Officer accelerates as soon as speeder passes

Catching up \(\Rightarrow \) Distance travelled by both are equal.

Let's say it takes a time \(t \)

\[
\frac{\text{Speeder}}{x_s} = V t
\]

\[
\frac{\text{Officer}}{x_0} = \frac{V^2}{2a} t + \frac{1}{2} at^2 = \frac{1}{2} at^2
\]

Both distances must be equal

\(a \) \(\Rightarrow \) \(x_s = x_0 \)

\(\Rightarrow \) \(V t = \frac{1}{2} at^2 \) \(\Rightarrow \boxed{t = \frac{2V}{a}} \)

\(b \) How far?

\(x_s = V t = V \times \frac{2V}{a} = \frac{2V^2}{a} \)

\(c \) Final speed of officer

\[V_f = \sqrt{V_0^2 + at^2} = a \times \frac{2V}{ac} = 2V \]

When officer catches up, his velocity is twice that of the speeder.