Extrapolation Techniques for Asymmetry Measurements

Katrina Colletti

Z. Hong, D. Toback, J.S. Wilson
Texas A&M University
New Perspectives Meeting, Fermilab

kcolletti1@tamu.edu

June 8, 2015
Overview

1. Background, Motivation, and Goals

2. Study 1: Monte Carlo Simulation

3. Study 2: Closed Form Statistical Solution

4. Study 3: Closed Form Numerical Solution

5. Conclusions
Common in particle physics to measure asymmetries – in particular in collider experiments.

Often data can only be measured for a finite portion of the detector, must extrapolate to the total asymmetry.

\[
A^\text{total} = \frac{(C + D) - (A + B)}{A + B + C + D}
\]

\[
A^\text{finite} = \frac{C - B}{B + C}
\]

Can we use a simple constant multiplicative factor \(A^\text{total} = R \cdot A^\text{finite}\)?

If so, how much statistics needed to get reliable results, especially in the limit of small asymmetries?

Classic Example: forward-backward asymmetry (\(A_{FB}\)) measured in collider detectors:

- Positive Beam Direction
- Outgoing particle momentum
- \(\theta_{CM}\)
- Events = 1000000

Gaussian Distribution, Mean = 0
We start with a single Gaussian with a mean of μ as a good working model to build a foundation and give good insights into more complicated distribution models.

Examples from collider physics have shown that this approximation sometimes works.

It is not obvious if a linear extrapolation technique should work.

Since we typically use MC methods to estimate such values, we need to understand whether we can confidently use a constant R to linearly extrapolate, and understand the amount of statistics needed to get a reasonable measurement of it.
Study 1: Monte Carlo Simulation

- In our simple Gaussian model, A is linearly proportional to μ (the mean of the distribution)
- Example: $\mu = 0.1$ corresponds to $A^{\text{total}} \approx 8\%$ which is what we typically see in forward-backward asymmetry top quark measurements at the Tevatron
- Run many MC pseudo-experiments each with a large number of events, get distributions for A^{total}, A^{finite}, and R:
Study 1: Monte Carlo Simulation

- With enough statistics (i.e. large N), measurements of R are very accurate.
- As N decreases, measurement of R becomes unreliable, and can no longer correctly reproduce A^{total} from A^{finite}.
- This is observed for all values of μ.
With this understanding, we now aim to quantify this behavior to properly understand how many MC events in the original distribution, N, are needed to give reliable measurements of R.

We define f as the fraction of pseudo-experiments with $R < 0.5$ (very far from expected value).
Study 1: Monte Carlo Simulation

- Want $f \approx 0$, define a threshold value and observe the relationship between the number of events needed for reliable measurements and μ
- N falls as $\frac{1}{\mu^2}$

- Measurements of R for all values of μ with enough statistics give the same value
- Conclusion is that R is indeed constant for all μ for this simple Gaussian model, and a huge amount of MC statistics are needed to accurately measure the actual value for small μ (or equivalently small A)
Study 2: Closed Form Statistical Solution

- Let’s take a closer look at *why* the MC methods break down

- Require A_{total}^total (denominator of R) to be greater than *at least* 1σ away from 0 – to avoid the potential divide by 0 problem (math jargon: this is where the distribution transitions to a Cauchy regime)
The statistical question becomes: how many events, \(N \), are required for the mean of \(A_{FB}^{\text{total}} \) to be some number \((k \cdot \sigma)\) away from 0, thus giving reliable measurements

\[
\sigma_{A_{FB}^{\text{total}}} = \frac{A_{\text{total}}}{k}
\]

Using statistics (see backup slides), we are able to find \(N \) as a function of \(\mu \) for our single Gaussian model:

\[
N = 2k^2 \cdot \frac{\left(1 + \text{erf} \left(\frac{\mu}{\sqrt{2}} \right) \right)}{\text{erf} \left(\frac{\mu}{\sqrt{2}} \right)^2}
\]

Some limiting cases:

- As \(\mu \to 0 \), \(N \to \infty \)
- Using the approximation \(\text{erf} \left(\frac{\mu}{\sqrt{2}} \right) \approx \sqrt{\frac{2}{\pi}} \mu \) for small \(\mu \), we find that \(N \propto \frac{1}{\mu^2} \) which is precisely what we just saw from our MC study
Closed form solution: blue (for $k = 2$)

MC data: red

Excellent agreement!
Study 3: Closed Form Numerical Solution

- We calculate R as a function of μ using Mathematica
- Set $\sigma = 1.0$
- Plot R in the limit $\mu \to 0$
- For large values of μ, R only rises by 0.04% relative to $\mu = 0$

\[
A_{total} = \frac{(C + D) - (A + B)}{A + B + C + D}
\]

\[
A_{finite} = \frac{C - B}{B + C}
\]

\[
R = \frac{A_{finite}}{A_{total}}
\]
Conclusions

- We have used three methods to study the linear extrapolation of A_{finite} to an inclusive A_{total}.
- While we have only studied the simple Gaussian model, we observed that a linear extrapolation can be used, and while MC methods work reliably (even for small A) they can require much more significant statistics than expected.
- Our results have the potential to be applied for many different asymmetry measurements in collider experiments, and have already been useful at the Tevatron for the $t\bar{t}$ forward-backward asymmetry.
Thank You For Listening!
Any Questions?
We need enough statistics such that A_{FB}^{total}, the denominator of R, is more than 1 sigma away from 0 (we will set it to be k, where k will be determined later). In other words, we want to know how many events it takes in a pseudo-experiment to ensure the mean of the full asymmetry will be k standard-deviations away from zero. To do this we start with the equation

$$\sigma_{A_{FB}^{total}} = \frac{A_{FB}^{total}}{k}$$

(1)

where $\sigma_{A_{FB}^{total}}$ is the variation (or uncertainty) of the measured value of A_{FB}^{total}. We will find both $\sigma_{A_{FB}^{total}}$ and A_{FB}^{total} as functions of N and μ and substitute them into Eq. 1 to get the functional relation between N and μ for “good statistics”.
We begin with our definition of asymmetry,

\[A_{FB}^{total} = \frac{N_+ - N_-}{N_+ + N_-} \]

(2)

where \(N_+ = C + D \) and \(N_- = A + B \) as on Slide 2. Next we define \(N = N_+ + N_- \) as the total number of events in the original Gaussian distribution, and rewrite this as:

\[A_{FB}^{total} = \frac{2N_+ - N}{N}. \]

(3)

We note that since our distributions are Gaussian, we can write \(N_+ \) in terms of \(N \) and \(\mu \), with the relation given by

\[N_+ = \frac{N}{\sqrt{2\pi}} \int_{0}^{\infty} dx \ e^{-(x-\mu)^2/2} \]

\[= \frac{N}{2} \left(\text{erf} \left(\frac{\mu}{\sqrt{2}} \right) + 1 \right) \]

(4)
Plugging this in to Eq. 3 and reducing, we get

\[
A_{FB}^{total} = \frac{2^{N/2} \left(\text{erf} \left(\frac{\mu}{\sqrt{2}} \right) + 1 \right)}{\mathcal{N}} \left(\text{erf} \left(\frac{\mu}{\sqrt{2}} \right) + 1 \right) - \mathcal{N}
\]

\[
= \text{erf} \left(\frac{\mu}{\sqrt{2}} \right)
\]

We next find \(\sigma_{A_{FB}^{total}} \) by beginning with the definition given in Bevington (92) applied to our problem,

\[
\sigma_{A_{FB}^{total}} = \left(\frac{\partial A_{FB}^{total}}{\partial N_+} \right) \sigma_{N_+} + \left(\frac{\partial A_{FB}^{total}}{\partial N} \right) \sigma_{N}.
\]

Taking a simple derivative of \(A_{FB}^{total} \) from Eq. 3 gives us

\[
\left(\frac{\partial A_{FB}^{total}}{\partial N_+} \right) = \frac{2}{N}
\]
To be consistent with the previous study, we fix N and allow N_+ to vary. This means that $\sigma_N = 0$, and from simple statistics

$$\sigma_{N_+} = \sqrt{N_+}$$

(8)

Plugging Eqs. 7 and 8 into Eq. 6, we get

$$\sigma_{A_{FB}}^{\text{total}} = \frac{2}{N} \cdot \sqrt{N_+}.$$

(9)

Plugging Eq. 4 into this, we get

$$\sigma_{A_{FB}}^{\text{total}} = \frac{2}{N} \cdot \sqrt{\frac{N}{2}} \left(\text{erf} \left(\frac{\mu}{\sqrt{2}} \right) + 1 \right)$$

$$= \sqrt{\frac{2}{N}} \cdot \sqrt{\left(1 + \text{erf} \left(\frac{\mu}{\sqrt{2}} \right) \right)}.$$

(10)
Finally, plugging Eqs. 5 and 10 back into Eq. 1 gives us

$$\sqrt{\frac{2}{N}} \cdot \sqrt{\left(1 + \text{erf}\left(\frac{\mu}{\sqrt{2}}\right)\right)} = \frac{\text{erf}\left(\frac{\mu}{\sqrt{2}}\right)}{k},$$ \hspace{1cm} (11)

and solving for N, we get

$$N = \frac{2k^2 \left(1 + \text{erf}\left(\frac{\mu}{\sqrt{2}}\right)\right)}{\text{erf}^2\left(\frac{\mu}{\sqrt{2}}\right)}.$$ \hspace{1cm} (12)

This is, as we set out to solve for, the number of events it takes per pseudo-experiment to ensure the mean of the full asymmetry will be k standard-deviations away from zero, and thus give good statistics. Discussion of the implication of this result is included in the main slides.
\[A_{FB}^{total} = \frac{1}{\sqrt{2\pi}\sigma} \int_0^\infty dx \left[\exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right) - \exp\left(-\frac{(-x-\mu)^2}{2\sigma^2} \right) \right] \]
\[A_{FB}^{finite} = \frac{1}{\sqrt{2\pi}\sigma} \int_0^{1.5} dx \left[\exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right) - \exp\left(-\frac{(-x-\mu)^2}{2\sigma^2} \right) \right] \]
\[R = \frac{A_{FB}^{finite}}{A_{FB}^{total}} \]