A few issues in CSM interaction signals (and on mass loss estimates)

Keiichi Maeda
Radio/X constraints on CSM around SNe Ia

Useful limit for SN 2011fe: $\dot{M}/v_w < \sim 10^{-8} M_\odot \text{yr}^{-1}/100 \text{km s}^{-1}$

Radio: Synchrotron
X-Ray: Inverse Compton (+ thermal)
What we see in radio and X

Radio: Synchrotron
X: Inverse Compton (low density)
Thermal (high density CSM)

Best studied cases: IIb/Ib/Ic
(lower density → less complication)
Shock ⇒ Relativistic particle acceleration

Shock wave
- B amplification
- Acceleration.

Equipartition
\[E_B = \varepsilon_B \rho V^2 \sim B^2 \]
\[E_e = \varepsilon_e \rho V^2 \]

\[N_e(\gamma) \]
\[\gamma \sim 1 \quad (T \sim \text{keV}) \]
\[\gamma \gg 1 \]
Robustness of the mass loss estimate?

- Limits placed by signals from relativistic electrons.
- One assumes “macroscopic parameters”, $\varepsilon_e + \varepsilon_B$, under several assumptions.
 - (quasi-equipartition).
 - $U_e = \varepsilon_e \rho V^2$, $U_B = \varepsilon_B \rho V^2$.
 - A single power law.
 - Describes both e’s emitting radio synchrotron and X-ray IC.
- Not only for the mass-loss constraints, but interesting questions themselves (particle acceleration mechanism not yet clarified).
Non-thermal emission: SN vs. SNR

Young SNe
- Days to years
- Distance ~10 Mpc
- Time evolution: yes
- CR trapped (?)

SNRs
- >100 years
- ~ kpc
- No
- CR partly escaping

Graphical Representation

- **Left Panel**
 - Days since explosion: 16, 20, 25, 35 days
 - Flux density (mJy)
 - VLA
 - Soderberg + 2012, Krauss + 2012
 - 10 GHz

- **Right Panel**
 - X-ray luminosity (10^40 erg s^-1)
 - SWIFT + Chandra
 - Soderberg + 2012
 - 10^39 erg s^-1
Synchrotron Characteristics

\[f_{\nu} \propto \nu^{\alpha} t^{\beta} \]

<table>
<thead>
<tr>
<th>Adiabatic</th>
<th>Syn-cooling</th>
<th>IC-cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indices</td>
<td>Indices</td>
<td>Indices</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(\frac{1-p}{2})</td>
<td>(-\frac{p}{2})</td>
</tr>
<tr>
<td>(\beta)</td>
<td>((3m-3) + \frac{1-p}{2})</td>
<td>((3m-3) + \frac{2-p}{2})</td>
</tr>
<tr>
<td>(\alpha(p = 2))</td>
<td>(-\frac{1}{2})</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\beta(p = 2))</td>
<td>((3m-3) - \frac{1}{2})</td>
<td>((3m-3))</td>
</tr>
<tr>
<td>(\alpha(p = 3))</td>
<td>(-1)</td>
<td>(-\frac{3}{2})</td>
</tr>
<tr>
<td>(\beta(p = 3))</td>
<td>((3m-3) - 1)</td>
<td>((3m-3) - \frac{1}{2})</td>
</tr>
</tbody>
</table>

\(p \): Rel-e distribution, \(n(E) \propto E^{-p} \)

\(m \): Shock evolution \(R \propto t^m \) ← CSM distribution

\(\delta \): opt-IR time evolution, \(L_{th} \propto t^\delta \) (observed)

\(\alpha, \beta \) (obs) \Rightarrow e's \ distribution \((p)\) + CSM distribution

Radio synchrotron from SNe (\(\sim \) GHz).

Generally, \(p \sim 3\).

It is very peculiar.
Galactic SNRs in radio

<table>
<thead>
<tr>
<th>l</th>
<th>b</th>
<th>RA (J2000.0)</th>
<th>Dec (dd mm ss)</th>
<th>size/arcmin</th>
<th>type</th>
<th>1-GHz flux/Jy</th>
<th>spectral index</th>
<th>other name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>+0.0</td>
<td>17 45 44</td>
<td>-29 00</td>
<td>3.5x2.5</td>
<td>S</td>
<td>100?</td>
<td>0.8?</td>
<td>Sgr A East</td>
</tr>
<tr>
<td>0.3</td>
<td>+0.0</td>
<td>17 46 15</td>
<td>-28 38</td>
<td>15x8</td>
<td>C</td>
<td>22</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>+0.1</td>
<td>17 47 21</td>
<td>-28 09</td>
<td>8</td>
<td>C</td>
<td>18?</td>
<td>varies</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>-0.1</td>
<td>17 48 30</td>
<td>-28 09</td>
<td>8</td>
<td>S</td>
<td>15</td>
<td>0.6?</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>-0.1</td>
<td>17 49 39</td>
<td>-27 46</td>
<td>10</td>
<td>S</td>
<td>2?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>+0.3</td>
<td>17 48 45</td>
<td>-27 10</td>
<td>1.5</td>
<td>S</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>-0.2</td>
<td>17 55 26</td>
<td>-25 50</td>
<td>14x11</td>
<td>S</td>
<td>2.3</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>+0.3</td>
<td>17 52 55</td>
<td>-25 28</td>
<td>18</td>
<td>S?</td>
<td>3?</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>-3.5</td>
<td>18 08 55</td>
<td>-27 03</td>
<td>28</td>
<td>S</td>
<td>3.2?</td>
<td>0.6?</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>+6.8</td>
<td>17 30 42</td>
<td>-21 29</td>
<td>3</td>
<td>S</td>
<td>19</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>+6.2</td>
<td>17 33 25</td>
<td>-21 34</td>
<td>18</td>
<td>S</td>
<td>3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>-2.6</td>
<td>18 07 30</td>
<td>-25 45</td>
<td>18</td>
<td>S?</td>
<td>2.6?</td>
<td>0.6?</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>-1.2</td>
<td>18 02 10</td>
<td>-24 54</td>
<td>35</td>
<td>C?</td>
<td>35?</td>
<td>0.2?</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>+0.3</td>
<td>17 57 04</td>
<td>-24 00</td>
<td>15x12</td>
<td>S</td>
<td>5.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>+3.1</td>
<td>17 47 20</td>
<td>-22 16</td>
<td>20</td>
<td>S</td>
<td>3.3?</td>
<td>0.4?</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>+0.5</td>
<td>17 57 29</td>
<td>-23 25</td>
<td>18x12</td>
<td>S</td>
<td>4.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>+1.2</td>
<td>17 54 55</td>
<td>-23 05</td>
<td>30x26</td>
<td>F</td>
<td>4.0?</td>
<td>0.3?</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>-0.1</td>
<td>18 00 30</td>
<td>-23 26</td>
<td>48</td>
<td>C</td>
<td>310</td>
<td>varies</td>
<td>W28</td>
</tr>
<tr>
<td>6.6</td>
<td>+1.1</td>
<td>17 44 10</td>
<td>-22 23</td>
<td>37</td>
<td>S?</td>
<td>27?</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>-0.1</td>
<td>18 01 50</td>
<td>-22 54</td>
<td>15</td>
<td>S</td>
<td>2.5?</td>
<td>0.5?</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>+0.2</td>
<td>18 01 07</td>
<td>-22 38</td>
<td>12</td>
<td>S</td>
<td>2.8</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>-3.7</td>
<td>18 17 25</td>
<td>-24 04</td>
<td>22</td>
<td>S</td>
<td>11</td>
<td>0.32</td>
<td>1814-24</td>
</tr>
<tr>
<td>8.3</td>
<td>-0.0</td>
<td>18 04 34</td>
<td>-21 49</td>
<td>5x4</td>
<td>S</td>
<td>1.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>-5.0</td>
<td>18 24 10</td>
<td>-24 48</td>
<td>26</td>
<td>S</td>
<td>4.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>-0.1</td>
<td>18 05 30</td>
<td>-21 26</td>
<td>45</td>
<td>S?</td>
<td>80</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>+0.4</td>
<td>18 03 58</td>
<td>-21 03</td>
<td>24</td>
<td>S</td>
<td>9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>-0.0</td>
<td>18 07 22</td>
<td>-20 35</td>
<td>15x11</td>
<td>S</td>
<td>3.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>+0.6</td>
<td>18 05 08</td>
<td>-20 14</td>
<td>12</td>
<td>S</td>
<td>3.9</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>9.9</td>
<td>-0.8</td>
<td>18 10 41</td>
<td>-20 43</td>
<td>12</td>
<td>S</td>
<td>6.7</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

Prediction: $p = 2$

$p \sim 3$ is peculiar

Mostly $\alpha = 0.5 - 0.7 \Rightarrow p = 2 - 2.4$
Synchrotron emitting e's energy

Synchrotron frequency

\[E_B = \varepsilon_B \rho V^2 (\sim B^2) \]

SNR

\[n \sim 1 \text{ cm}^{-3} \]
\[V \sim 0.01c \]

⇒ \[B \sim 100 \mu \text{G} \]
⇒ \[1 \sim 10 \text{ GeV} \]

SN (Ib/c)

\[n \sim 10^6 \text{ cm}^{-3} \]
\[V \sim 0.1c \]

⇒ \[B \sim 1 \text{G} \]
⇒ \[10 \sim 100 \text{ MeV} \]

Energy of the emitting e's different.
Inverse Compton emitting e’s energy

\[\sim 1 \text{ eV} \Rightarrow \sim 1 \text{ keV} \]

\[e \text{’s energy: } \gamma \sim \sqrt{1000} \sim 30 \Rightarrow 20 \text{ MeV} \]

\[< \text{ radio-synchrotron emitting e’s } \sim 100 \text{ MeV} \]
Injection problem(?)

Fermi mechanism requires:
Rel e’s mean path > Shock width

Rel e’s gyro radius
> thermal p’s gyro radius

$\gamma_e > \left(\frac{m_p}{m_e} \right) \left(\frac{V}{c} \right) \sim 200$ if $V \sim 0.1 \, c$
20 if $V \sim 0.01 \, c$

More serious in SNe Ia?

Shock velocity

\[V_c = 8 \times 10^9 E_{51}^{0.43} \left(\frac{M_{SN}}{M_\odot} \right)^{-0.32} A_*^{-0.12} t_d^{-0.12} \text{cms}^{-1} \]

A*=(\text{Mdot}/v_w)/(10^{-5}M_\odot\text{yr}^{-1}/1000\text{kms}^{-1})
A*~1 for a WR (SNe Ib/c) \Rightarrow V \sim 0.1c.
A* \sim 0.01 for a SD (SNe Ia) \Rightarrow V \sim 0.3c.

\[\gamma_e > \left(\frac{m_p}{m_e} \right) (V/c) \sim 200 \text{ if } V \sim 0.1 \text{ c} \]
\[600 \text{ if } V \sim 0.3 \text{ c} \]
\[>> \gamma_{\text{syn}} (\sim 100), \gamma_{\text{IC}} (\sim 30) \]

Anyway, studying SNe IIb/Ib/Ic (“low” density) is the only way to calibrate the assumptions we use for Ia’s.
Young SNe ⇒ Probe for e’s acceleration

Requires non-Fermi Mechanism (Injection?)

Young SNe

SNRs

Fermi Mechanism

What is the energy scale here?

\[N_e(\gamma) \]

\[\text{keV} \sim \text{MeV} \]

\[\sim 100 \text{ MeV} \]

\[\sim 10 \text{ GeV} \]

Rel e’s energy
If there is a change in the spectral slope, could be detectable with ALMA.

X-ray

Calc. example

thermal

Compton

Synchrotron

$p \sim 2 @ > 100 \text{ MeV}$

$p \sim 2 @ > 500 \text{ MeV}$

$p \sim 3$ throughout

SN IIb 2011dh... radio mass loss estimate

$\varepsilon_e = 6 \times 10^{-3}$, $\varepsilon_B = 5 \times 10^{-2}$, $A^* = 4$

$\varepsilon_e = 1 \times 10^{-2}$, $\varepsilon_B = 1 \times 10^{-3}$, $A^* = 30$

Adiabatic Cooling (IC)
Constraints on Shock Microphysics (+CSM)

Mass loss

Low velocity model
(similar to Soderberg+12)

Dynamics from optical emission constraints
(velocity higher, but still consistent with VLBI)

\[\sim 2 < A^* \sim 30 \]

\[\varepsilon_e < 0.01 \] (!!)

\[\varepsilon_B \) can be anything
(unless A* fixed)
Importance of inverse Compton

• Sometimes people do the following to explain X-rays from SNe IIb/Ib/Ic.
 e.g., Soderberg+2012, Krauss+2012, Horesh+2012

• Radio interpretation assuming “adiabatic”.

• Introducing large $\varepsilon_e (>0.1)$ (to get many relativistic electrons).

Equi-partition

$E_B = \varepsilon_B \rho V^2 \sim B^2$

$E_e = \varepsilon_e \rho V^2$
Inverse Compton in Radio is important

$\varepsilon_e = 0.006$

$\varepsilon_e = 0.26$

No/little evidence of IC cooling in most of SNe IIb/Ib/c.

$\Rightarrow \varepsilon_e$ is generally below 1%.
Radio + X from SN IIb 2011dh

- $A^* \sim 30$
 - X is thermal.
- $A^* \sim 4$
 - X is Compton.
- Radio emitting e’s \Rightarrow equivalent to $\varepsilon_e < 0.01$
 - CSM upper-limit in Ia’s increases by ~ 10 (if the same with 2011dh).
SNe Iax: Radio and X-ray so far constraining?

- Low V \Rightarrow faint.
- Observations need to go down by another factor of 10 to be constraining.

![Graph showing luminosity vs. time for different models.](image)
Summary

• Relativistic electrons responsible to SN radio and X are at the low energy.
 – It is probably below the lower-limit where the “standard” acceleration works.

• A need to constrain the e’s properties at this energy scale.
 – SNe IIb/Ib/Ic in multi-λ is a (only?) way.
 – SN 2011dh useful information (e.g., IC in radio constrains the radio-syn e’s pretty well).
 – But the difference to Ia’s should always be kept in mind.