(5 pts) **Problem 1.** How much current will be flowing through a 21.0 m length of copper wire with radius 2.1 mm if it is connected to a source supplying 39.0 V? (The resistivity of copper is $1.68 \times 10^{-8} \Omega \cdot m$.

(a) 1500 A
(b) 23×10^8 A
(c) 320 nA
(d) 910 A

(1530.75 A)

(5 pts) **Problem 2.** What is the equivalent resistance of the combination illustrated in the figure?

(a) 150Ω
(b) 45.8Ω
(c) 58.7Ω
(d) 123Ω

(5 pts) **Problem 3.** Alpha particles (with charge $+2e$ and mass 6.68×10^{-27} kg) are accelerated in a cyclotron to a final orbit of radius $0.30m$. The magnetic field of the cyclotron is $0.50T$. The kinetic energy of the alpha particles in the final orbit is closest to

(a) 1.1 MeV
(b) 0.92 MeV
(c) 1.2 MeV
(d) 1.4 MeV
(e) 1.6 MeV
(5 pts) **Problem 4.** A negatively charged particle is moving to the right directly above a wire having a current flowing to the right as shown in the figure. In which direction is the magnetic force exerted on the particle?

(a) into the page;
(b) out of the page;
(c) downward;
(d) upward;
(e) the magnetic force is zero since the velocity is parallel to the current.

\[-Q \quad \rightarrow \quad V \]

\[\rightarrow I \]

(5 pts) **Problem 5.** As shown in the figure, a bar magnet moves away from the solenoid. The induced current through the resistor \(R \) is

(a) zero
(b) from a to b
(c) from b to a
(d) not possible to determine with these data

\[V \rightarrow [N S] \]

\[R \]

\[a \quad b \]

On the following problems show all your work. Partial credit will be given if earned.

(30 pts) **Problem 6.** An uncharged 6.00\(\mu F \) capacitor is connected in series with a 75.0\(\Omega \) resistor and a 12.0V battery having negligible internal resistance. Find

a) the time constant of the circuit;(10pts)
b) the maximum charge the capacitor plates will receive; (10pts)

c) sketch a graph of the current as a function of time. (10pts)

(30 pts) **Problem 7.** An ideal toroidal solenoid containing 825 equally spaced coils is shown in the figure.

a) How large must the current I be so that the magnetic field within the coils at a distance of 17.0 cm from the center is 0.0250T? (15pts)

b) What is the magnetic field strength in the region outside the coils? (15pts)

(15 pts) **Problem 8.** A small circular ring is inside a larger loop that is connected to a battery and a switch, as shown in the figure. Use Lenz’s law to find the direction of the current induced in the small ring.

a) just after switch S is closed; (5pts)

b) after S has been closed for a long time; (5pts)

c) just after S has been reopened after being closed for as long time. (5pts)
6. (a) Time Constant \(I = \frac{V}{RC} \)

\[
= 75.00 \times 6.00 \times 10^{-6} \text{s} \\
= 4.5 \times 10^{-4} \text{s}
\]

(b) \(Q = CV = 6.00 \times 10^{-6} \text{F} \times 12 \text{V} \)

\[
= 7.2 \times 10^{-5} \text{C}
\]

(c) \[I = I_0 e^{-\frac{t}{RC}}\]

7. (a) \(B = 0.0250 \text{T} \) \(N = 825 \)

\[
B = \frac{\mu_0 NI}{2\pi r} \Rightarrow I = \frac{2\pi r B}{\mu_0 N} = \frac{2 \times 3.14 \times 0.17 \times 0.0825}{4 \times 10^{-7} \times 825} \text{T} \\
\]

\[
= 25.8 \text{A}
\]

(b) \(B_{\text{outside}} = 0 \)
Problems.

(a) Clockwise

(b) No current induced

(c) Counter-clockwise