Ch 7 Supplemental [Edit]

Overview Summary View Diagnostics View Print View with Answers

Ch 7 Supplemental

Due: 6:59pm on Wednesday, October 26, 2016

To understand how points are awarded, read the Grading Policy for this assignment.

Exercise 7.24

Description: A m block on a horizontal floor is attached to a horizontal spring that is initially compressed x_1. The spring has force constant k. The coefficient of kinetic friction between the floor and the block is mu . The block and spring are released from ...

A 2.80 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m. The spring has force constant 845 N/m. The coefficient of kinetic friction between the floor and the block is 0.38 . The block and spring are released from rest and the block slides along the floor.

Part A

What is the speed of the block when it has moved a distance of $0.0150~\mathrm{m}$ from its initial position? (At this point the spring is compressed $0.0250~\mathrm{m}$.)

Express your answer with the appropriate units.

ANSWER:

$$v = \sqrt{\frac{k\left(x_{1}^{2} - x_{3}^{2}\right)}{m} - 2\mu \cdot 9.81x_{2}} = 0.427 \frac{\mathrm{m}}{\mathrm{s}}$$

Exercise 7.33

Description: A small block with mass m is moving in the xy-plane. The net force on the block is described by the potential- energy function $U(x,y) = (U_x)x^2-(U_y)y^3$. (a) What is the magnitude of the acceleration of the block when it is at the point x = x, y = ...

A small block with mass 0.0400 kg is moving in the xy-plane. The net force on the block is described by the potential- energy function $U(x,y)=(5.95~{
m J/m^2}~)x^2$ -(3.50 ${
m J/m^3}~)y^3$.

Part A

What is the magnitude of the acceleration of the block when it is at the point x= 0.39 m , y= 0.69 m ?

Express your answer with the appropriate units.

ANSWER:

$$a = \sqrt{\left(-\frac{2\left(U_{x}\right)x}{m}\right)^{2} + \left(\frac{3\left(U_{y}\right)\left(y^{2}\right)}{m}\right)^{2}} = 171\frac{\mathrm{m}}{\mathrm{s}^{2}}$$

Part B

What is the direction of the acceleration of the block when it is at the point $x=0.39~\mathrm{m}$, $y=0.69~\mathrm{m}$?

ANSWER:

$$\theta = \frac{\left(\operatorname{atan}\left(-\frac{3(U_y)\left(y^2\right)}{2(U_x)x}\right)\right) \cdot 180}{\pi} + 180 = 133 \quad \circ \text{ counterclockwise from the } + x\text{-axis}$$

Problem 7.43

Description: A m piece of wood slides on the surface shown in the figure . The curved sides are perfectly smooth, but the rough horizontal bottom is L long and has a kinetic friction coefficient of mu with the wood. The piece of wood starts from rest 4.0 m above...

A 2.5 kg piece of wood slides on the surface shown in the figure . The curved sides are perfectly smooth, but the rough horizontal bottom is 35 m long and has a kinetic friction coefficient of 0.27 with the wood. The piece of wood starts from rest 4.0 m above the rough bottom.

Part A

Where will this wood eventually come to rest?

Express your answer using two significant figures.

ANSWER:

$$s = \frac{4}{\mu} = 15 \text{ m}$$

Part B

For the motion from the initial release until the piece of wood comes to rest, what is the total amount of work done by friction?

ANSWER:

$$W = -m \cdot 9.8 \cdot 4 = -98.0$$
 J

Problem 7.56

Description: A ball is thrown upward with an initial velocity of ## m/s at an angle of ## degree(s) above the horizontal. (a) Use energy conservation to find the ball's greatest height above the ground.

A ball is thrown upward with an initial velocity of 12.0 $\mathrm{m/s}$ at an angle of 55.0 $^{\circ}$ above the horizontal.

Part A

Use energy conservation to find the ball's greatest height above the ground.

ANSWER:

$$h_{\text{max}} = \frac{\frac{v^2 \sin(\theta)\sin(\theta)}{2}}{g} = 4.93 \quad \text{m}$$

Problem 7.57

Description: In a truck-loading station at a post office, a small 0.200-kg package is released from rest at point A on a track that is one-quarter of a circle with radius 1.60 m (the figure). The size of the package is much less than 1.60 m, so the package can be ...

In a truck-loading station at a post office, a small 0.200-kg package is released from rest at point A on a track that is one-

quarter of a circle with radius 1.60 m (the figure). The size of the package is much less than 1.60 m, so the package can be treated as a particle. It slides down the track and reaches point B with a speed of 4.20 m/s . From point B, it slides on a level surface a distance of 3.00 m to point C, where it comes to rest.

Part A

What is the coefficient of kinetic friction on the horizontal surface?

ANSWER:

$$\mu = \frac{\frac{1}{2}v^2}{9.8 \cdot 3} = 0.300$$

Part B

How much work is done on the package by friction as it slides down the circular arc from A to B?

ANSWER:

$$W = \frac{.2v^2}{2} - .2.9.8 \cdot 1.6 = -1.37$$
 J

Problem 7.80

Description: A proton with mass m moves in one dimension. The potential-energy function is U (x) = alpha / x^2 - beta /x, where alpha and beta are positive constants. The proton is released from rest at x_0 = alpha / beta. (a) Show that U (x) can be written as ...

A proton with mass m moves in one dimension. The potential-energy function is $U(x) = \alpha/x^2 - \beta/x$, where α and β are positive constants. The proton is released from rest at $x_0 = \alpha/\beta$.

Part A

Show that $U\left(x\right)$ can be written as

$$U(x)=rac{lpha}{x_0^2}\left[\left(rac{x_0}{x}
ight)^2-rac{x_0}{x}
ight]$$

ANSWER:

Part B

Calculate $U(x_0)$.

Express your answer in terms of the variables α , x_0 , m, and x.

ANSWER:

$$U\left(x_{0}
ight) =0$$

Part C

Calculate v(x), the speed of the proton as a function of position.

Express your answer in terms of the variables α , x_0 , m, and x.

ANSWER:

$$v\left(x\right) = \sqrt{\frac{2\alpha}{m\left(x_{0}\right)^{2}}\left(\frac{x_{0}}{x} - \left(\frac{x_{0}}{x}\right)^{2}\right)}$$

Part D

For what value of \boldsymbol{x} is the speed of the proton a maximum?

Express your answer in terms of the variables α , x_0 , m, and x.

ANSWER:

$$x = 2x_0$$

Part E

What is the value of that maximum speed?

Express your answer in terms of the variables α , x_0 , m, and x.

ANSWER:

$$v_{\max} = \sqrt{\frac{\alpha}{2m\left(x_0\right)^2}}$$

Part F

What is the force on the proton at the point in part D?

Express your answer in terms of the variables α , x_0 , m, and x.

ANSWER:

$$F = 0$$

Part G

Let the proton be released instead at $x_1=3lpha/eta$. Calculate v(x).

Express your answer in terms of the variables α , x_0 , m, and x.

ANSWER:

$$v(x) = \sqrt{\frac{2\alpha}{m\left(x_0\right)^2} \left(\frac{x_0}{x} - \left(\frac{x_0}{x}\right)^2 - \frac{2}{9}\right)}$$

Part H

For the release point $x=x_0$, what are the maximum and minimum values of x reached during the motion?

ANSWER:

- $igcup_{rac{5}{2}} x_0$ and $rac{1}{2} x_0$
- $5x_0$ and $2x_0$ $3x_0$ and $\frac{3}{2}x_0$

Part I

For the release point $x=x_1$, what are the maximum and minimum values of x reached during the motion?

ANSWER:

- $\begin{array}{ccc} & \frac{5}{2}\,x_0 \text{ and } \frac{1}{2}\,x_0 \\ & 5x_0 \text{ and } 2x_0 \\ & 3x_0 \text{ and } \frac{3}{2}\,x_0 \end{array}$

- $^{\circ}$ $_{\infty}$ and x_{0}

Copyright © 2016 Pearson. All rights reserved. Legal Notice | Privacy Policy | Permissions

