(1) Three charges are located along the z axis; a charge $+2q$ fixed at $z = 0$, and two charges $-q$, at $z = \alpha \cos \omega t$ and $-z = \alpha \cos \omega t$ respectively. Determine the lowest non-vanishing multipole moment. Assuming that $ka << 1$ (where $k = \omega$ as usual), determine the angular power distribution in the radiation zone, and find the total power radiated.

(2) Two electric dipoles, each of constant strength p, are located in the xy plane at opposite ends of a diameter of a circle of radius a centred on the origin. One dipole points in the positive z direction, while the other points in the negative z direction. They rotate around the circle with angular frequency ω. (i.e. one dipole is located at $(x, y, z) = (a \sin \omega t, a \cos \omega t, 0)$ and the other at $(x, y, z) = (-a \sin \omega t, -a \cos \omega t, 0)$.)

It is assumed that $\omega a << 1$.

(2a) Show that in the multipole expansion discussed in chapter 8 of the lectures, the first non-zero contribution comes from the electric quadrupole.

(2b) Using equation (8.78) in the lectures, calculate the angular power distribution $dP/d\Omega$, and show that the angular dependence is proportional to $(1 - 3 \cos^2 \theta + 4 \cos^4 \theta)$.

(2c) Integrate over all solid angles to obtain an expression for the total radiated power P.

[Hint: You may find it useful in this question to note that the charge density for a point dipole of strength \vec{p} at the location \vec{r}_0 can be written as $\rho(\vec{r}) = -\vec{p} \cdot \nabla \delta^3(\vec{r} - \vec{r}_0)$.

(3) Optional question for masochists:

Starting from the expression for the magnetic field for the electric quadrupole term in the multipole expansion, given in equation (8.60) of the notes, calculate the electric field directly using $\vec{E} = i/k \vec{\nabla} \times \vec{B}$, and show that it is equal to (8.64) in the notes.

Due on Tuesday 30’th November