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Chapter 7

Potential Energy and 
Energy Conservation



Goals for Chapter 7
– To study gravitational and elastic potential energy 

(conservative forces)
– To determine when total mechanical energy is conserved
– To examine situations when total mechanical energy is not 

conserved
– To examine conservative forces, nonconservative forces, 

and the law of energy conservation
– To determine force from potential energy



Potential Energy
• Things with potential:

– Could do potentially do work
• Here we mean the same thing
• E.g. Gravitation potential energy:

–If you lift up a brick it has the 
potential to do damage

–Compressed spring



Example: Gravity & Potential 
Energy

You (very slowly) lift up a brick (at rest) from 
the ground and then hold it at a height Z. 

• How much work has been done on the brick?
• How much work did you do?
• If you let it go, how much work will be done 

by gravity by the time it hits the ground?
We say it has potential energy: 

U=mgZ
–Gravitational potential energy



What is the work done by the force of gravity?
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The work DOES NOT depend on the trajectory!!!

UE=mgy=Gravitational potential energy



Mechanical Energy
• We define the total 
mechanical energy in a 
system to be the kinetic 
energy plus the potential 
energy

• Define E≡K+U



Conservation of Mechanical 
Energy

• For some types of problems, Mechanical 
Energy is conserved (more on this next 
week)

• E.g. Mechanical energy before you drop a 
brick is equal to the mechanical energy after
you drop the brick

K2+U2 = K1+U1

Conservation of Mechanical Energy
E2=E1



Problem Solving

• What are the types of examples we’ll encounter?
– Gravity
– Things falling
– Springs

• Converting their potential energy into kinetic 
energy and back again

Gravity: E = K + U = ½mv2 + mgy
Spring: E = K + U = ½mv2 + ½kx2



Athletes (projectile motion) and the conservation of energy
If we have a projectile motion the work energy theorem says 

mg(y2  y1) KE2 KE1

KE1 UE1 KE2 UE2

With some rearranging

Energy is conserved!!



Athletes and energy II—Example 7.1

• Refer to Figure 7.4 as you follow Example 7.1.

• Notice how velocity changes as forms of energy 
interchange.



Forces other than gravity doing 
work



Consider projectile motion using energetics

– Consider the 
speed of a 
projectile as it 
traverses its 
parabola in the 
absence of air 
resistance.

– Refer to 
Conceptual 
Example 7.3 
and Figure 7.8.



Revisiting the work energy theorem
The work energy theorem says the total work is equal to the change in KE

Wnet KE2 KE1

On the other hand, we have seen that the work due to gravity ONLY DEPENDS 
ON THE INITIAL AND FINAL POINT OF THEIR PATH, NOT ON THE ACTUAL 
PATH. These type of forces (of which gravity is one) are called conservative 
forces. Let’s brake the total work done into two parts, the one done by the 
conservative forces and the ones done by non-conservative forces (e.g. friction)

Wconserv Wnonconserv KE2 KE1

UE2 UE1 Wnonconserv KE2 KE1

Wnonconserv  E2  E1 E KE UEwhere

If the work done by the non-conservative forces is zero then the total 
energy is conserved. This is a very powerful tool!!



Box on an inclined plane
A box with mass m is placed on a frictionless incline with 

angle  and is allowed to slide down. 
a) What is the normal force?
b) What is the acceleration of the box?
c) What is the velocity at the end of the ramp with length L? 



FN

wB=mg
mg cos

mg sin
x : mgsin  max

y : FN  mgcos  0
ax  gsin



Box on an inclined plane
REVISITED 

A box with mass m is placed on a frictionless incline with 
angle  and is allowed to slide down. 

a) What is the velocity at the end of the ramp with length L? 



FN

wB=mg


Normal force DOES NO WORK so Wother=0

Then Etop=Ebottom KEtop UEtop  KEbott UEbott

0 mgh 
1
2

m v2 0

mgLsin 
1
2

m v2

 v  2gLsin



What’s the speed in a vertical circle?
Refer to Example 7.4 and Figure 7.9.

KEtop UEtop  KEbott UEbott

0 mgh 
1
2

m v2 0

mgR 
1
2

m v2

 v  2gR



Speed in a vertical circle with friction

– Consider 
how things 
change when 
friction is 
introduced.

– Refer to 
Example 7.5 
and Figure 
7.10.



Work and energy in the motion of a mass on a spring

Wspring  (kx )dx  
1
2

kx2
2 

x1

x2

 1
2

kx1
2

 UEspring 2 UEspring1



Work energy theorem: situations with both 
gravitational and elastic potential energy

Wconserv Wnonconserv KE2 KE1

UEgrav 2 UEgrav1 UEspring 2 UEspring 1 Wnonconserv KE2 KE1

Wnonconserv  E2  E1

E KE UEgrav UEspring 
1
2

m v2mgy 
1
2

kx2

where



Motion with elastic potential energy—Example 7.7



Bring together two potential energies and friction
Example 7.9 What is the spring constant needed?

Wnonconserv  E2  E1

E1 
1
2

m v1
2mgy1 

1
2

kx1
2 


1
2

(2000kg)(4 m/s) 2  (2000kg)g(2m) 0

E2 
1
2

m v2
2mgy2 

1
2

kx2
2 

 0 0
1
2

k(2m)2

Wnonconserv  Ff s  (17,000N)(2m)

k 1.06 104 N/m

34000  2k  55200



Friction does depend on the path taken

• Consider Example 7.10 where the nonconservative 
frictional force changes with path.



Relation between potential energy and force

 Wcons  
r 
F cons dr s  UE

 dWcons 
r 
F cons dr s  dUE



r 
F cons 

dUE
dr s 

Fconsx 
dUE

dx
Fconsy 

dUE
dy

Fconsz 
dUE

dz

For example. For gravity Fgravy 
d(mgy)

dy
 mg

For example. For gravity 

Fspringx 
d(

1
2

kx 2)

dx
 kx



This is the end of Ch 7. Let’s 
next review briefly the main 
concepts so far and then do 

more examples



CH1-3: Kinematics: equations of motion
•Time of flight, rotation, etc.
•IF you know acceleration then all motion follows
•General understanding of acceleration: Acceleration 
component along/against velocity vector 
increases/decreases speed; perpendicular acceleration 
component changes direction (left or right). IF particle is 
going along a circle the radial component is equal to v2/r 
(due to geometry, otherwise it spirals in or out).



r a 
d r v 
dt


r v 

dr r 
dt


r r  x(t)ˆ i  y(t) ˆ j  z(t) ˆ k 

Projectile motion: 
x-comp. is constant velocity
y-comp. is constant acceleration

x  x0  v0x t 
1
2

axt
2

vx  v0x axt

vx
2  v0x

2 2ax (x  x0)

Constant acceleration

x  x0  vx t
Constant velocity

Newton’s 3rd law

Fr  m
v2

R
; Ftan  matan ; Fz  maz

Coordinate system is NOT constant, it rotates!!

CH 4-5: Newton’s laws of motion

•They are the ones from which you find the acceleration of 
objects (connection to Ch. 1-3)
•Steps: (1) draw sketch, (2) draw all forces and label 3rd law pairs, 
(3) draw free body diagram for each object, (4) choose 
coordinates for each object (if circular motion there is no choice, 
one has to be radial –positive towards center- and the other 
tangential), (5) decompose forces that are not along axis chosen, 
(6) write Newt. 2nd law for EACH object, (7) are there relations 
among objects (e.g. same velocity, or one twice the other, etc.), 
(8) how many equations and how many unknowns. NOW you are 
ready to solve for the question – this is a good time to look back at 
the question.
•Force of friction: know distinction between static (no 
acceleration) and kinetic (there is motion relative to the surface)
•Circular motion: if moving along a circle sum of forces along the 
radial direction MUST add to mv2/r

Fx  max ; Fy  may ; Fz  maz

For constant coordinate system



r 
F on A by B  

r 
F on B by A

CH 6-7: Work and Energy

Work done by a force is

Wby F  r 

r 1

r 
r 2

r 
F  dr r 

r 
F  (r r 2 

r r 1)  FrcosFr

general constant force

Wnonconserv  E2  E1

E KE UEgrav UEspring 
1
2

m v2mgy 
1
2

kx2

Work energy theorem (also contains conservation of energy)



Math that I should know VERY WELL by now

•Algebra (solve ANY complicated equation and pairs of equations)

•Derivatives (what they mean, know how to use them to find maximums/minim.)

•Scalar products of vectors (use them to calculate work, angles, etc.)

•Basic integrals (calculate work of changing forces, complicated equations of 
motion)



Problem 7.42 Conservation of energy: gravity and spring

A 2.00 kg block is pushed against a spring with negligible mass and force 
constant k = 400 N/m, compressing it 0.220 m. When the block is released, it 
moves along a frictionless, horizontal surface and then up a frictionless incline 
with slope 37.0 degrees. (a) What is the speed of the block as it slides along the horizontal surface 

after having left the spring?

(b) How far does the block travel up the incline before starting to slide 
back down?

Both of these are conservation of energy

A B

C
L

0  0 
1
2

kxA
2 

1
2

m vB
2 0  0

kxA
2

m
 vB

EA  EB

1
2

m vA
2 mgyA 

1
2

kxA
2 

1
2

m vB
2mgyB 

1
2

kxB
2

(a) 

EA  EB

1
2

m vA
2 mgyA 

1
2

kxA
2 

1
2

m vC
2 mgyC 

1
2

kxC
2

(b) 

0  0 
1
2

kxA
2  0  mgyC  0

1
2

kxA
2

mg
 yC  Lsin

1
2

kxA
2

mgsin
 L



NOW A PULLEY PROBLEM



Problem 7.55  Pulley problem
What is the speed of the larger block before it strikes the ground?

TWO CHOICES: CH 4-5 style or CH 6-7 style
Because there is no friction then energy is conserved

EA  EB

1
2

m1 vA1
2 m1gyA1 

1
2

m2 vA 2
2 m2gyA 2 

1
2

m1 vB1
2m1gyB1 

1
2

m2 vB 2
2 m2gyB 2

0  0  0  (12Kg)(9.8m/s2)(2.00m)  1
2

(4Kg) v2 (4Kg)(9.8m/s2)(2.00m) 1
2

(12Kg)v2 0

v  4.43
m
s

Now let’s do it the longish way (Ch 4-5)
+

+

-

-

T

T

m1g

m2g

For m1 Newton’s 2nd law reads y : m1gT  m1a
For m2 Newton’s 2nd law reads y : m2g T  m2a

 T  m1am1g

m2g  (m1am1g)  m2a
m2g m1a m1g  m2a
(m2 m1)g  (m2 m1)a
(m2 m1)
(m2 m1)

g  a

Then we use kinematic to solve for v (Ch 1-3)

y  y0  h
vy  ?
vy0  0

ay  
m2  m1

m1  m2









g

t 

vy
2  vy0

2 2ay (y  y0)

vy
2  0  2 

m2  m1

m1  m2









g(h)

vy  2
m2  m1

m1  m2









gh  4.43

m
s What if I had asked for the time? Would I have a choice?



Problem 7.46: Energy + circular motion
A car in an amusement park ride rolls without friction around the track 
shown in the figure . It starts from rest at point A at a height h above the 
bottom of the loop. Treat the car as a particle.

(a) What is the minimum value of h (in terms of R) such that the 
car moves around the loop without falling off at the top (point B)?
(b) If the car starts at height h= 4.00 R and the radius is R = 20.0 
m, compute the radial acceleration of the passengers when the 
car is at point C, which is at the end of a horizontal diameter.

What is the minimum velocity so at B we are going around 
a CIRCLE? You will feel like you are flying and not touching 
the track?

mg
FN

+

-
r : mg FN  m

v2

R

g 
vmin

2

R
 vmin

2  gR

Now we know the velocity (or KE) we need at B so we can 
use conservation of energy (remember FN does no work so 
Wother=0) to get it EA  EB

1
2

m vA
2mgyA 

1
2

m vB
2mgyB

0  mgh 
1
2

mgR  mg2R

h 
5
2

R



Problem 7.46: Energy + circular motion
A car in an amusement park ride rolls without friction around the track 
shown in the figure . It starts from rest at point A at a height h above the 
bottom of the loop. Treat the car as a particle.

(a) What is the minimum value of h (in terms of R) such that the 
car moves around the loop without falling off at the top (point B)?
(b) If the car starts at height h= 4.00 R and the radius is R = 20.0 
m, compute the radial acceleration of the passengers when the 
car is at point C, which is at the end of a horizontal diameter.

mg
FN

+- r : FN  m
v2

R
 3mg

The radial acceleration is v2/R so we need v at C. We can use 
conservation of energy (remember FN does no work so Wother=0) to get it

EA  EC

1
2

m vA
2 mgyA 

1
2

m vC
2 mgyC

0  mg4R 
1
2

m v2 mgR

v2  3gR  ar 
v2

R
 3g



Problem 7.63 Conservation of energy and circular motion
A skier starts at the top of a very large, frictionless snowball, with a very small initial 
speed, and skis straight down the side (the figure ). At what point does she lose 
contact with the snowball and fly off at a tangent? 

A

B
mg cosα

mg sinα
mg

FN

Similar to the roller coaster from A to B use conservation and 
at B use FN=0 when it flies off.

EA  EB

1
2

m vA
2 mgyA 

1
2

m vB
2 mgyB

0 mgR 
1
2

m v2mgRcos

v2  2Rg(1 cos)

r : mgcos  FN  m
v2

R
tan : mgsin  matan

 mgcos  0  m2g(1 cos)

cos 
2
3
 48o


