Proton Spin Physics in Polarized Proton-proton Collisions at STAR

Tai Sakuma

MIT
Introduction to the spin structure of the proton

❖ The naïve quark parton model
 - aka Static Constituent Quark Model
 - three stationary massive quarks
 ■ each weighs approx. \(\frac{1}{3} \) of the proton mass
 - able to reproduce many properties of baryons; e.g.,
 ■ magnetic moment of proton, neutron, hyperons
 ■ baryon spectrum
 - quarks in a \(s \)-state
 ■ no orbital angular momentum
 ■ \(\Sigma = 1 \) (quarks’ spin carries all proton spin)
Introduction to the spin structure of the proton

- "Spin Crisis"

- EMC experiment at CERN in 1988
 - polarized deep inelastic scattering (pDIS)
 - $\Sigma = 0.14 \pm 0.09 \pm 0.21$

- Quarks’ spin carries only a small fraction of proton spin

- $\Sigma = 0.33 \pm 0.03 \pm 0.05$ (recent value COMPASS, CERN, 2007)

- lately less sensationally called “Spin Puzzle”
Static Constituent Quark Model
- lack of motion of quarks
- lack of dynamics of quarks
- $\Sigma = 1$ (contradicts with the measured value)

Relativistic Constituent Quark Model
- relativistic motion of quarks
 - quarks’ mass is tiny
 - proton mass is largely due to kinetic energy of quarks
 - Dirac equation indicates orbital motion of quarks
 - $\Sigma \approx 0.65$ (still much larger than the measured value)
- lack of dynamics of quarks

Quantum Chromodynamics (QCD)
- dynamics are mediated by vector field, *gluons*
- axial anomaly; spin vector current is not conserved
- Gluons can share proton spin; $\Delta G \neq 0$
Introduction to the spin structure of the proton

- Decomposition of proton spin

\[
\frac{1}{2} = \frac{1}{2} \Sigma + \Delta G + L_q + L_g
\]

proton quark spin gluon spin orbital motion

- Quark spin and gluon spin contributions can be expressed in terms of polarized parton distribution functions

\[
\Sigma = \frac{1}{2} \left(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \right) \quad \Delta q = \int_0^1 (q^+(x) - q^-(x)) \, dx
\]

\[
\Delta G = \int_0^1 \Delta g(x) \, dx \quad \Delta g(x) = g^+(x) - g^-(x)
\]

- \(\Sigma \) has been measured by pDIS (\(\Sigma \approx 0.33 \))

- How do you measure \(\Delta G \)?

- Is it possible to measure \(L_q + L_g \)?
Measurement of ΔG

- Polarized Deep Inelastic Scattering (pDIS)

- Polarized Semi-inclusive DIS (pSIDIS)

- Polarized Proton-proton Collisions
Measurement of ΔG

Polarized Deep Inelastic Scattering (pDIS)

- Not as sensitive to ΔG as it is to Σ
 - Leptons do not couple to gluons

- Q^2-evolution of $\Delta q(x, Q^2)$ potentially yields $\Delta g(x, Q^2)$

- **Global analysis** of polarized parton distributions
 - E.g., GS, GRSV, LSS, AAC
 - Determined $\Delta q(x, Q^2)$ with some accuracy
 - Constrained $\Delta g(x, Q^2)$ little
 - Q^2-evolution is slow
 - Present pDIS data cover a limited range of x and Q^2

 Almost any $\Delta g(x, Q^2)$ fits pDIS data
Measurement of ΔG

Polarized Semi-inclusive Deep Inelastic Scattering (pSIDIS)

- detect hadrons simultaneously with scattered leptons
- photon-gluon fusion process
 - directly sensitive to ΔG
 - higher-order processes
- HERMES at DESY
- SMC, COMPASS at CERN

![Graph showing measurements of gluon polarization from COMPASS, HERMES, and SMC](image)

<table>
<thead>
<tr>
<th>Experiment process</th>
<th>$\langle x_g \rangle$</th>
<th>$\langle \mu^2 \rangle$ (GeV2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERMES hadron pairs</td>
<td>0.17 ± 0.18</td>
<td>20 ± 0.28</td>
</tr>
<tr>
<td>HERMES inclusive hadrons</td>
<td>0.22 ± 0.07</td>
<td>1.35 ± 0.03</td>
</tr>
<tr>
<td>SMC hadron pairs</td>
<td>0.07 ± 0.12</td>
<td>0.20 ± 0.08</td>
</tr>
<tr>
<td>COMPASS hadron pairs, $Q^2 < 10.85$</td>
<td>0.02 ± 0.05</td>
<td>0.16 ± 0.05</td>
</tr>
<tr>
<td>COMPASS hadron pairs, $Q^2 > 10.82$</td>
<td>0.02 ± 0.05</td>
<td>0.18 ± 0.05</td>
</tr>
<tr>
<td>COMPASS open charm</td>
<td>0.11 ± 0.09</td>
<td>0.49 ± 0.07</td>
</tr>
</tbody>
</table>

![Diagram showing measurements of gluon polarization](image)
Measurement of ΔG

Polarized Proton-proton collisions

- gluons at the leading order
- challenging to determine x and Q^2
- PHENIX, STAR at RHIC, BNL
Measurement of ΔG

Polarized Proton-proton collisions

- **Double Longitudinal Spin Asymmetries A_{LL}**
 - the primary quantity to measure
 - defined as
 \[
 A_{LL} = \frac{\Delta \sigma}{\sigma} = \frac{(\sigma^{++} + \sigma^{--}) - (\sigma^{+-} + \sigma^{-+})}{(\sigma^{++} + \sigma^{--}) + (\sigma^{+-} + \sigma^{-+})}
 \]
 - sensitive to $\Delta g(x, Q^2)$; the first moment is ΔG
 - in the QCD factorization:
 \[
 A_{LL} = \frac{\sum \int dx_1 \int dx_2 \Delta f_i(x_1, Q^2) \Delta f_j(x_2, Q^2) \hat{a}_{LL} \hat{\sigma}(\cos \theta^*)}{\sum \int dx_1 \int dx_2 f_i(x_1, Q^2) f_j(x_2, Q^2) \hat{\sigma}(\cos \theta^*)}
 \]

- **Cross Sections σ**
 - test QCD factorization
 \[
 \sigma = \sum \int dx_1 \int dx_2 f_i(x_1, Q^2) f_j(x_2, Q^2) \hat{\sigma}(\cos \theta^*)
 \]
Measurement of ΔG

Polarized Proton-proton collisions

- determination of *parton-level kinematics*
- in DIS, it can be always determined

\[
\chi = \frac{Q^2}{2M \nu}
\]

- in pp, not unless two outgoing partons are measured

\[
\begin{align*}
\chi_1 &= \frac{\hat{p}_T}{\sqrt{s}}(e^{+y_3} + e^{+y_4}) \\
\chi_2 &= \frac{\hat{p}_T}{\sqrt{s}}(e^{-y_3} + e^{-y_4})
\end{align*}
\]

\rightarrow *dijets, γ - jet*
RHIC as a polarized proton-proton collider

- The world’s first and only polarized proton-proton collider

- \(\sqrt{s} = 23 \sim 500 \text{ GeV} \)

<table>
<thead>
<tr>
<th>Run</th>
<th>(\sqrt{s}) [GeV]</th>
<th>(\int L dt) [pb(^{-1})](^a)</th>
<th>Polarization(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-2</td>
<td>200</td>
<td>0.47</td>
<td>14%</td>
</tr>
<tr>
<td>Run-3</td>
<td>200</td>
<td>2.5</td>
<td>34%</td>
</tr>
<tr>
<td>Run-4</td>
<td>200</td>
<td>3.2</td>
<td>46%</td>
</tr>
<tr>
<td>Run-5</td>
<td>200</td>
<td>12.7</td>
<td>46%</td>
</tr>
<tr>
<td>Run-6</td>
<td>200</td>
<td>44.9</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>50%</td>
</tr>
<tr>
<td>Run-8</td>
<td>200</td>
<td>19.2</td>
<td>44%</td>
</tr>
<tr>
<td>Run-9</td>
<td>500</td>
<td>52.6</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>53.5</td>
<td>56%</td>
</tr>
</tbody>
</table>

\(^a\) Delivered luminosity at STAR
\(^b\) Average polarization
STAR Detector

a full-azimuth calorimeter

a full-azimuth tracking device
Jets are sprays of particles which are moving approximately in the same direction from the collision point.
Jets at STAR

Parameters of Recent Jet Analysis

- 140 billion polarized proton-proton collisions at 200 GeV, RHIC Run-6
- Jet Patch Trigger
 - $E_T > 8.3$ GeV in a jet patch
 - minimum bias condition
- Jet Definition
 - Charged tracks in TPC
 - Energy deposits in BEMC towers
 - *Mid-point cone* ($R=0.7$)
- Dijet Definition
 - Two-leading p_T jets
Jets at STAR

- two quantities to measure
 - *Jet Spin Asymmetries* A_{LL}
 - to extract $\Delta g(x, Q^2)$
 - *Jet Cross Sections*
 - test theory used to extract $\Delta g(x, Q^2)$ from A_{LL}
 - pdf, pQCD, jet definitions, hadronization and underlying events

- two final states to observe
 - *Dijets*
 - the best channel at RHIC
 - started at Run-6
 - *Inclusive jets*
 - best alternative at STAR
 - measured for Run-3/4/5/6/9
Jets at STAR

Jets at three levels

Data and theory are corrected to hadron level using Monte Carlo (MC) simulation
Jets at STAR

Data-MC comparison of inclusive jets

Correction factors are determined with MC samples which well reproduce data.

11.44 < pT < 17.31 GeV
26.19 < pT < 39.63 GeV
39.63 < pT < 59.96 GeV

MC: Pythia 6.4 + Geant 3

−0.8 < η < 0.8
Jets at STAR

Data-MC comparison of dijets

Data are well described by MC

MC: Pythia 6.4 + Geant 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\max(p_T) > 10.0) GeV</th>
<th>(\min(p_T) > 7.0) GeV</th>
<th>(-0.8 < \eta < 0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>\eta_3 - \eta_4</td>
<td>< 1.0)</td>
<td>(</td>
</tr>
</tbody>
</table>
Inclusive Jet Cross Section

- pp 200 GeV, RHIC Run-6
- update from the previous measurements based on Run-3/4 data [PRL 97 (2006) 252001] with smaller acceptance and cone size
- well described by theory which is used to extract polarized parton distributions from inclusive jet A_{LL}
- provide reference for heavy-ion collisions

\[
\frac{d^2\sigma}{2\pi dp_T d\eta} = \frac{1}{\int L dt} \cdot \frac{1}{2\pi \Delta p_T \Delta \eta} \cdot \frac{1}{C} \cdot N_{\text{jets}}
\]

- N_{jets}: Detector-level jet yields
- C: Correction factors
- $2\pi \Delta p_T \Delta \eta$: Phase space volume
- $\int L dt$: Luminosity
Dijet Cross Section

- pp 200 GeV, RHIC Run-6
- the first measurement at RHIC
- well described by theory which can be used to extract polarized parton distributions from dijet A_{LL}

\[
\frac{d^3\sigma}{dM_{jj}d\eta_3d\eta_4} = \frac{1}{\int Ldt} \cdot \frac{1}{\Delta M_{jj}\Delta \eta_3\Delta \eta_4} \cdot \frac{1}{C} \cdot N_{jets}
\]

- N_{jets}: Detector-level dijet yields
- C: Correction factors
- $\Delta M_{jj}\Delta \eta_3\Delta \eta_4$: Phase space volume
- $\int Ldt$: Luminosity
Inclusive Jet Double Longitudinal Spin Asymmetry A_{LL}

- pp 200 GeV, RHIC Run-6
- second update
 - Run-5 data [PRL 100 (2008) 232003]
- inconsistent with large ΔG
- probed $0.02 < x < 0.3$

- provided significant constraint on $\Delta g(x, Q^2)$ in a global analysis of polarized pdf, DSSV [PRL 101 (2008) 072001]
- confirmed the relevance of a probing wider range of x
- stimulated the discussion of the measurements of the orbital motions of partons
Dijet Double Longitudinal Spin Asymmetry A_{LL}

- the first measurement of dijet A_{LL}
- consistent with DSSV prediction
- as a function of invariant mass M_{jj}
 - relevant for the first measurement
 - not optimal for the purpose
- will be extended to wider acceptance with η dependence

\[
\begin{align*}
\text{Dijet } A_{LL} @ 200 \text{ GeV} \\
\text{Cone Radius} = 0.7 \\
\max(p_T) > 10 \text{ GeV} \\
\min(p_T) > 7 \text{ GeV} \\
-0.8 < \eta < 0.8, |\Delta \eta| < 1.0 \\
|\Delta \phi| > 2.0 \\
\int \text{Ldt} = 5.39 \text{pb}^{-1}
\end{align*}
\]
Summary

- The *spin puzzle* remains unsolved
- polarized DIS showed quarks’ spin carry only \(~30\%\) of the proton’s spin
- RHIC-Spin suggested a possibility of small gluon’s spin contribution
- RHIC-Spin will extend the kinematical coverage of the measurement
- The possibility of measuring orbital motions is being explored

\[
\frac{1}{2} = \frac{1}{2} \Sigma + \Delta G + L_q + L_g
\]