the particle in circular
motion whose radiated power is larger than that of the linearly-accelerated particle, by a

factor of ~2.

7.7 Frequency distribution of radiated energy

In this section, we shall discuss the spectrum of frequencies of the electromagnetic radiation
emitted by an accelerating charge. The basic technique for doing this will be to perform a
Fourier transform of the time dependence of the radiated power.

In general, we have

et = 1= (R Bl (7.131)



Let

1
G(t) = = [RE]et (7.132)
so that we shall have
dP(t) 5.\
—q =GO (7.133)

Note that here dP(t)/dS) is expressed in the observer’s time ¢, and not the retarded time
t'. This is because our goal here will be to determine the frequency spectrum of the elec-
tromagnetic radiation as measured by the observer.

Suppose that the acceleration of the charge occurs only for a finite period of time, so
that the total energy emitted is finite. We shall assume that the observation point is far
enough away from the charge that the spatial region spanned by the charge while it is
accelerating subtends only a small angle as seen by the observer.

The total energy radiated per unit solid angle is given by

Z—Vg = Z—g dt = /_O:O G(t)[%dt . (7.134)
We now define the Fourier transform §(w) of G(t):
W) = —— /OO £ et dr (7.135)
V2 J-so
In the usual way, the inverse transform is then
G(t) m / e i du (7.136)

It follows that

%:/_ G(#)[2dt = / dt/ dw/ A G () - Gw) e @ (7.137)

The t integration can be performed, using
/_ T el @)t — 210(w' — w), (7.138)
and so
— = / dw/ dw'g* (W) - Gw) §(w — w) / dwg cG(w), (7.139)

av_ /_O:O dw|§(w)[. (7.140)

(The result that (7.134) can be expressed as (7.140) is known as Parseval’s Theorem in

Fourier transform theory.)
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We can re-express (7.140) as

aw o0 d2I(w,ﬁ)
where ,
d I(W,ﬁ) = 2 - 2
o = |G + ()| (7.142)

is the energy emitted per unit solid angle per unit frequency interval. If G(t) = [RE ]t/ V4

is real, then

1 oo - .
() = = /_OO Qi G(t) e = §*(w), (7.143)
and then ,
d*I(w, ) . 2

Using the expression for E in (7.101), the Fourier transform g(w), given by (7.135) with
(7.132), is

where as usual, the subscript “ret” is a reminder that the quantity is evaluated at the

retarded time ¢/. Since

dt = %dt =(1—7-v)dt, (7.146)
we therefore have
ooy ¢ (' +R()) x (11 — V) X ]
gw) T /_Ooe (1 PR : (7.147)

(We have now dropped the “ret” reminder, since everything inside the integrand now de-
pends on the retarded time ¢'.)

We are assuming that the observation point is far away from the accelerating charge,
and that the period over which the acceleration occurs is short enough that the the vector
it = R(t')/R(') is approximately constant during this time interval. It is convenient to
choose the origin to be near to the particle during its period of acceleration. With the

observer being far away, at position vector 7, it follows from é(t’ ) = 7 —7o(t') that to a

good approximation we have
R2(t') ~ 12 — 27 - 7 (1)), (7.148)

and so
27 - 7o (t')\1/2 7 7ot
#) oy T
T

R(t)~r(1- (7.149)
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Furthermore, we can also approximate @ = E(')/R(t') by #/r, and so
Rt ~r—i-mt). (7.150)

Substituting this into (7.147), there will be a phase factor ! that can be taken outside

the integral, since it is independent of ¢'. This overall phase factor is unimportant (it will

cancel out when we calculate |§(w)|?, and so we may drop it and write

-

gW:zj%w /_":Oeiw(t'—wow)) (1[(_n 3) 9 gy (7.151)

From (7.144) we therefore have

— —

&? I w n 1w(t’ 7o (t')) 7 X [(n v _’]
— = dt 7.152
dwd) 4772 ‘ / (1—1-7)2 ’ ( )
as the energy per unit solid angle per unit frequency interval.
The integral can be neatened up by observing that we can write
nx[(i—v)xd d ix(dx7v)
=—|—— 7.153
(1—1i-0)? dt/[ 1—ﬁ-17}’ ( )

under the assumption that 77 is a constant. This can be seen be distributing the derivative,

to obtain

d i x (7 x V) nx (ixa) @x(mnxJ)(i-ad)

LEAERD) _ BxxD) IxEx9GD

/'L 1—7-9 1—-7-7 (1—1-7)
(I =n-9)(A(A-ad) —ad) + (A v) —v)(1-a)
N (1—1i-0)2 ’
 (@-a)n-70) - (1-7a-v)a
N (1—1i-7)2 ’
i x [(7—7) x ad]
= a-797 (7.154)

This allows us to integrate (7.152) by parts, to give

d*I(w, 1) X (X D) d 5oy 2
CdwdQ 4772 ’ _/ml_imye dt’| (7.155)
and hence ,
d°I(w,) =)
sl 1w nT’ 1
dwd) ‘ / (7i x 7) ar'[’, (7.156)

It should be remarked here that the effect of having integrated by parts is that the
acceleration @ no longer appears in the expression (7.156). Prior to the integration by
parts, the fact that we were taking the acceleration to be non-zero for only a finite time
interval ensured that the integration over all ¢’ from —oo to oo would be cut down to

an integration over only the finite time interval during which @ was non-zero. After the

139



integration by parts, the integrand in (7.156) no longer vanishes outside the time interval
of the non-zero acceleration, and so one might worry about issues of convergence, and the
validity of having dropped the boundary terms at ¢’ = =00 coming from the integration by
parts. In fact, it can be verified that all is well, and any problem with convergence can be
handled by introducing a convergence factor eIl and then sending € to zero.

We shall make use of the result (7.156) in two applications. In the first, we shall calculate

the frequency spectrum for a relativistic particle in instantaneous circular motion.

7.8 Frequency spectrum for relativistic circular motion

Consider a particle which, at some instant, is following a circular arc of radius p. We shall
choose axes so that the arc lies in the (z,y) plane, and choose the origin so that at t = 0
the particle is located at the origin, x = y = 0. Without loss of generality, we may choose
the unit vector 7 (which points in the direction of the observation point) to lie in the (z, 2)
plane. We shall, for notational convenience, drop the prime from the time t’, so from now
on t will denote the retarded time.

In fact, we shall make the assumption that the particle is moving highly relativistically.
As we saw earlier, this means that the radiation is concentrated into very narrow beams
in the direction of the velocity vector, and hence we need only consider a small arc of the
trajectory.

The position vector of the particle at time ¢ will be given by

vt vt
7o = (psin —, pcos — — p,0), (7.157)
(psin = peos - = ,0)
where v = |7] is its speed. Since ¥ = d7{(t)/dt, we shall have
t t
U= (v cosv—,—v SinU—,O) . (7.158)

p p
We may parameterise the unit vector 7, which we are taking to lie in the (z,z) plane, in

terms of the angle # between 7 and the x axis:
i = (cos ,0,sinf) . (7.159)
We then have
. IR = . 9 (1 . ot . vt
X (A xv)= @ -U)i—0= (— vsin® cos —, —v sin —, vsin 6 cosf cos —) . (7.160)
p P P
We shall write this as

—

t
ﬁx(ﬁxv):—vsinv—€||+vsin900sv—a_, (7.161)
p p
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where

e = (0,1,0) and €L =1 x € = (—sind,0,cos0). (7.162)

We shall consider a particle whose velocity is highly-relativistic. It will be recalled from
our earlier discussions that for such a particle, the electromagnetic radiation will be more
or less completely concentrated in the range of angles 6 very close to 0. Thus, to a good
approximation we shall have €, ~ (0,0, 1), which is the unit normal to the plane of the
circular motion. In what follows, we shall make approximations that are valid for small 6,
and also for small t. We shall also assume that v is very close to 1 (the speed of light).

From (7.157) and (7.159), we find

t—m-ro(t) = t—pcost Sin%t%t—ﬂ(l_lez){v_t_%(v_t)g}’

3t3
(1—-v)t+ 1921)15 +

Q

60?
43
~ %<1+v><1—v)t+%o2t+ﬁ,
ot g, B
- 272 +307t+ 6p2 (7.163)
From (7.161), we find
t
X (X 0) & =~ &+ 0L (7.164)
We therefore find from (7.156) that
d2I 620.)2 . . 2
dwdQ ~ 4n2 }—g”(w)e” +gi(w)er| ,
e2w?
= 7 (@I +lg@)P), (7.165)
where
1 (> _
g = - / O R2 gy
gL(w) = 9/ v 2+6%)t+3 Li3p= 12 gt (7.166)
Letting
t
w= (7T E = gep(y T + 602, (7.167)
leads to
- o i&(utud
giw) = ply 2+92)/_ weHEHP /2 gy
g1 (w) = p9(7—2+92)1/2 / 3i&(utu®/3)/2 g (7.168)
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These integrals are related to Airy integrals, or modified Bessel functions:

/OOO usin[3¢(u +u’/3) /2] du = % Ky 3(8), /OOO cos[3¢(u +u3/3)/2] du = % Ky3(8),
(7.169)
and so we have
d2I 20292 _ 92
e N e (2 6 (Ky(9) + =y (K1/3(6)°] . (7.170)

The asymptotic forms of the modified Bessel functions K, (x), for small z and large z,

are
K, (x) — %F(v)(g)”; x—0,
x
K,(r) — %e‘x; xr — 00. (7.171)

It therefore follows from (7.170) that d2I/(dwdY) falls off rapidly when ¢ becomes large.

2 is small (since the velocity of the particle is very near to the

Bearing in mind that ~~
speed of light), and that 6 has been assumed to be small, we see from (7.167) that there is
a regime where & can be large, whilst still fulfilling our assumptions, if wp is large enough.
The value of £ can then become very large if 6 increases sufficiently (whilst still being small
compared to 1), and so the radiation is indeed concentrated around very small angles 6.

If w becomes sufficiently large that wpy=3

is much greater than 1 then £ will be very
large even if # = 0. Thus, there is an effective high-frequency cut-off for all angles. It is

convenient to define a “cut-off” frequency w. for which £ =1 at 6§ = 0:

33 3 €3
we="=2(2) (7.172)
p p\m
If the particle is following a uniform periodic circular orbit, with angular frequency wg =
v/p = 1/p, then we shall have

We = 3wy (%)3 (7.173)

The radiation in this case of a charged particle in a highly relativistic circular orbit is known
as “Synchrotron Radiation.”
Consider the frequency spectrum of the radiation in the orbital plane, § = 0. In the two

regimes w << w, and w >> w, we shall therefore have

w << W

4
e~ wlwe (7.174)

d?I o(T(2/3)\2 (3\1/3 93
Todtlee ~ () (7)) @
d’I N 3e2? w

w>> Wwe - ~
¢ dwd2 16=0 2T we
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This shows that the power per unit solid angle per unit frequency increases from 0 like w?/3
for small w, reaches a peak around w = w,, and then falls off exponentially rapidly one w is
significantly greater than w.

It is clear that one could continue with the investigation of the properties of the syn-
chrotron radiation in considerably more depth. For example, would could consider the
detailed angular distibution of the radiation as a function of 8, and one could consider the
total power per unit frequency interval, obtained by integrating over all solid angles:

dl d*I

A discussion of further details along these lines can be found in almost any of the advanced

electrodynamics textbooks.

7.9 Frequency spectrum for periodic motion

Suppose that the motion of the charged particle is exactly periodic, with period T' = 27 /wy,
where wy is the angular frequency of the particle’s motion. This means that 7 - 7(¢) will be

—iwA-To(t)

periodic with period T, and so the factor e in (7.156) will have time dependence
of the general form

H(t)= Y byeinot, (7.176)

n=-—oo
(We are again using ¢ to denote the retarded time here, to avoid a profusion of primes.) The
Fourier transform h(w) of the function H(t) is zero except when w is an integer multiple of

wp, and for these values it is proportional to a delta function:

1 S 1 o

(When unspecified, the summation will be assumed to be over all n, positive and negative.)
In fact, it is more appropriate to work with Fourier series, rather than Fourier transforms,
in this situation with a discrete frequency spectrum.

Going back to section 7.7, we therefore now expand é(t) in the Fourier series

G(t)=>"a,eimot, (7.178)
n
Multiplying by e!™+0! and integrating over the period T' = 27 /wq gives
1 /T et G (t)dt = 1 da /T elm=—mwot gy — g (7.179)
T 0 T = n 0 m s
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since the integral of ! (m~™«0t vanishes unless n = m:
1 T,
— / elm=nwotgy — 6 (7.180)
T Jo
Thus the coefficients @, in the Fourier series (7.178) are given by
- l T inwoet
n = e G(t)dt. (7.181)
T Jo

The analogue of Parseval’s theorem for the case of the discrete Fourier series is now

given by considering

7 / (t))?dt = / Zan N ) (7.182)
The time average of the power per unit solid angle is therefore given by
dP 1 T P = |
(&) =2 =T / B)2dt = 3 |an? (7.183)

In a manner analogous to the earlier discussion of the continuum case, we may express this
as a sum of terms associated with frequencies w, = nwyp for n > 1 (i.e. fundamental plus

harmonics). Thus we write

dP dP,
N\ = Z —=. (7.184)
(10~ s
from which it follows that
dP, . .
—q = 1@l 1al (7.185)

(We do not need to consider the zero-frequency n = 0 mode in the sum, since this would
correspond to a static component to the field, which will not arise here.) If G(t) is real, it
follows that a, * = d_,, and so

dP,

— 2 =920@,|%. 1
= 2fa,| (7.156)

The expression dP, /dS) has the interpretation of being the time-averaged power per unit
solid angle in the n’th mode.

It is now a straightforward matter, using (7.181), to obtain an expression for |a@,|? in
terms of the integral of the retarded electric field. The steps follow exactly in parallel
with those we described in section 7.7, except that the integral [°_ dt is now replaced by
7! fOT dt. The upshot is that the expression (7.156) for d?I/(dwdS) is replaced by??

(7 x &) e meolt=To(0) gy 2

dP, e2n2w4
o = ’ / , (7.187)

22The integer n labelling the modes is not to be confused with the unit vector 7, of course!
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where T' = 27 /wg. This gives the expression for the time-averaged power per unit solid
angle in the n’th Fourier mode.

Since we are assuming the observer (at 7) is far away from the particle, and since the
integral in (7.187) is taken over the finite time interval T = 27 /wy, it follows that to a good
approximation we can freely take the unit vector 7 outside the integral. Thus we may make

the replacement

T ) _ . T . -
/,fix(ﬁxiﬁé"mﬁ_"m“”dt—aiix(ﬁxt/ 6&"”“‘"”“”)dt (7.188)
0 0
Now, for any vector 17, we have that
Ax @Ax V) =a-V-VP?P=V2—(i V)2, (7.189)

H
=
c
)]
=
X
=
X
<!
S
|
=
X
<l

2, and so we can re-express (7.187) as

2

dPn 2,2, .4
=21 % , (7.191)

dQ  4rn2

T
‘/ 5 5 7 el o t—To (1) gy
0

where T' = 27 /wg and wq is the angular frequency of the periodic motion. Recall that
throughout this section, we are using ¢ to denote the retarded time, in order to avoid

writing the primes on ¢’ in all the formulae.

7.10 Cerenkov radiation

So far, all the situations we have considered have involved electromagnetic fields in a vac-
uum, i.e. in the absence of any dielectric or magnetically permeable media. In this section,
we shall take a brief foray into a situation where there is a dielectric medium.

It will be recalled that if a medium has permittivity € and permeability u, then electro-
magnetic waves in the medium will propagate with speed ¢ = 1/, /€. This means in general
that the “speed of light” in the medium will be less than the speed of light in vacuum. A
consequence of this is that a charged particle, such as an electron, can travel faster than
the local speed of light inside the medium. This leads to an interesting effect, known as
Cerenkov Radiation. In practice, the types of media of interest are those that are optically
transparent, such as glass or water, and these have magnetic permeability pu very nearly

equal to 1, while the electric permittivity € can be quite significantly greater than 1. Thus
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for the purposes of our discussion, we shall assume that ¢ = 1 and that the local speed of
light is reduced because € is significantly greater than 1.

We shall make use of the result (7.156) for the radiated power spectrum, in order to
study the Cerenkov radiation. First, we shall need to introduce the dielectric constant into
the formula. This can be done by a simple scaling argument. We shall also, just for the
purposes of this section, restore the explicit symbol ¢ for the speed of light. This can be
done by sending

w

t—ct, w— —. (7.192)
c

(Of course any other quantity that involves time will also need to be rescaled appropriately
too. This is just dimensional analysis.)

Having first restored the explicit appearance of the speed of light, we shall next make
further rescalings of the fields in order to introduce a non-unit dielectric constant e. Refer-
ring back to the discussion in section 2.1, it can be seen that this can be done by means of

the rescalings

B c
— —. 7.193
\/E 9 c— \/E ( )
Of course the scaling of the charge density p implies that we must also rescale the charge e

of the particle, according to

e — % (7.194)

Note that ¢ continues to mean the speed of light in vacuum. The speed of light inside the

dielectric medium is given by

= \% . (7.195)

The expression (7.156) for the radiated power per unit solid angle per unit frequency

interval now becomes

dzi(;l);)ﬁ) - eijicgﬁ ‘ /_O:O it x (il x §) et —Vero(t)/e) g/ 2 (7.196)
For a charge moving at constant velocity ¥/, we shall have
ro(t') = vt (7.197)
and so (7.196) gives
dzi(;l);)ﬁ) = ei;:jcgﬁ |7 x ¥ ‘ /_O:O elwt (1=Ver-v/e) g 2, (7.198)

since |71 x (77 x ¥)|? = (7 - )7 — 0]? = v — (7 - )% = | x ¥]>.
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The integration over ¢ produces a delta-function.?® Defining 6 to be the angle between

7 and ¥, so that 7 - ¥ = v cos 6, we therefore have

PI(w, ) wi/e o |
g = Vs 00wl = Ve(v/e)cos 0) 1%, (7.199)
and so (using d(ax) = §(z)/a))
El(w, i) _eVe o
o = v sin?018(1 — e (v/e)cos O)*. (7.200)

This expression shows that all the radiation is emitted at a single angle 6., known as the

Cerenkov Angle, given by
c

e

Note that in terms of ¢, the speed of light in the medium, as given in (7.195), we have

cos . = (7.201)

cosf, =

SN

(7.202)

This makes clear that the phenomenon of Cerenkov radiation occurs only if v > ¢, i.e. if
the charged particle is moving through the medium at a velocity that is greater than the
local velocity of light in the medium. In fact one can understand the Cerenkov radiation as
a kind of “shock wave,” very like the acoustic shock wave that occurs when an aircraft is
travelling faster than the speed of sound. The Cerenkov angle 6. is given by a very simple
geometric construction, shown in Figure 3 below. The circles show the light-fronts of light
emmitted by the particle. Since the particle is travelling faster than the speed of light in
the medium, it “outruns” the circles, leaving a trail of light-fronts tangent to the angled

line in the figure. This is the light-front of the Cerenkov radiation.

As mentioned above, the squared delta-function in (7.200) is the result of making the
unrealistic assumption that the particle has been ploughing through the medium for ever,
at a speed greater than the local speed of light. A more realistic situation would be to
consider a charged particle entering a thin slab of dielectric medium, such that it enters at

time ¢’ = —7T and exits at ¢’ = +7". The expression (7.198) is then replaced by

P(w,i) _ efw’ e 2| [T v a-verie gl
) — g =] 1w —\en-v/c dt/ 2
Lo = gz 1| /_Te ! (7:203)
which, using fTT dtel? = 2b~1 sin bT', therefore implies that
PI(w, i)  e*w?\/ev?T?sin’ 0 (sin[wT(l — e (v/e) cos 9)])2 (7.204)
dwdQ 23 WT'(1 — /e (v/c)cosh )

23The occurrence of the delta-function is because of the unphysical assumption that the particle has been
moving in the medium forever. Below, we shall obtain a more realistic expression by supposing that the

particle travels through a slab of mdeium of finite thickness.
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Cerenkov angle

Figure 3: The Cerenkov angle 6, is given by cos 6. = (¢t)/(vt) = ¢/v.

This is sharply peaked around the Cerenkov angle 6. given by (7.201).

Integrating over all angles we obtain the total energy per unit frequency interval

drl d*I 2e2w?%\ /€ v?T? sin? 0, /7r (sin[wT(l —e(v/c)cosB)]\2
0

dw ) dwd® da 3 WwT'(1 —\/e(v/c)cosb ) sinfdf.
(7.205)

(The integrand is peaked sharply around 6 = 6., so to a good approximation we can take
the sin? @ factor outside the integral, calling it sin?6,.) Letting x = cos#, the remaining
integral can be written as

/1 (sin[wT(l—\f(v/c de/ sin[wT'( 1—\/E(v/c):n)])2dx'
1V WwT(1—/e(v/e) WwT(1 —/e(v/c)x

(The limits of integration can, to a good approximation, be extended to +0co because the

(7.206)
integrand is peaked around x = cos..) Letting wT —wT\/ex/c = —y, the integral becomes

% sin?y e

c
dy —
wT\ﬁv/_oo y? Y wlvev’

(7.207)

148

Y



and so expression (7.205) for the total energy per unit frequency interval becomes

dI  2e%20wT sin? 4,
ZT o T o e 7.208
dw c? ( )

The distance through the slab is given by 2vT, and so dividing by this, we obtain an
expression for the total energy of Cerenkov radiation per unit frequency interval per unit

path length: , ) ) )
d°I  e‘w . 4 e‘w c
—dwdf_cTSln 66—6—2(1 )

This is known as the Frank-Tamm relation. Note that this expression grows linearly with

- (7.209)

w, which means that the bulk of the energy is concentrated in the higher frequencies of
electromagnetic radiation. Of course there must be some limit, which arises because the
dielectric constant will fall off with increasing frequency, and so the Cerenkov effect will cease
to operate at high enough frequencies.?* In practice, the peak of the frequency spectrum
for Cerenkov radiation is in the ultra-violet.

The bluish-green glow visible in pictures of nuclear fuel rods immersed in water is a
familiar example of Cerenkov radiation. Apart from looking nice, the Cerenkov effect is
also of practical use, for measuring the velocity of charged particles moving at relativistic
speeds. One can determine the velocity by allowing the particles to move through a slab of

suitably-chosen dielectric material, and measuring the Cerenkov angle.

7.11 Thompson scattering

Another application of the Larmor formula is in the phenomenon known as Thompson
scattering. Consider a plane electromagnetic wave incident on a particle of charge e and
mass m. The charge will oscillate back and forth in the electric field of the wave, and so
it will therefore emit electromagnetic radiation itself. The net effect is that the electron
“scatters” some of the incoming wave.

In most circumstances, we can assume that the induced oscillatory motion of the electron
will be non-relativistic. As we saw in (7.73), if © is the angle between the acceleration @

and the unit vector 77 (which lies along the line from the electron to the observation point),

24 At sufficiently high frequencies, which implies very small wavelengths, the approximation in which the
medium is viewed as a continuum with an effective dielectric constant breaks down, and it looks more and
more like empty space with isolated charges present. At such length scales the electron is more or less
propagating through a vacuum, and so there is no possibility of its exceeding the local speed of light. Thus

the Cerenkov effect tails off at sufficiently high frequencies.
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then the power radiated per unit solid angle is

P 2.2
j—Q = % sin2 @ . (7.210)

Let us suppose that the plane electromagnetic wave has electric field given by (the real
part of)
E = Eyeel (br-ut) (7.211)

and that the wave-vector k lies along the z axis. The unit polarisation vector €, which must

therefore lie in the (z,y) plane, may be parameterised as
€= (cos,sin,0). (7.212)
Using standard spherical polar coordinates, the unit vector 77 will be given by
7i = (sin @ cos @, sin  sin p, cos ) . (7.213)
In particular, this means
7i - € = sinf (cos ¢ cos ) + sin psin ) = sin @ cos(p — 1) . (7.214)
The acceleration of the electron will be given by
md = ek SO a= %Eo getw=t (7.215)

Note that this means

SL

-d = 3Eo i - et vt = 3Eo e“Dging cos(p — 1) . (7.216)
m m

Since 7 - @ = a cos O, it follows that (7.210) becomes

dP e2 oL
0= 5 (@), (7.217)
and so the time average will be given by
dP et .
<m> = g3 |Bo*[L = (- 7). (7.218)
Thus we find )
dP e ‘
<d_Q> = g |Bol* [1 —sin® 6 cos™(p — )]. (7.219)

The direction of the polarisation (in the (z,y) plane) of the incoming electromagnetic
wave is parameterised by the angle . For unpolarised incoming waves, we should average

over all angles 1. Thus we obtain

dP 1 2 dP et .
(@l = 3 )y (G) = g 1P (L= 35%0),
4
e
= Too? |Eo|? (1 + cos?6). (7.220)
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The scattering cross section do/dS) is then defined by

do  Energy radiated/unit time/unit solid angle (7.921)
dQ  Incident energy flux/unit area/unit time ’

The denominator here will just be |FEg|?/(87), which is the time average of the Poynting
flux for the incoming wave. Thus we arrive at the Thompson Formula for the cross section:

do  e*(1+ cos? )

g T (7.222)

The total scattering cross section is obtained by integrating do /d2 over all solid angles,

which gives

do ™ do
= —dQ =2 — i
o de 7T/0 70 sin 6df ,
= 7T—64/7Tsin?’9(:l9—7r—e4 1(1—|—cz)dc (7.223)
 om2 )  m2 ) ’ ’

and so we find

B 8met

3m?2 -’

(7.224)

8 Radiating Systems

8.1 Fields due to localised oscillating sources

A general time-dependent charge distribution p(7,¢) can be written via its Fourier transform
(7 w) as
1 o .
p(7t) = e /_Oo (7 w) e “dw . (8.1)
Since the Maxwell equations are linear, we may therefore study the electric and magnetic
fields due to a general time-dependent charge distribution by focussing first on a single
frequency w in the expansion (8.1), and then later we can superpose the contributions for
different frequencies.
The charge density, and likewise the current density, for the frequency w may therefore

be taken to be simply

-

p(7,t) = p(F e @t J(7t) = J(F@) e . (8.2)

From the expressions (7.21) and (7.22) for the retarded potentials, we shall have

AT -
¢(F,t) — /p("" 7t |T r |) d3F/,

=7

=/
= e | WAGORET P (83)

=7
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Note that here k is simply equal to w, and we have switched to the symbol k£ in the
exponential inside the integral because it looks more conventional. In a similar fashion, we
shall have ~

Aﬁn):e*Wf/ J”Qqakﬁ*’ffh (8.4)

|7
From these expressions for ¢ and ff, we can calculate E = —ﬁ(ﬁ — 8/?/875 and B =
VxA In fact, because of the simple monochromatic nature of the time dependence, we

can calculate E easily, once we know B , from the Maxwell equation

Vx B—r=dnl. (8.5)

Away from the localised source region we have J = 0. From the time dependence we have

OE /0t = —iwE = —ikE, and so we shall have

E=-VxB. (8.6)

7| -

Let us suppose that the region where the source charges and currents are non-zero is of
scale size d. The wavelength of the monochromatic waves that they generate will be given

by

2 2
_ T _ e 8.7
T (8.7)

We shall assume that d << A, i.e. the scale size of the source region is very small compared

A

with the wavelength of the electromagnetic waves that are produced. It will be convenient
to choose the origin of the coordinate system to lie within the neighbourhood of the source

region, so that we may therefore assume
7l << A (8.8)

for all integration points 7/ in the expressions (8.3) and (8.4). We also assume that the
observer is located at a position that is far away from the source, and so r >> 7/, and
r>>d.

The discussion of the electromagnetic fields generated by these sources can then be

divided, like all Gaul, into three parts:

Near zone, or Static zone : r<<A, ie kr<<l,
Intermediate zone, or Induction zone : r~A, ie. kr~1,
Far zone, or Radiation zone: r>> )\, ie. kr>>1. (8.9)

152



8.2 Multipole expansion

We start from the general integral expression

o kI
=7

a3 (8.10)

A = [ 7

giving A(7,t) = A(7) e ¢!, Let

Lok — (7 = f(r). (8.11)

r

(Note that f(7) = f(r), i.e. it depends only on the magnitude of 7.) It follows that

e =
elk\r—r |

= fF—7"), (8.12)

=7

which we can therefore express as the Taylor series

FE=7) = )~ 0 () + 00, 1) + -

217
1
= f(r) =20, f(r) + gwgm;aiajf(ﬂ +--,

= ()~ 2l0r) £1() + 3ata [0y () + @) @yr) 1))+ -+ (8.13)

Thus we find the multipole expansion
eik‘F_Fll 1 ikr 1 i1k = o\ ikr

The first term in (8.14) in fact describes electric dipole radiation, the second term

describes magnetic dipole and also electric quadrupole radiation, and so on. We shall give

a detailed discussion of these first two terms.

8.3 Electric dipole radiation

Taking just the first term in (8.14), and substituting it into (8.4), we find
. 1 . .
A7, 1) = = ¢l tbr—en) / T a3 (8.15)
r
To see why this corresponds to an electric dipole term, consider the identity

O Ji(7")) = 635 Ji(F') + &0l T (F') = J; (') + 2, V' - T (7). (8.16)

The integral of the left-hand side over all space gives zero, since it can be turned into a

boundary integral over the sphere at infinity (where the localised sources must vanish):
[ naar = [ s, =o. (8.17)
S

153



We also have the charge conservation equation

—/
7o+ 22000 (8.18)

=/
v ot

/—\l

and so with the time dependence e7'*! that we are assuming, this gives

— —

V' J(7) =iwp(F) =ik p(7'). (8.19)
Thus we conclude that
[T de =ik [ a5 (8.20)
and so
A7 t) = K i / 7 p(F) &7 (8.21)
r

The integrand here is just the electric dipole moment,

5= / 7 o(F!) (8.22)
and so we have
A7 t) = _IRD e (8.23)
r

Note that this leading-order term in the expansion of the radiation field corresponds to
an electric dipole, and not an electric monopole. The reason for this is that a monopole term
would require that the total electric charge in the source region should oscillate in time.
This would be impossible, because the total charge in this isolated system must remain
constant, by charge conservation.

It is convenient to factor out the time-dependence factor e~'“* that accompanies all the

expressions we shall be working with, and to write

— —

A7 t) = A(P) e @t B(7t) = B(F) e '“t, E(Ft) = E(F)e . (8.24)
Thus for the electric dipole field we shall have

A(F) = —# el (8.25)

Then from B(7) = V x A(F) we find
: 1 ikr
Bi = Eijk 8]'Ak = —1 k’EZ’jk pkaj (; € ) 5
_ : Ly s LGN\ ikr

and so
. eikr
B = k% (il x p)

(1 n l) . (8.27)

r kr
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From (8.6) we then have

i 9 1 i
E;, = 2 €ijk PmOj [Ekfmk xz(ﬁ + W)el T} ;
. 1 i 2xjry  ixjwe ., xjxg o1 i Lk
= ik (6:¢05m — SimOic) Dm [5]-@(72 + F) - S S ik (r_2 Wﬂe "
k2 — ikr ik = - ikr 1 = - ikr
= 7(171'—711'71'17)6 +r—2(p,~—3n-pni)e —T—g(pi—?m-pm)e . (8.28)
In 3-vector language, this gives
- I ethr I T U AN
E = —k2%i x (il x p) —I—[3(n-ﬁ)n—p](ﬁ—r—2)elkr. (8.29)

In the radiation zone, where kr >> 1, the terms that dominate in E and B are those
which have the lowest rate of fall-off at large r. Thus the radiation terms are

ikr ei kr

¢ Eraa = k7 x (7 x ) — . (8.30)

B}ad = k2 (7_7: X ﬁ)

r )
which indeed have the characteristic 1/r fall-off that is familiar for electromagnetic radiation.

Note also that as usual for an electromagnetic plane wave, we have

- grad - 07 - Erad - 07 Erad . grad - 07 (831)
and in fact Epaq = —7 X Bpaq, and ]Erad] = \érad\.
The fields in the static zone, kr << 1, are given by retaining instead only those terms

in (8.27) and (8.29) that are of lowest degree in k:

Buais =ik (A% D) 5 B = B 77— 7] . (332
The electric field here is precisely like that of a static electric dipole, except that it is
oscillating in time. Note that in the near zone we have |B| ~ (kr)|E|, which means
|B| << |E]|.

In the induction zone, on the other hand, where kr ~ 1, all terms in (8.27) and (8.29)
are of approximately equal magnitude.

Note that we have 7i- B = 0 everywhere, but that 7 - E=0 only in the radiation zone
(i.e. at order 1/r).

Returning now to the radiation zone, we may calculate the radiated power in the usual
way, using the Poynting vector. In particular, we saw previously that with the electric and
magnetic fields written in the complex notation, the time average of the Poynting flux is
given by X

<5’>:8—7TE><§*. (8.33)
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Then the power radiated into the solid angle d2 is given by

dP = (S)-@r2dQ,

1 Lo
= 8—[(—ﬁ><B) x B*]-irdQ,
T
1 =
= & |B]? r?dS). (8.34)
T
From (??) we therefore have
aP kY, kY
E—S—WWXM _8_77([“5] = (-p)7]. (8.35)

If we take 0 to be the angle between p and 77, so that 77 - p’= pcos @, then this gives

dP kK* ., .
0" 5 17>sin? 6. (8.36)

Since df2 = sin 8dfdyp, the total power radiated by the oscillating dipole is then given by

j / AP 10— on K 152 /n sin® 09 — L1 |52 . (8.37)
dQ) 8 0 3

As a concrete example, consider a dipole antenna comprising two thin conducting rods
running along the z axis, meeting (but not touching) at the origin, and extending to z = :l:%d
respectively. The antenna is driven at the centre (z = 0) by an alternating current source
with angular frequency w. The current will fall off as a function of z, becoming zero at
the tips of the antenna at z = :l:%d. A reasonable approximation, in the regime we are

considering here where kd << 1, is that this fall-off is linear in z. Thus we may assume

—iwt 2‘2’ —iwt
I(z,1) = I(z)e " = I (1 - 7) et (8.38)

The equation of charge conservation, V-J+ dp/0t = 0 then allows us to solve for the
charge density. The current (8.38) is essentially confined to the line x = y = 0, since we are

assuming the conducting rods that form the antenna are thin. Thus really, we have

—

J(7t) = I(z,t)0(z)o(y) - (8.39)
Similarly, the charge density will be given by

p(7,t) = Az, t) 6(x)d(y) , (8.40)

where \(z,t) is the charge per unit length in the rods. The charge conservation equation

therefore becomes
0I(z,t) n OA(z,1)
0z ot

=0, (8.41)
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and so, in view of the time dependence, which implies also A(z,t) = A(z)e™'“!, we have

a‘gj) —iwA(z) =0. (8.42)
Thus we shall have . .
A(z) = —i ag(;) - —i Iy % (1- %) : (8.43)
This implies
ANz) = % , z2>0,
Az) = —%, 2 <0. (8.44)

The dipole moment p'is directed along the z axis, p'= (0,0, p), and is given by

d/2 201y [4/2 211y (0 ilod
= N 2)dz = —— zdz — —— zdz = — . 8.45
p —d/2 (2) wd Jo wd J-q/2 2w ( )

From (8.36), we therefore find that the power per unit solid angle is given by

dP  KYpi* . , IB(kd)? . ,
— = 2 7 4
q Rr Sn 0 39 sin” 0, (8.46)

where 6 is the angle between 77 = 7/r and the z axis. The total radiated power is therefore
given by
P =515 (kd)?. (8.47)

8.4 Magnetic dipole and electric quadrupole

The second term in the multipole expansion (8.14) gives contributions from a magnetic

dipole and an electric quadrupole. Substituting it into (8.4) gives

- ; 1 ik -
Ay =etbr (5 — = /*-*’J*’ 37 8.48
(7 = (5= =7) [ @@ T dr (8.48)
In order to interpret this expression, we need to manipulate the integrand a bit. Its ¢'th

component is given by

= S€ijk €omk Joxpnj + %(JZ:E; + Jjxi)n;
= €k ank + %(Jﬂ?; + J]a:;)nj N (849)
where
M; = Legraide, e M = 17" x J(7) (8.50)



is the magnetisation resulting from the current density J.
The remaining term in (8.49), i.e. the symmetric term %(sz; +Jjx})n;, can be analysed

as follows. Consider
Op(@iaingJy) = OdpxingJy + djpaingJy + xixino i,
= (ziJj + 2} Ji)ng +iziainwp. (8.51)

Integrating this over all space, the left-hand side can be turned into a surface integral over

the sphere at infinity, which therefore gives zero. Thus we conclude that
/(:E;-Jj + x;Ji)njd?’F' = —iw/x;x;njpdgf'. (8.52)
The upshot is that
/ (7t - 7') J(7) d3F = i x / M7 — % / #i 7 p) BF . (8.53)
Defining the magnetic dipole moment 7 by
7 — / M7 =L / 7 J(7 & (8.54)
we conclude that
ik 1 ik ...k 1
LYy g (1

1 _ ikr (2N & - - S (o =) S\ 3=/
A(f)=e (r 3 m + 5 € . 7’2) /T (7 -7") p(F") d°F" . (8.55)

8.4.1 Magnetic dipole term

Consider the magnetic dipole term in (8.55) first:

i = (kLo
A(F)=e ( . r2) X m. (8.56)
Let
— _ikr 1k 1
f=e (ﬁ - T—g) , (8.57)

SO E:rfﬁx m = fr x m. Then from B = V x A we shall have
Bi = EijkajAk = €ijk €kbm 8j(fx€)mm ’
T
= €jk €klm (f/xzf + fdje),
oy
= (5ig5jm - 5im5j6)(f/$67] + f(sjé) )
= Tf/niﬁ . 777, — rf'mi — 2fml . (858)

From (8.57) we have

3 3k k2 K
! ) =—= et —3f, (8.59)



and so we find

ikr :
e 1 ik :
— )elk‘T"

B = —k%i x (i x m) +Bnm4@—ﬁﬂ63—ﬁ- (8.60)

T

Note that this is identical to the expression (8.29) for the electric field of an electric dipole
source, with the electric dipole p’ replaced by the magnetic dipole, and the electric field
replaced by the magnetic field:

p—m, E— B. (8.61)

The electric field of the magnetic dipole can be obtained from (8.6). However, a simpler

way to find it here is to note that from the Maxwell equation V x E = —9B /Ot we have

VxE=iwB=ikB, (8.62)
and so
é:—%ﬁxﬁ. (8.63)

Now, we already saw from the calculations for the electric dipole that when the B field
(8.27) is substituted into (8.6), it gives rise to the E field given in (8.29). As we just noted,
in the present magnetic dipole case, the expression for the B field is just like the expression
for the E field in the electric dipole case, and we already know that in the electric case, the
B field is given by (8.27). Therefore, we can conclude that in the present magnetic case,
the E field that would yield, using (8.63), the result (8.60) for the B field will be just the
negative of the expression for B in the electric case (with 7 replaced by 173). (The reason for
the minus sign is that (8.63) has a minus sign, as compared with (8.6), under the exchange
of E and E) Thus the upshot is that the electric field for the magnetic dipole radiation

will be given by
ikr :
i

(1+Eﬂ‘ (8.64)
This result can alternatively be verified (after a rather involved calculation) by directlty

substituting (8.60) into (8.6).2°

E = —k*(it x )

Z5The only “gap” in the simple argument we just presented is that any other vector E'=E + Vh would
also give the same B field when plugged into (8.63), where h was an arbitrary function. However, we know
that V- E should vanish (we are in a region away from sources), and it is obvious almost by inspection that
the answer given in (8.64) satisfies this condition. Thus if we had arrived at the wrong answer for E, it could
be wrong only by a term Vh where V2h = 0. There is no such function with an exponential factor e*",
and so there is no possibility of our answer (8.64) being wrong. If any doubts remain, the reader is invited

to substitute (8.60) into (8.6) to verify (8.64) directly.
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An observation from the calculations of the electric and magnetic fields for electric dipole
radiation and magnetic dipole radiation is that there is a discrete symmetry under which

the two situations interchange:

po—
P — B (8.65)
P — _F

This is an example of what is known as “electric/magnetic duality” in Maxwell’s equations.

8.4.2 Electric quadrupole term

We now return to the electric quadrupole term in (8.55), namely
ik 1

A _lk ikr
A =5 (5 -

) / 7 (7 - 7) () P (8.66)
For simplicity, we shall keep only the leading-order radiation term in this expression,
Ay = =S [ ) o) d (8:67)

and furthermore when calculating the B and E fields, we shall keep only the leading-order

1/r terms that come from the derivatives hitting ¢'*". Thus, from B = V x A we shall have

—

ikr
B o=~ (ik)ix = /F’(ﬁ-?’)p(?’)dgf’,

ik3 eikr e 3
= 5 /(nxr)(n-r)p(r)dr. (8.68)

This radiation field can therefore be written simply as
B=ikiix A. (8.69)

In fact, in any expression where we keep only the leading-order term in which the derivative

lands on €'#", we shall have the rule

V —ikii. (8.70)

For the electric field, we have, using (8.6) and (8.70),

Ezlﬁxgz—ﬁxéz—ikﬁx(ﬁx ). (8.71)

|

The electric quadrupole moment tensor @);; is defined by
Qij = /(33321'] - 7252’]’) p(F) dgf (872)
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Define the vector Q(i), whose components Q(); are given by

Consider the expression %ﬁ x Q(7). We shall have

1A x Q) = Leijrn;Quene,
= Zeijpnne /(333k517é — 1%630) p(7) d°F,

- /(ﬁ x 7); (7t - 7) p(7) d5F, (8.74)

(since the trace term gives zero). This implies that the expression (8.68) for the electric-

quadrupole B field can be written as

LS R i x Q(7) (8.75)
6r ' '

B

Since we have E = B x ii (see (8.71)), it follows that the time-averaged power per unit

solid angle will be given by

% = %(Exé*) ir?,
kS = kS S ~
= e X Q) x P = oo (@GP -1 GEP),  (8.76)
and so ]
% = 2§8W 7 x Q(i)|? . (8.77)
Written using indices, this is therefore
% = % (QriQrming — Qi Qreningninyg) . (8.78)

As always, having obtained an expression for the power radiated per unit solid angle, it
is natural to integrate this up over the sphere, in order to obtain the total radiated power.

In this case, we shall need to evaluate
/nmj s, and /nmjnkng ds). (8.79)

One way to do this is to parameterise the unit vector 77 in terms of spherical polar angles
(0, ) in the usual way,
7 = (sin @ cos ¢, sin @ sin ¢, cos §) , (8.80)

and slog out the integrals with d2 = sin 8dfdp.
A more elegant way to evaluate the integrals in (8.79) is as follows. For the first integral,

we note that the answer, whatever it is, must be a symmetric 2-index tensor. It must also
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be completely isotropic, since by the time we have integrated over all solid angles it is
not possible for the result to be “biased” so that it favours any direction in space over any
other. There is only one possibility for the symmetric isotropic tensor; it must be a constant

multiple of the Kronecker delta,

/nmj d$) = cdyj . (8.81)
The constant ¢ can be determined by taking the trace, and using n;n; = 1:

drr = / dQ = 3c, (8.82)

and so we have

4

In case one doubted this result, it is not too hard in this case to confirm the result by
evaluating all the integrals explicitly using (8.80).

Turning now to the secon integral in (8.79), we can use a similar argument. The answer
must be a 4-index totally symmetric isotropic tensor. In fact the only symmetric isotropic
tensors are those that can be made by taking products of Kronecker deltas, and so in this

case it must be that
/nmjnkw dSY = b (6i0ke + 0ikdje + 0iedjk) (8.84)

for some constant b. We can determine the constant by multiplying both sides by d;;0x¢,
giving

47r:/dQ:(9—|—3+3)b:15b, (8.85)
and so

4
/nmjnkw Q) = % (04j0ke + Oirbje + 030bjk) - (8.86)

With these results we shall have from (8.78) that

dpP kS . .
P = d_Q dQ = % [leQkQ /nmj dQ — Qiijg/’l’Li’l’LjTLkTLg dQ} s
kS r4m N a7 .
= Sg8n [?Qki@kj‘gij 15 QijQre(0ij0ne + dindje + 51’45]'16)} ;
k6 * 2 * 1 *
= % |:QZ]Q1] - gQijQij - gQiin]} 5
]{76
= 360 Qij ;‘kj : (8.87)

(Recall that @;; is symmetric and traceless.)
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Since the quadrupole moment tensor ;; is symmetric, it is always possible to choose
an orientation for the Cartesian coordinate system such that Q);; becomes diagonal. (This
is because the matrix U that diagonalises @, Q) — Qgiag = U TQU is itself orthogonal,
UTU = 1, and therefore the diagonalisation is achieved by an orthogonal transformation of
the coordinates.) Thus, having chosen an appropriate orientation for the Cartesian axes,

we can assume that

Q1 0 0
Qij=10 Q2 0 [, where Q1+ Q2+Q3=0. (8.88)
0 0 @3

The expression (8.78) for the angular power distribution will give

dP kS
5 = gaa- (Qind +@3n3 + @3 — (Qunt + Qand + Qun)’) . (8.89)
One can substitute (8.80) into this in order to obtain an explicit expression for the dP/dQ
in terms of spherical polar angles (6, ¢).

Consider for simplicity the special case where ()1 = ()2. This means that there is an

axial symmetry around the z axis, and also we shall have

Q1=Q2=-3Q3. (8.90)

Substituting (8.80) and (8.90) into (8.89), we obtain

P k5 Q3

oy a9, KOQE
0 = Tog, Sn 0 cos“ 6 = g, SR 20. (8.91)
This is indeed, as expected, azimuthally symmetric (it does not depend on ¢). It describes a
quadrafoil-like power distribution, with four lobes, unlike the figure-of-eight power distribu-
tion of the electric dipole radiation. Note also that its frequency dependence is proportional

to wb (= k%), unlike the electric dipole radiation that is proportional to w*. A plot of the

power distribution for quadrupole radiation is given in Figure 3 below.

8.5 Linear antenna

In the later part of section 8.3, we considered a centre-fed dipole antenna. In that section
we made the assumption that the wavelength of the electromagnetic radiation was very
large compared with the length of the dipole, i.e. that kd << 1. In that limit, one could

assume to a good approximation that the current in each arm of the dipole antenna fell off
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Figure 4: The angular power distribution for electric quadrupole radiation

in a linear fashion as a function of z (the axis along which the dipole is located). Thus,

with the dipole arms extanding over the intervals
—ld<z<o0 and 0<z<1lda (8 2)
2 0, 9

we assumed there that the current in each arm was proportional to (d/2 — |z]).
In this section, we shall consider the case where the dipole arms of not assumed to be
short campared to the wavelength. Under these circumstances, it can be shown that the

current distribution in the dipole arms takes the form
J(7t) = Iy sink(d/2 — |z]) e 3(x)0(y) Z,  |2| < 3d, (8.93)

where Z = (0,0,1) is the unit vector along the z-axis, which is the axis along which the

dipole is located.

We then have A(7,t) = A(7) e~ where

- J(7' t — |F — F|) d>F
A(F) =/ ( ,F|_ 7 Il (8.94)

Thus in the radiation zone, with |F— 7’| ~ r — 7l - ¥/ as usual, we therefore have

ikr
i ~ 7%

d/2 : _ —ikzcosf
sink(d/2 — |z]) e dz,
—d/2

r
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7 21y e'*7 cos(3kd cos 0) — cos(3kd)
r sin? 4

(8.95)

As we saw earlier, the magnetic field is given by ik 7 x A in the radiation zone, and

E = —ii x B. Therefore the radiated power per unit solid angle is given by
P r? - o r2 5 5 r? 5
— = —|ExB*?=—|(B-B"ii|* = —|BJ*. 8.96
e = |Ex B = (B Byl = | (396)

Here we have

B> = |ikii x A|* = K*(|A]> — (7 - A)%) = k*|A]*sin? 0, (8.97)
since i - Z = cos #, and so the radiated power per unit solid angle is given by
dp I§ {cos(%kdcos ) — cos(%kd)r
aQ 2w '

We can now consider various special cases:

sin 0 (8.98)
8.5.1 kd<<1:

In this case, we can make Taylor expansions of the trigonometric functions in the numerator

in (8.98), leading to

P I_g[1—%(%k‘d)200820—1—%(%kd)2}2
aQ = or sin 6 ’
B (%(%kd)Q sin29)2
Y sin 6 ’
I3 (kd)? sin*0
— W . (8-99)

This agrees with the result (8.46), after making allowance for the fact that the current in

the calculation leading to (8.46) was twice as large as the current in the present calculation.

8.5.2 kd=m:

In this case, each arm of the dipole has a length equal to % of the wavelength, and so
I(z) = Ip sin i7(1 — 2|2|/d). In this case, (8.98) becomes
dP I} cos®(3mcosf)

- Nl
dQ} 27 sin? 6 (8.100)

8.5.3 kd =2m:

In this case, each dipole arm has a length equal to + of the wavelength, and I () =

2
Iy sin(1 — 2|z|/d). In this case (8.98) becomes
dpP  I§ cos?(§mcos )

- .101
dQ} 27 sin26 (8.101)
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9 Electromagnetism and Quantum Mechanics

9.1 The Schrodinger equation and gauge transformations

We saw at the end of chapter 2, in equation (2.102), that in the non-relativistic limit the
Hamiltonian describing a particle of mass m and charge e in the presence of electromagnetic

fields given by potentials ¢ and A s

— 1 FRp—— . 2
H = % (m; —eAi)” +eg, (9.1)

where 7; is the canonical 3-momentum. In quantum mechanics, we the standard prescription
for writing down the Schrédinger equation for the wavefunction 1 describing the particle is

to interpret m; as an operator, and to write

oY

H ih— .2
p=ins. 92)
In the position representation we shall have

T =—ihd;, or ®=—-ihV. (9.3)

Thus the Schrédinger equation for a particle of mass m and charge e in an electromagnetic

field is
% o
- 2m ot

The Schrodinger equation (9.4) is written in terms of the scalar and vector potentials

(6——,4) b+eptp =ih— (9.4)

¢ and A that describe the electromagnetic field. Thus, if we merely perform a gauge
transformation

A X =At9y,  6—d=0-2 (9.5)

then the Schrédinger equation will change its form. On the other hand, we expect that
the physics should be unaltered by a mere gauge transformation, since this leaves the
physically-observable electric and magnetic fields unchanged. It turns out that we should
simultaneously perform the very specific spacetime-dependent phase transformation on the

wavefunction 1,
W — ) =My (9.6)

Then the Schrodinger equation expressed entirely in terms of the primed quantities (i.e.
wavefunction v/’ and electromagnetic potentials ¢’ and A’ ) will take the identical form to
the original unprimed equation (9.4). Thus, we may say that the Schrodinger equation

transforms covariantly under gauge transformations.
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To see the details of how this works, it is useful first to define what are called covariant
derivatives. We this both for the three spatial derivatives, and also for the time derivative.
Thus we define

ie 8

Note that the original Schrédinger equation (9.4) is now written simply as

h2
~5— DiDitp —ih Doy = 0. (9.8)

Next, perform the transformations

—

— Z/:g+§A, ¢—>¢/:¢—%7

b — P =My (9.9)

The crucial point about this is that we have the following:
ie ie ie :
Dy’ = (ai - A;) Y = (@' s (@')\)) (elex/h w) ;
N0 = 2 A= 5 (0N + 5 ()
eiE)‘/h (82 - % Az) 1/1, (910)

and

Dy = (i m (2461000 (gemy),

_ e ie 8/\ ie OA
‘ (875 7o T E )
; 0
_  Jiex)p (Y | *°©
= e (at + 5 ¢)qp. (9.11)
In other words, we have
D;w/ — eie)\/h Dzujy DE)Q/}/ — eie)\/h Dow ) (912)

This means that D;v» and Dy transform the same way as 1 itself under the gauge

ieA/h - This is a non-

transformations (9.9), namely just by acquiring the phase factor e
trivial statement, since the gauge parameter A is an arbitrary function of space and time.
Had we been considering standard partial derivatives 0; and 0/0t rather than the covariant
deriavtives defined in (9.7), it would most certainly not have been true. For example,

ie ie ie ie
Ay = ( A/h¢) — e ’\/582-1,&—1—6 AR 1€

(00 ¥ # NG (9.13)
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precisely because the derivative can land on the space-time dependent gauge-transformation
parameter A and thus give the second term, which spoils the covariance of the transforma-
tion. The point about the covariant derivatives is that the contributions from the gauge
transformation of the gauge potentials precisely cancels the “unwanted” second term in
(9.13).

By iterating the calculation, it also follows that D/D/’ = ¢'®*" D;D;s, and so we see

that the Schrodinger equation (9.8) written in terms of the primed fields, i.e.
h2
/ ! ! . !l

just implies the Schrédinger equation in terms of unprimed fields, since

h2
0 = —— DD/ —ih Dy,
2m
. 72
e/ (1 T)nly 3
e ( 5 DiDit 1hD01,b). (9.15)

What we have proved above is that the Schrédinger equation transforms covariantly
under electromagnetic gauge transformations, provided that at the same time the wave
function is scaled by a space-time dependent phase factor, as in (9.9). Note that we use the
term “covariant transformation” here in the same sense as we used it earlier in the course
when discussing the behaviour of the Maxwell equations under Lorentz transformations.
The actual transformation is totally different in the two contexts; here we are discussing
the behaviour of the Schrédinger equation under gauge transformations rather than Lorentz
transformations, but in each case the essential point, which is characteristic of a covariance
of any equation under a symmetry transformation, is that the equation expressed in terms
of the symmetry-transformed (primed) variables is identical in form to the original equation
for the unprimed variables, but with a prime placed on every field.

Note that the two definitions of the spatial and time covariant derivatives in (9.7) can
be unified into the single 4-dimensional definition
ie
n
since we have A* = (¢, ff), and hence A, = (—¢, fT)

D, =08, —A, (9.16)

The Schrodinger equation itself provides only an approximate description of the quantum
theory of matter. This is obvious from the fact that it is obtained by starting from a
non-relativistic classical Hamiltonian, and then applying the quantisation procedure. And
indeed, clearly the Schrodinger equation (9.8) does not transform covariantly under Lorentz

transformations. (The fact that time is treated on a completely different footing from space
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makes this obvious.) The non-relativistic Schrodinger equation is therefore inconsistent
with causality (essentially, the notion that nothing can travel faster than light). At the
very least, one should therefore be taking a relativistic classical theory as the the starting
point for applying the quantisation procedure. It turns out that this is not sufficient. If
one constructs a relativistic generalisation of the Schrédinger equation, one then encounters
difficulties in giving a probabilistic interpretation of the wave function, related to the fact
that the probability density current is not positive definite. The resolution of this problem
requires a further process of quantisation, known as second quantisation, in which the wave-
function itself becomes an operator that creates and annihilates particles. Theories of this
type are known as quantum field theories, and they lie at the heart of all the fundamental
theories of matter and forces.

An example is quantum electrodynamics, which is a quantum field theory describing
electromagnetism together with electrons (and necessarily positrons, which are the antipar-
ticles of electrons). In this theory the 4-vector gauge potential A, becomes a quantum field,
which creates and annihilates photons, and the electron is described by a quantum field that
satisfies a relativistic equation known as the Dirac equation. It is one of the most spec-
tacularly successful theories known, leading to predictions that have been experimentally

verified to quite remarkable accuracy.
9.2 Magnetic monopoles
The Maxwell equations
O, F" = —AnJ”,
OuFyp+0uFp+0pF,, = 0 (9.17)

take on a more symmetrical-looking form if we introduce the dual of the field-strength
tensor, defined by
ﬁuu = %Euupa Fre, (918)

In terms of F v, the second equation in (9.17) (i.e. the Bianchi identity) becomes
O F" = 0. (9.19)
From Fy; = —FE; and Fj; = € By, it is easy to see that

ﬁbi = Bz N —Fz’j = Eijk Ek . (920)
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It follows that ﬁ,w is obtained from F},, by making the replacements
E—-B, B-—E. (9.21)

The symmetry between the two Maxwell equations would become even more striking
if there were a current on the right-hand side of (9.19), analogous to the electric 4-current
density on the right-hand-side of the first Maxwell equation in (9.17). Since the roles of E
and B are exchanged when passing from £}, to F v it is evident that the 4-current needed
on the right-hand side of (9.19) must be a magnetic 4-current density, J§,. Let us now
attach a subscript E to the standard electric 4-current density, in order to emphasise which

is which in the following. The generalised Maxwell equations will now be written as
O FM = —4m J%, 9, FM = —4An JY, . (9.22)

Particles with magnetic charge, known as magnetic monopoles, have never been seen in
nature. However, there seems to be no reason in principle why they should not exist, and
it is of interest to explore their properties in a little more detail. A point electric charge e
has an electric field given by

E=

= (9.23)

r

Thus by analogy, a point magnetic monopole, with magnetic charge g, will have a magnetic

field given by

o]
Il

qgr
T (9.24)

This satisfies
V-B=dnpy, pu=g6(f), (9.25)

where pyr = J](\)/[ is the magnetic charge density.

We shall be interested in studying the quantum mechanics of electrically-charged parti-
cles in the background of a magnetic monopole. Since the Schrédinger equation is written
in terms of the potentials ¢ and /_f, we shall therefore need to write down the 3-vector
potential A for the magnetic monopole. To do this, we introduce Cartesian coordinates

(z,y, z), related to spherical polar coordinates (r,6, ) in the standard way,
x=rsinf cosp, y=rsinfsinp, x=rcosb, (9.26)

and we also define

p? =492, (9.27)
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Consider the 3-vector potential

1—o(2Y _2%
A=y (rp2’ e 0) . (9.28)
Using
o _ oz Or_yo Oz
or  r’ oy r’ 0z r’
9 _z  Op_y I _, (9.29)
ox p’ oy p’ 0z ’ ’
it is easily seen that
2
— _ — AN _ 9t 9rE g9t
By =0yA: = 0.4y =90~ 5) = 15 = 55 = 5 (9:30)

and similarly

B, =% B, =2, (9.31)

Thus indeed we find that
VxA=2 (9.32)

and so the 3-vector potential (9.28) describes the magnetic monopole field (9.24).
In terms of spherical polar coordinates we have p? = 22 + y? = r2sin’ 6, and so (9.28)
can be written as

i_ gcotf

(sin ¢, —cos ¢, 0) . (9.33)

Not surprisingly, this potential is singular at » = 0, since we are describing an idealised
point magnetic charge. In exactly the same way, the potential ¢ = e/r describing a point
electric charge diverges at r = 0 also. However, the potential (9.33) also diverges everywhere
along the z axis, i.e. at # = 0 and # = 7. It turns out that these latter singularities are
“unphysical,” in the sense that they can be removed by making gauge transformations.
This is not too surprising, when we note that the magnetic field itself, given by (9.24) has
no singularity along the z axis. It is, of course, genuinely divergent at » = 0, so that is a
real physical singularity.

To see the unphysical nature of the singularities in (9.33) along # = 0 and 6 = 7, we

need to make gauge transformations, under which
A— A+ V. (9.34)

Consider first taking
A=gp=g arctan% : (9.35)
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From this, we find

VA= —g cosech (sin p, — cos ¢, 0) . (9.36)
Letting the gauge-transformed potential be A’, we therefore find

gcos@—l g

A= A4+Vr= (sin g, — cos p,0) = - tan 26 (sin ¢, — cos ¢, 0) . (9.37)

r sinf

It can be seen that A is completely non-singular along 6 = 0 (i.e. along the positive z axis).
It is, however, singular along § = 7 (i.e. along the negative z axis).

We could, on the other hand, perform a gauge transformation with A given by
_ _ Y
A= —gp = —g arctan . (9.38)

instead of (9.35). Defining the gauge-transformed potential as A" in this case, we find

A = g cot %9 (sin, — cos p,0) . (9.39)

This time, we have obtained a gauge potential that is non-singular along 6§ = 7 (i.e. the
negative z axis), but it is singular along 6 = 0 (the positive z axis).

There is no single choice of gauge in which the 3-vector potential for the magnetic
monopole is completely free of singularities away from the origin » = 0. We have obtained
two expressions for the vector potential, one of which, A’ , is non-singular along the positive
z axis, and the other, A" , is non-singular along the negative z axis. The singularity that
each has is known as a “string singularity,” since it lies along a line, or string. By making
gauge transformations the location of the string can be moved around, but it can never be
removed altogether.

In the discussion above, the z axis appears to have played a preferred role, but this is, of
course, just an artefact of our gauge choices. We could equally well have chosen a different
expression for /_f, related by a gauge transformation, for which the string singularity ran

along any desired line, or curve, emanating from the origin.

9.3 Dirac quantisation condition

We have seen that gauge potentials for the magnetic monopole, free of singularities on the

positive and negative z axes resepctively, are given by
A = —g tan 26 (sin ¢, — cos ¢, 0)

A" = g cot 20 (sin ¢, — cos ¢, 0) . (9.40)
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The two are themselves related by a gauge transformation, namely

A" = A"+ V(-299). (9.41)

Now let us consider the quantum mechanics of an electron in the background of the
magnetic monopole. As we discussed in section 9.1, the Schrédinger equation for the electron
is given by (9.4), where e is its charge, and m is its mass. We shall consider the Schrédinger
equation in two different gauges, related as in (9.41). Denoting the corresponding electron

wave-functions by 9" and ¢, we see from (9.9) (9.41) that we shall have
w// _ e—2i egp/h w/ ) (942)

However, we have seen that the gauge transformation is not physical, but merely corresponds
to shifting the string singularity of the magnetic monopole from the negative z axis to the
positive z axis. Quantum mechanically, the physics will only be unchanged if the electron
wave-function remains single valued under a complete 27 rotation around the z axis. This
means that the phase factor in the relation (9.42) must be equal to unity, and so it must
be that

2
% o =21, (9.43)

where n is an integer. Thus it must be that the product of the electric charge e on the
electron, and the magnetic charge g on the magnetic monopole, must satisfy the so-called
Dirac quantisation condition,

2eg=nh. (9.44)

It is interesting to note that although a magnetic monopole has never been observed, it
would only take the existence of a single monopole, maybe somewhere in another galaxy,

to imply that electric charges everywhere in the universe must quantised in units of

h

2 (9.45)
where ¢ is the magnetic charge of the lonely magnetic monopole. In fact all observed
electric charges are indeed quantised; in integer multiples of the charge e on the electron,
in everyday life, and in units of %e in the quarks of the theory of strong interactions. It is

tempting to speculate that the reason for this may be the existence of a magnetic monopole

somewhere out in the vastness of space, in a galaxy far far away.
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10 Local Gauge Invariance and Yang-Mills Theory

10.1 Relativistic quantum mechanics

We saw in the previous section that the ordinary non-relativistic quantum mechanics of
a charged particle in an electromagnetic field has the feature that it is covariant under
electromagnetic gauge transformations, provided that the usual gauge trnasformation of
the 4-vector potential is combined with a phase transformation of the wavefunction for the
charged particle:

Ay — A+ 9N, W — Ny, (10.1)

The essential point here is that the gauge transformation parameter A can be an arbitrary
function of the spacetime coordinates, and so the phase transformation of the wavefunction
is a spacetime-dependent one. Such spacetime-dependent transformations are known as
local transformations.

One could turn this around, and view the introduction of the electromagnetic field as the
necessary addition to quantum mechanics in order to allow the theory to be covariant under
local phase transformations of the wavefunction. If we started with quantum mechanics in
the absence of electromagnetism, so that for a free particle of mass m we have

9
ot’

2
Gy _in

o (10.2)

then the Schrodinger equation is obviously covariant under constant phase transformations

of the wavefunction,

P — e, (10.3)

where c is an arbitrary constant. And, indeed, the physics described by the wavefunction
is invariant under this phase transformation, since all physical quantities are constructed
using a product of ¢ and its complex conjugate v (for example, the probability density
|4|?), for which the phase factors cancel out. Also, clearly, the Schrédinger equation (10.2)
does not transform nicely under local phase transformations, since the derivatives will now
land on the (spacetime dependent) phase factor in (10.3) and give a lot of messy terms.
As we now know, the way to achieve a nice covariant transformation of the Schrédinger
equation under local phase transformations is to replace the partial derivatives 0; and 0y in
(10.2) by covariant derivatives
ie

Di =0~ = A, Dozao—i—%(b (10.4)
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where A; and ¢ transform in the standard way for the electromagnetic gauge potentials
at the same time as the local phase transformation for ¢ is performed, as in (10.1). From
this point of view, it could be said that we have derived electromagnetism as the field
needed in order to allow the Schrédinger equation to transform covariantly under local
phase transformations of the wavefunction.

The idea now is to extend this idea to more general situations. By again demanding
local “phase” transformations of some quantum-mechanical equation, we will now be able
to derive a generalisation of electromagnetism known as Yang-Mills theory.

Working with a non-relativistic equation like the Schrédinger equation is rather clumsy,
because of the way in which space and time arise on such different footings. It is more
elegant (and simpler) to switch at this point to the consideration of relativistic quantum
mechanical equation. There are various possible equations one could consider, but they
all lead to equivalent conclusions about the generalisation of electromagnetism. Examples
one could consider include the Dirac equation, which provides a relativistic description of
the electron, or any other fermionic particle with spin % A simpler opetion is to consider
the Klein-Gordon equation for a relativistic particle of spin 0 (otherwise known as a scalar
field). The Klein-Gordon equation for a free scalar field ¢ with mass m is very simple,
namely

Oy —m?p =0, (10.5)

where [1 = 00, is the usual d’Alembertian operator, which, as we know, is Lorentz
invariant.? Note that from now on, we shall use units where Planck’s constant % is set
equal to 1.

In what follows, we shall make the simplifying assumption that the scalar field is mass-

less, and so its Klein-Gordon equation is simly
Llp =0. (10.6)

We shall do this because no essential feature that we wish to explore will be lost, and it

will slightly shorten the equations. It is completely straightforward to add it back in if

#6The non-relativistic Schrodinger equation can be derived from the Klein-Gordon equation (10.5) in an
appropriate limit. The leading-order time dependence of a field with mass (i.e. energy) m will be e~imt
(in units where we set i = 1). Thus the appropriate non-relativistic approximation is where where the

wavefunction ¢ is assumed to be of the form ¢ ~ e '™

1, with v only slowly varying in time, which
means that the term 821/)/8:‘,2 can be neglected in comparison to the others. Substituting into (10.5) and
dropping the 8%¢)/0t? term gives precisely the Schrédinger equation for the free massive particle, namely

—(1/2m)V>y = i 0 /0t.
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desired.?”

The Klein-Gordon equation (10.6) can be derived from the Lagrangian density
L=-10"00,0. (10.7)
Varying the action I = [ d*zL, we find

oI = —/d4x8“<,08u5<,0 = /d4:17 (00" ) b, (10.8)

(dropping the boundary term at infinity as usual), and so demanding that the action be
stationary under arbitrary variations dp implies the Klein-Gordon equation (10.6).

Before moving on to the generalisation to Yang-Mills theory, we shall first review, again,
the derivation of electromagnetism as the field needed in order to turn a global phase
invariance into a local invariance, this time from the viewpoint of the relativistic Klein-
Gordon equation. To do this, we first need to enlarge the system of wavefunctions from one
real scalar to two. Suppose, then, we have two real scalars called ¢ and 9, each satisfying
a Klein-Gordon equation. These equations can therefore be derived from the Lagrangian
density

L= —%8“@1 Oup1 — %8“@2 Oppa . (10.9)

We can conveniently combine the two real fields into a complex scalar field ¢, defined by
b= — (o1 +ig) (10.10)
- \/é P1 ©w2) - .
The Lagrangian density can then be written as
L=-10"00,0. (10.11)
The complex field ¢ therefore satisfies the Klein-Gordon equation
e =0. (10.12)
It is clear that the complex field ¢ has a global phase invariance, under

b — e, (10.13)

2TNote that we can only discuss a non-relativistic limit for the massive Klein-Gordon equation. This is
because the non-relativisitic approximation (discussed in the previous footnote) involved assuming that each
time derivative of 1 with respect to ¢t was small compared with m times . Clearly this would no longer
be true if m were zero. Put another way, a massless particle is inherently relativistic, since it must travel
at the speed of light (like the photon). We shall not be concerned with taking the non-relativistic limit in

what follows, and so working with a massless field will not be a problem.
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where « is a constant. (The term “global” is used to describe such phase transformations,
which are identical at every point in spacetime.) This can be seen at the level of the Klein-
Gordon equation (10.12), since the constant phase factor simply passes straight through the
d’Alembertian operator. It can also be seen at the level of the Lagrangian density, since
again the derivatives do not land on the phase factor, and furthermore, the e'® phase factor
from transforming ¢ is cancelled by the e~'® phase factor from tramsforming .

It is also clear that the Lagrangian density is mot invariant under local phase trans-
formations, where « is assumed now to be spacetime dependent. This is because we now
have

O — (e 8) — €1 B +1(0u0) 6. (10.14)

It is the second term, where the derivatives land on «, that spoils the invariance.
The remedy, not surprisingly, is to introduce a gauge potential A,, and replace the

partial derivatives by covariant derivatives
Dy =08, —ieA,, (10.15)

where now ¢ will be interpreted as describing a complex scalar field with electric charge
e. As we saw before when discussing the Schrodinger equation, the covariant derivative
acting on ¢ has a nice transformation property under the local phase tramsformations of ¢,

provided at the same time we transform A,:
¢ — e, Au—>Au+é(‘9ua. (10.16)
This implies that D, ¢ transforms nicely as
D¢ — €°D,o, (10.17)
and so the new Lagrangian density
L= —3(D"g) (D) (10.18)

is indeed invariant. This is the “derivation” of ordinary electromagnetism.

In this viewpoint, where we are deriving electromagnetism by requiring the local phase
invariance of the theory under (10.13), has not yet given any dynamics to the gauge field
A,. Indeed, one cannot derive a dynamical existence for A, because in fact there is no
unique answer. What one can do, however, is to introduce a dynamical term “by hand,”
which has all the natural properties one would like. First of all, we want a dynamical term

that respects the gauge invariance we have already achieved in the rest of the Lagrangian.
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Secondly, we expect that it should give rise to a second-order dynamical equation for A,,.
We are back to the discussion of section 4.2, where we derived Maxwell’s equations from an
action principal. The steps leading to the answer are as follows.

First, to make a gauge-invariant term we need to use the gauge-invariant field strength
F =0,A, —0,A, (10.19)

as the basic “building block.” Then, to make a Lorentz-invariant term, the lowest-order
possibility is to form the quadratic invariant F*” F,,,. Taking the standard normalisation
as discussed in section 4.2, we are therefore lead to propose the total Lagrangian density

L=~ }(D76) (D) ~ 7= F* F. (10.20)

where D, = 0, —ieA,. It is easily verified that the Euler-Lagrange equations resulting
from this Lagrangian density are as follows. Requiring the stationarity of the action under

variations of the wavefunction ¢ implies
D'D,¢ =0, ie. (0" —ieAr)(0, —ied,)p =0, (10.21)

This is the gauge-covariant generalisation of the original uncharged Klein-Gordon equation.

Requiring stationarity under variations of A, implies
O F" = —ArJ" | (10.22)

where

T =—ie(6Du6 — (D) ). (10.23)
Thus A, satisfies the Maxwell field equation, with a source current density given by (10.23).
This is exactly what one would hope for; the complex field ¢ carries electric charge e, and
so it is to be expected that it should act as a source for the electromagnetic field. In the
process of giving dynamics to the electromagnetic field we have, as a bonus, derived the

current density for the scalar field.

10.2 Yang-Mills theory

At the end of the previous subsection we rederived electromagnetism as the field needed in
order to turn the global phase invariance of a complex scalar field that satisfies the Kelin-
Gordon equation into a local phase invariance. The phase factor e!® is a unit-modulus
complex number. The set of all unit-modulus complex numbers form the group U(1); i.e.

1 x 1 complex matrices U satisfying UTU = 1. (For 1 x 1 matrices, which are just numbers,
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there is of course no distinction between Hermitean conjugation, denoted by a dagger, and
complex conjugation.)

In order to derive the generalisation of electromagnetism to Yang-Mills theory we need to
start with an extended system of scalar fields, each satisfying the Klein-Gordon equation,
whose Lagrangian is invariant under a larger, non-abelian, group.?® We shall take the
example of the group SU(2) in order to illustrate the basic ideas. One can in fact construct
a Yang-Mills theory based on any Lie group.

The group SU(2) should be familiar from quantum mechanics, where it arises when
one discusses systems with intrinstic spin % The group can be defined as the set of 2 x 2

complex matrices U subject to the conditions
UU=1, detU=1. (10.24)

It can therefore be parameterised in the form

U= o b 10.25
_<—b a)’ (10.25)

where a and b are complex numbers subject to the constraint
la> + |b> = 1. (10.26)
If we write a = 1 +1x9, b = 3 +iz4, the constraint is described by the surface
i+ 23 +ai+al=1 (10.27)

in Euclidean 4-space, and so the elements of the group SU(2) are in one-to-one correspon-
dence with the points on a unit 3-dimensional sphere. Clearly SU(2) has three independent
parameters.29

The group SU(2) can be generated by exponentiating the three Pauli matrices 7,, where

0 1 0 —i 1 0
T = ; Ty = ) T3 = . (10.28)
1 0 i 0 0 -1

28 An abelian group is one where the order of combination of group elements makes no difference. By

contrast, for a non-ableian group, if two elements U and V are combined in the two different orderings, the
results are, in general, different. Thus, for a group realised by matrices under multiplication, for example,

one has in general that UV # VU.
2For comparison, the group U(1), whose elements U can be parameterised as U = e'® with 0 < a < 2,

has one parameter. Since e'® is periodic in « the elements of U(1) are in one-to-one correspondence with
the points on a unit circle, or 1-dimensional sphere. In fact the circle, S*, and the 3-sphere, S3, are the only

spheres that are isomorphic to groups.
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They satisfy the commutation relations
[Taa Tb] = 2i€gpe Te (1029)

ie. [11,7 = 2] = 2i13, and cyclic permutations.
Let
1

Tp=—1. 10.
T (10.30)

We shall therefore have
[Taa Tb] = €gpe Lt - (1031)

Note that the Tj, which are called the generators of the Lie algebra of SU(2), are anti-
Hermitean,

T = -T,. (10.32)

They are also, of course, traceless.

The SU(2) group elements can be written as
U=ewle, (10.33)

where o, are three real parameters. (This is the analogue of writing the U(1) elements U
as U = ¢'®.) Tt is easy to check that the unitarity of U, i.e. UTU = 1, follows from the

anti-Hermiticity of the generators T,:
Ut = (eaaTa)T Ty eaaTJ eTo — p—aaTa ponTy _ | (10.34)

The unit-determinant property follows from the tracelessness of the T,, bearing in mind

that for any matrix X we have det X = exp(trlog X):
det U = det(e*Te) = expltrlog(e®*)] = exp[tr(a,T,)] = exp[0] = 1. (10.35)

Suppose now that we take a pair of complex scalar fields, called ¢ and ¢o, each of

which satisfies the massless Klein-Gordon equation. We may assemble them into a complex

®1
6= <¢2> . (10.36)

This vector-valued field therefore satisfies the Klein-Gordon equation

2-vector, which we shall call ¢:

¢ =0, (10.37)
which can be derived from the Lagrangian density
£ =—(0"6")(0,0). (10.38)
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It is obvious that the Lagrangian density (10.38) is invariant under global SU(2) trans-
formations

¢»—Uog, (10.39)

where U is a constant SU(2) matrix. Thus, we have
L— —0"'UY) 8, (U) = ("N UTU (99) = —(0"9") (9up) = L. (10.40)

Obviously, £ would not be invariant if we allowed U to be space-time dependent, for
the usual reason that we would get extra terms where the derivatives landed on the U
transformation matrix. Based on our experience with the local U(1) phase invariance of
the theory coupled to electromagnetism, we can expect that again we could achieve a local
SU(2) invariance by introducing appropriate analogues of the electromagnetic field. In this
case, since the SU(2) group is characterised by 3 parameters rather than the 1 parameter
characterising U (1), we can expect that we will need 3 gauge fields rather than 1. We shall
called these A}, where 1 < a < 3. In fact it is convenient to assemble the three gauge fields
into a 2 x 2 matrix, by defining

Ay =AST,, (10.41)

where T, are the generators of the SU(2) algebra that we introduced earlier.

We next define the covariant derivative D,, whose action on the complex 2-vector of

scalar fields ¢ is defined by
D,p=0,0+A,0. (10.42)

Since we don’t, a priori, know how A, should transform we shall work backwards and
demand that its transformation rule should be such that D,, satisfies the nice property we
should expect of a covariant derivative in this case, namely that if we transform ¢ under a
local SU(2) transformation

¢— ¢ =Ud, (10.43)
then we should also have that
(Du¢) - (DWS), = U(Du¢)- (10-44)
Working this out, we shall have

(Du¢) = D¢ = (9, + AU ),
= (0.U)9p+U0p+ AU,
= UDup=U0,p+UA,¢. (10.45)
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Equating the last two lines, and noting that we want this to be true for all possible ¢, we
conclude that

U +A,U=UA,. (10.46)

Multiplying on the right with U then gives the result that
A, =UA, U - (0,U)U". (10.47)

This, then, will be the gauge transformation rule for the Yang-Mills potentials A,,. In other

words, the full set of local SU(2) transformations comprise®’

Ay — A, =UA,U - (9,U)UT,
o — ¢ =U¢p. (10.48)

What we have established is that if we replace the Lagrangian density (10.38) by
£ =—(D"¢)" (Do), (10.49)

then it will be invariant under the local SU(2) transformations given by (10.48). The
proof is now identical to the previous proof of the invariance of (10.38) under global SU(2)
transformations. The essential point is that the local transformation matrix U “passes
through” the covariant derivative, in the sense that (D,¢)" = D (U¢) = U D,¢.

So far, we have suceeded in constructing a theory with a local SU(2) symmetry, but as
yet, the Yang-Mills potentials Aj, that we introduced do not have any dynamics of their own.
Following the strategy we applied to the case of electromagnetism and local U (1) invariance,
we should now look for a suitable term to add to the Lagrangian density (10.49) that will do
the job. Guided by the example of electromagnetism, we should first find a a field strength
tensor for the Yang-Mills fields, which will be the analogue of the electromagnetic field
strength

Fuo=0,A,—0,A,. (10.50)

It is clear that the expression (10.50) is not suitable in the Yang-Mills case. If one
were to try adopting (10.50) as a definition for the field strength, then a simple calculation
shows that under the SU(2) gauge transformation for A, given in (10.48), the field strength

30Note that this non-abelian result, which takes essentially the same form for any group, reduces to the
previous case of electromagnetic theory is we specialise to the abelian group U(1). Essentially, we would just
write U = €'® and plug into the transformations (10.48). Since left and right multiplication are the same in

the abelian case, the previous results for electromagnetic gauge invariance can be recovered.
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would transform into a complete mess. It turns out that the appropriate generalistion that

is needed for Yang-Mills is to define
Fu =0,A, —0,A, + [Au, AL (10.51)

Of course this would reduce to the standard electromagnetic field strength in the abelian
U(1) case, since the commutator [A4,,A,| = A, A, — A, A, would then vanish.

The first task is to check how F},, defined by (10.51) transforms under the SU(2) gauge
transformation of A, given in (10.48). We shall have

Fu — Fo, =04, + A, A, — (nev),
= 0, UAU - (0,U)UN + (UAU" — (0, U)UNUAU — (8,U)U") — (= v),
= (0,0)AU'+U(0,A,) - UAUB,U)U" — (0,0,0)U" + (8,U)UT(8,U)UT
+UAUWUAUY —UAUN0,U)UT — (8,U)UTUA,UT
+0,NUN(0,NUT — (1 = v),
= U@0.A, —0,A,+A, A, — A AU, (10.52)

where the notation —(u < ) means that one subtracts off from the terms written explicitly
the same set of terms with the indices p and v exchanged. Comparing with (10.51) we see
that the upshot is that under the SU(2) gauge transformation for A, given in (10.48), the
field strength F),, defined in (10.51) transforms as

Fu — Fl, =UF,U". (10.53)

This means that F},, transforms covariantly under SU(2) gauge transformations. It would of
course, reduce to the invariance of the elctromagnetic field strength transformation (F/“, =
F,,) in the abelian case.

It is now a straightforward matter to write down a suitable term to add to the Lagrangian
density (10.49). As for electromagnetism, we want a gauge-invariant and Lorentz-invariant

quantity that is quadratic in fields. Thus we shall take
1
L =—(D'¢)1 (Do) + = tr(F* F,), (10.54)

The proof that tr(F'* F),,) is gauge invariant is very simple; under the SU(2) gauge trans-

formation we shall have

tr(F" Fy) — (P F),) = te(UF*UTUF,U') = tt(UF* F,,U")
= tr(FMELUTU) = tr(F™ F). (10.55)
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The equations of motion for the ¢ and A, fields can be derived from (10.54) in the
standard way, as the Euler-Lagrange equations that follow from requiring that the action I =
[ d*xzL be stationary under variations of ¢ and A, respectively. First, let us just consider
the source-free Yang-Mills equations that will result if we just consider the Lagrangian

density for the Yang-Mills fields alone,
1
Lyy = —tr(F* Fy). (10.56)
8
Wrting Iy = [ d*zLy s, we shall have
1
Slyy = Lot / d w8 F,, PP
8

1
= Lo / A 2(0,6 4, — 0,64, + [6A,, Ay] + [A, 6A,))F™

27
1 v v 14
= / d(—5A, 0™ + A6A,FH — §A, A, FH),

- Ll / (0,84, + [An, 5A,)) FH |

1
= / A28 A, (9, F" + A, F*]), (10.57)
and so requiring that the action be stationary implies
O F" +[A,, F'] =0. (10.58)

These are the source-free Yang-Mills equations, which are the generalisation of the source-
free Maxwell equations 0,F" = 0. Obviously the Yang-Mills equations reduce to the
Maxwell equations in the abelian U(1) case.

If we now include the —(D*¢)T (D, ¢) term in the above calculation, we shall find that
1
5T — / da(6164,D"9 — (DV6)154,0) — ot / d*wSA, (9, F" + A, F*]).  (10.59)

Requiring stationarity under the variations dA, now gives the Yang-Mills equations with
sources,

O F™ + A, F*] =27 J” | (10.60)

where
Ju = (Do) ¢' — ¢ (Do)t . (10.61)

Note that is is a 2 x 2 matrix current, as it should be, since the Hermitean-conjugated

2-vector sits to the right of the unconjugated 2-vector.?!

31Tt is helpful to introduce an index notation to label the rows and columns of the 2 x 2 matrices, in order

to verify that (10.61) is the correct expression.
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This completes this brief introduction to Yang-Mills theory. As far as applications are
concerned, it is fair to say that Yang-Mills theory lies at the heart of modern fundamental
physics. The weak nuclear force is described by the Weinberg-Salam model, based on the
Yang-Mills gauge group SU(2). The W and Z bosons, which have been seen in particle
accelerators such as the one at CERN, are the SU(2) gauge fields. The strong nuclear
force is described by a Yang-Mills theory with SU(3) gauge group, and the 8 gauge fields
associated with this theory are the gluons that mediate the strong interactions. Thus one

may say that almost all of modern particle physics relies upon Yang-Mills theory.
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