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Learning Goals for Chapter 10

Looking forward at ...
* what is meant by the torque produced by a force.

* how the net torque on a body affects the body’s rotational
motion.

* how to analyze the motion of a body that both rotates and
moves as a whole through space.

* how to solve problems that involve work and power for
rotating bodies.

* how the angular momentum of a body can remain constant
even 1f the body changes shape.
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Introduction

* These jugglers toss the pins so that they rotate in midair.

* What does it take to start a stationary body rotating or to bring
a spinning body to a halt?

* We’ll introduce some new concepts, such as torque and
angular momentum, to deepen our understanding of rotational
motion.
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Loosen a bolt

* Which of the three equal-magnitude forces in the figure 1s
most likely to loosen the bolt?

Axis of rotation

Force close to axis of

f;; rotation: not very

effective

&

Force farther from
axis of rotation:
more effective

Force directed
toward axis of
rotation: no effect
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Torque

* The line of action of a force is
the line along which the force
vector lies.

* The lever arm for a force 1s the
perpendicular distance from O
to the line of action of the
force.

* The torque of a force with
respect to O 1s the product of
the force and its lever arm.
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F, tends to cause counterclockwise rotation
about point O, so its torque is positive:
T = +F|[1

TR o Line of action
of F,
Ae
ﬁ3 [~ Lever
Aﬁ;—ﬁ_* s arms of F;
.f;.‘—"(" .: —
/';AQS’,_ZV‘ ...' and F 2
The line of action of Fj
passes through point O, 1 §ie of

so the lever arm and 2

action of F,
hence the torque are zero.

B,

¢
= ‘
F, tends to cause clockwise rotation about point
O, so its torque 18 negative: 7o = —F,l,



Three ways to calculate torque

Three ways to calculate torque:
T=Fl=rFsin¢p = F,_ r

tan

~~Line of action of F

[ = rsin ¢
= lever arm
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Torque as a vector

* Torque can be expressed as a vector
using the vector product.

* If you curl the fingers of your right

hand in the direction of the force 7 .37"‘—1
around the rotation axis, your (outofpage) T4
outstretched thumb points in the S
direction of the torque vector.

Torque vector-.., . Vector from O to where F acts

due to force F “a> __ ey

relative to point O e F""-Force F
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Newton’s 2" Law in angular sense:
2 t=1Jais justlike 2 F =ma

Moment of inertia AROUND the
Same PP (O in the ﬁgure) Line of action

of both forces
Action-reaction pair F
Y, -

3 el = D00 Particl 2
T =1l i
>

Z . u 4 .

»
z = on 2
bl
o0
Lever amm /-t X Trmi

of both forces

Sum of torques on a ngid object - - )
AROUND a PP (O in the figure) =Sy~

The label z is to remind you that the actual torque and angular velocity vector
point perpendicular to the x-y plane defined by the force and the leverage arm

This angular equation is IN ADDITION to any linear force which moves the center of
mass but as long as the axis of rotation is fixed we do not need to worry about the

linear motion. This changes when the rotating object is also moving




Torque and angular acceleration for a rigid
body

* The rotational analog of Newton’s second law for a rigid
body 1s:

Rotational analog of Newton’s second law for a rigid body:

-------- Moment of inertia of
Net torque on a--., e

rigid body
about z-axis

s rigid body about z-axis
S = fage [0

Angular acceleration of

rigid body about z-axis

* Loosening or tightening a screw
requires giving it an angular
acceleration and hence applying
a torque.
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Flywheel problem from Ch 9
(using work energy theorem)

The cable is wrapped around a cylinder. If it unwinds 2.0 m by pulling it with a

force of 9.0 N and it starts at rest, what is its final angular velocity and
velocity of the cable? (use work energy theorem)

2.0m

9.0N l |
Wroral=m _KE:' - - % >
1 |
FAX‘=—Ia) - 50 ke 0.120 m

{77 !7 !
FAx 4FAx S
mR?

v=Rw= (20 rad/s)(0.060 m) =1.2 m/s



Flywheel problem using torque
(using work energy theorem)

The cable is wrapped around a cylinder. If it unwinds 2.0 m by pulling it with a

force of 9.0 N and it starts at rest, what is its final angular velocity and
velocity of the cable? (use work energy theorem)

I=1AJIQ2 90N le . |
2 ‘. I~ ;\\// -\
T=FR=(9.0N)(0.06 m) T
50 kg 0.120 m
r=Ia=-a=£=2FIS= i - 6.0 rad/s* J‘
I MR- MR

Use a to get acceleration of the cable:

a,, =Ra = (0.06m)(6.0 rad/s”) = 0.36 m/s’

B ; 2 2
Then use kinematics v: =vy+2a, (x - Xx,)

v =+/0+2(0.36 m/s>)2 m) =12 /s



What is the velocity of the block
when it hits the ground?

(2) (b)

The work done by the cable is zero w
since the two tension forces cancel i
each other out so energy is conserved @

KE, + PE, -KE, + PE, ' M JML

0+mgh=lmv2+llw2+0 (L

2 2 Cylinder and block at rest Block about to hit ground

1, 1(1_  \vY
O+mgh=—mv +—|-MR" || | +0
2 2\2 R

| 2mgh
" Y(m+M/”2)




Another look at the unwinding cable

What is the linear acceleration of the block?

These are two coupled objects; one rotates
and the other moves linearly

(@) Diagram of simation  (b) Free-body diagrams

y
|

For the rotating wheel we have: r
T=Ic -
Cylinder (™1 X
1 a 1 ' T f( )
T =—MR2(—) =T =—Ma G
2 R 2 h ” YMg
For the block we have:
mg -1 =ma 7 e Block ‘ir—"
Combine the two equations to get =
1 |

mg—;Ma=ma )

mg
m+M)/2

=



Rigid body rotation about a moving axis

* The kinetic energy of a rotating and translating rigid body 1s

K=12Mv_ >+ 121 o’ H
;x /\i\
There are two parts: % %
/ \
I \

\

/
1. Motion of the CM (Center of Mass) A % .
2. Rotation about the CM "'

The motion of this tossed baton can be
represented as a combination of ...
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Rolling without slipping

* The motion of a rolling wheel 1s the sum of the translational
motion of the center of mass plus the rotational motion of the
wheel around the center of mass.

The condition for rolling without slipping 1s v, , = Rw.

Rotation around center of mass:
Translation of center of mass:  for rolling without slipping,

speed at rim = v Combined motion

velocity v -

cm

— — ! _ —
3 U By = Da

l
)

Wheel is instantaneously at rest
where 1t contacts the ground.
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Rolling with and without slipping

This is the condition to roll

When rolling without slippingthen v = Rm _
cm without slipping.

Then, if you are rolling without slipping the kinetic energy is

KE l 2 ll 2 l 2 llﬂz
=3 MVem + 5 L@ =MV + 5705

Also note that when one is rolling without slipping (i.e. rolling down an
incline) the friction force is static so no work is done by it and energy Is
conserved in this case.

Rotation of the wheel around
Translation of the center the center of mass: for rolling Combination of translation
of mass of the wheel: without slipping, the speed at and rotation: rolling
velocity 0,

"em the rim must be v, without slipping

" = __ o
0y =0y Uy = <lyy

Wheel is instantaneously at rest
where it contacts the ground.



Consider the speed of a yo-yo toy

What is the speed of the Yo-yo at the bottom (use conservation of energy)

Why conservation of energy: the hand is not moving so it
does no work on the system. You may be confused about
the tension but keep in mind that it is an internal force so

the sum of the upper and lower tension is zero. ‘GRBI

l—— |
Ei i E, M

1
0+Mgh__,uv- +=1I °

(=] 1m

-

1 11 Vv Y
0+Mgh-2Mv_+2(2MRIR)

Mgh=—Mv
g 4 (<
4
=YV == —_— h




The race of objects with different moments

g =)
= =5 4 - e
-,

Let’s figure out which circular object has the largest velocity when it reaches the
bottom of the ramp. They roll without slipping so energy is conserved.

E‘=EI
1 1 _ [2gh _ |10gh
o+Mgh=EMv;+§1,m' - —11+3 V7
0 Mh—lMV‘ 11 hz_lu l_lg_vi | >
T =y ety el g ) T2 T v-.=v|ﬁ= =
-
1 I 1+1
- .
Mgh 20+MR')W‘. Jomder _ [28h _ |4gh
2gh - vl,,l 3
2

=v~= ’
il+—ﬂ-

MR?



Combined translation and rotation

* Airflow around the wing of a maple seed slows the falling
seed to about 1 m/s and causes the seed to rotate about its
center of mass.

Maple seed
falling
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Rolling with slipping

* The smoke rising from this drag racer’s rear tires shows that
the tires are slipping on the road, so v, 1s not equal to Rw.
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Combined translation and rotation: dynamics

* The acceleration of the center of mass of a rigid body is:

Net external ==+, > > ' ‘
force on a hody EFext = Mak “Acceleration of
center of mass
* The rotational motion about the center of mass 1s described
by the rotational analog of Newton’s second law:

Net torque on a rigid ====--..,_ <

_ “ . rigid body about z-axis
body about z-axis E T, = Loml, 4., .
e o *Angular acceleration of
through center of mass =

rigid body about z-axis

* This 1s true as long as the axis through the center of mass 1s
an axis of symmetry, and the axis does not change direction.
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The yo-yo (again)

This time let’s calculate the acceleration

The linear Newton’s equation read:

The rotational Newton's equation read:

0: 21': =la,

Ty +Tp =1,

0+ RT - L pMR? %en
2 R
1 =
T =EMa""’

(b) Free-body diagram for
the yo-yo

(a) The yo-vo




Rolling friction

* We can 1gnore rolling friction if both the rolling body and the
surface over which it rolls are perfectly rigid.

* If the surface or the rolling body deforms, mechanical energy
can be lost, slowing the motion.

Normal force ;
produces a torque about
the center of the sphere that
opposes rotation.
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Consider the acceleration of a rolling sphere

The linear Newton's equations read:

(b) Free-body diagram for the

bowling ball (@) The bowling ball

X EF = macm—x Mgsmﬁ_ Ff-.ﬂ'ar =ma

y: EF -0 F, —Mgcosf3=0
a - R‘tl/
The rotational Newton's equation read: M @ E
=
6 : Er: =la,
T, + Ty + T4 =1,
0+0+RF, == MR*® M ZMa_ - M
+ =— MR- —= = Mgsinf—-—Ma_ = Ma
L5 f 5 R g ﬁ 5 cm cm
2 S .
F, ==Ma a,, ==gsinp
5 B 7



Work in rotational motion

* A tangential force applied to a rotating body does work on it.

Work done by ™ Ul?lper limit = final angular position

...... o 62 ‘:
a torque 7, 'AW . 40 i Integral of the torque
4 Tz i with respect to angle
I i
" Lower limit = initial angular position
(b) Overhead view of merry-go-round
(a) s

S Child applies
| tangential force.

V) i
= ._
Fyy,
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Work and power In rotational motion

* The total work done on a body by the torque 1s equal to the
change 1n rotational kinetic energy of the body, and the
power due to a torque 1s:

Torque with respect to body’s rotation axis

Power due to a torque -+

P . ¥
acting on a rigid body = LY

P Angular velocity of body about axis

* When a helicopter’s main rotor 1s
spinning at a constant rate, positive
work 1s done on the rotor by the engine
and negative work 1s done on 1t by air
resistance.

* Hence the net work being done is zero
and the kinetic energy remains constant.
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Three ways to calculate torque:

Recap of Ch 10 so far r=Fl=rFsing = Py

* Force applied on a lever arm Fin = Fsin ¢~
produces a torque:

Torque vector .., u,.--Vector from O to where F acts 7@

due to force F ™= = 7 out of page) =
. . T=rXF, , pag L -

relative to point O .. Force F Line of action of F

0 [ = rsin ¢
. . = lever arm
 Like 2" law shows F=ma , this 7
produces an angular acceleration -
Rotational analog of Newton’s second law for a rigid body: R (‘\f
D e Moment of inertia of hﬂ‘\‘ Vg = 0
1_\.Ie.ldtcirq(ll.u, On ey 27 _ I(; rigid body about z-axis =7 M//}g} ® =0
f.lg_l 3_0{ y- , g g Yoena, Angular acceleration of
about z-axis e :
rigid body about z-axis h
* We used this to solve many N
rotation problems, including 2——

translation + rotation Dem



Angular Mog}nentum of a point object

L = angular momentum of particle

/ Lis perpendicular to the plane of
7 motion (if the origin O 1s in that plane)
and has magnitude L = muvl.
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Angular momentum of a Rigid Body

Slice of Y * To find the total angular
rigid body < momentum of a rigid
rotating | ~ N body rotating with
i b f =rno \ angular speed o, first
i 5 | consider a thin slice of the
“ body.

* Each particle 1n the slice
with mass m, has angular
momentum:

. = angular momentum of ith I = 9
/ particle of rigid body i~ mri o

< L, 1s perpendicular to the plane of motion
(if the origin O is in that plane) and has

magnitude L, = m;v;r; = m;r .
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Angular momentum

* For a rigid body rotating around an axis of symmetry, the
angular momentum i1s:

Angular momentum of ... _, G Moment of inertia of body
c » . a = b SR

a rigid body rotating L =]o y about symmetry axis

around a symmetry axis Angular velocity vector of body

* For any system of particles, the rate of change of the total
angular momentum equals the sum of the torques of all forces
acting on all the particles:

For a system of particles: dl_: Rate of change of total
Sum of external torques ===*=**** A 2: T = — 4 angular momentum L
on the system dt of system
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Angular momentum

* The angular momentum of a rigid body rotating about a

symmetry axis 1s parallel to the angular velocity and 1s given
by L=1w.

If you curl the
fingers of your
right hand in
the direction
of rotation ...

... your right thumb
points in the direction

1s an axis of symmetry,
this 1s also the direction
| of L.
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Angular Momentum

Recall that torque was definedas T =7 x F
Similarly the angular momentum of a particle is

—

L=rxp=rxmv

Also, just as before for linear momentum we can show that the rate of change
of the angular momentum on a particle is equal to the torque on that particle

dL d . . d&F _ . dv _ . . -
—=—FxmV)=—xmV+rxm—=VxmvV+rxma=0+7 x F
dt dt dt _dt
_z.9
dt

FOR A RIGID BODY ONE USES THE MOMENT OF INERTIA
TO DEFINE THE ANGULAR MOMENTUM

-l

L=Iw




Conservation of angular momentum

* When the net external torque acting on a system 1s zero, the
total angular momentum of the system 1s constant
(conserved).

— 3 s (
? . } ? L=
Dumbbell | Dumbbell B

N — Se=—E N

% j[\Professor - !

a EinOtgb 11) | /
; umbbe

0 }\\ 7] D

L =

BEFORE AFTER
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Conservation of angular momentum

* A falling cat twists different parts of its body in different directions
so that 1t lands feet first. At all times during this process the angular
momentum of the cat as a whole remains zero.
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How a car’s clutch work

The clutch disk and the gear disk is
pushed into each other by two forces

that do not impart any torque, whatisthe = . —
final angular velocity when they come "
together?

Forces F and =F are along the axis of rotation,

L before = L after and thus exert no torque about this axis on
& m either disk \
lo,+1,0, =(IA+IB)aJﬁM, | .
o, +1,0w, 5 7 p
= w = AFTER s -—

(0 + 1)

Iy + Iy



Angular momentum conservation in collisions

A door 1.00 m wide, of mass 15 kg, is hinged at one side so that it can rotate
without friction about a vertical axis. It is unlatched. A police officer fires a bullet
with a mass of 10 g and a speed of 400 m/s into the exact center of the door, in a
direction perpendicular to the plane of the door. Find the angular speed of the

door just after the bullet embeds intelf in the door.

L

z—before = L:-aﬁer
myvpl=(I,, +m312)wf

1 2 7
myvyl = (;Md"’ +myl ),

[
M5V =04 rad/s

:w

Sl T >
(—3 Md- + mBl")

HMge




Supernova and Neutron stars

Exercise 10.39

Under some circumstances, a star can collapse into an extremely dense
object made mostly of neutrons and called a neutron star. The density of a
neutron star is roughly 10 times as great as that of ordinary solid matter.
Suppose we represent the star as a uniform, solid, rigid sphere, both before
and after the collapse. The star's initial radius was 6.0x10° km (comparable
to our sun); its final radius is 17 km. If the original star rotated once in 32

days, find the angular speed of the neutron star.

Twice as big as Sun, but as
small as campus perimeter




Gyroscopes and precession

* For a gyroscope, the axis of rotation changes direction.

* The motion of this axis is called precession.

Circular motion

of flywheel axis 0 Flywheel
(precession) @
| £

Flywheel
! axis
Ll . Pivof — =~
(\ _ 1VO _|7'
Path follo_\;/gd_> -
by free end of Rotation of
axis flywheel

When the flywheel and its axis are stationary,
they will fall to the table surface. When the
flywheel spins, it and its axis “float” in the air
while moving in a circle about the pivot.
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Gyroscopes and precession

* If a flywheel 1s (a) Nonrotating flywheel falls
initially not
spinning, its N
initial angular

) > T=rXw
momentum 18 n
ZEero. :
Pivot
Y - |“ x
AXxis
I
I
/
/

J< Path of free end

When the flywheel is not rotating, its weight
creates a torque around the pivot, causing it
to fall along a circular path until its axis rests
on the table surface.
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Gyroscopes and precession

* In each. | (b) View from above as flywheel falls
successive time
interval dt, the : .
torque produces aL (L, = 0)
a change 1n the dL
angular . dLmy = |L,
momentum in the F1VOL dL
same direction as \ dL %
the torque, and &
the flywheel axis Flywheel
falls.

In falling, the flywheel rotates about the
pivot and thus acquires an angular momentum
L. The direction of L stays constant.
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A rotating flywheel

* This flywheel 1s
initially spinning,
with a large
angular
momentum.
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(a) Rotating flywheel

When the flywheel is rotating, the system
starts with an angular momentum L; parallel
to the flywheel’s axis of rotation.

»  Rotation of flywheel

7 Torque due to weight
force (as in Fig. 10.33)

b,

Initial angular
momentum due to
rotation of flywheel




A rotating flywheel

* Because the initial
angular momentum 1s
not zero, each change
in angular momentum
1s perpendicular to the
angular momentum.

* As aresult, the
magnitude L remains
the same but the
angular momentum
changes its direction
continuously.
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(b) View from above

Now the effect of the torque 1s to cause
the angular momentum to precess around
the pivot. The gyroscope circles around
its pivot without falling.

Y




