Rotational Motion

I. Rotational Kinematics
II. Rotational Dynamics
 (Newton’s Law for Rotation)
III. Angular Momentum Conservation

Part I

1. Remember how Newton’s Laws for translational motion were studied:
 1. Kinematics ($x = x_0 + v_0 t + \frac{1}{2} a t^2$)
 2. Dynamics ($F = m a$)
 3. Momentum Conservation
2. Now, we repeat them again, but for rotational motion:
 1. Kinematics (θ, ω, α)
 2. Dynamics ($\tau = I \alpha$)
 3. Angular Momentum
Newton’s Laws for Rotation

\[\vec{\tau}_{\text{net}} = I \ddot{\alpha} \]

1st part

2nd part

3rd part

Kinematical variables to describe the rotational motion:

Angular position, velocity and acceleration

\[\theta = \frac{l}{R} \quad \text{(rad)} \]

\[\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \quad \text{(rad/s)} \]

\[\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} \quad \text{(rad/s}^2) \]
Linear and Angular Quantities

Angular position, velocity and acceleration:
- c.w. or c.c.w. rotation (like +x or –x direction in 1D)

Vector Nature of Angular Quantities

Kinematical variables to describe the rotational motion:
- Angular position, velocity and acceleration
- R.-H. Rule

\[
\theta = \frac{l}{R} \quad \text{(rad)}
\]
\[
\omega \hat{k} = \frac{d\theta}{dt} \hat{k} \quad \text{(rad/s)}
\]
\[
\alpha \hat{k} = \frac{d\omega}{dt} \hat{k} \quad \text{(rad/s^2)}
\]

≥0 or <0
Example 1 (α = constant)

(1) What is the angular speed of rotation of the Earth?
 1 rotation (2π rad) per 24 hours (1440 min)

(2) An old 33 1/3 rpm record player starts from rest and reaches operating speed in 2.00 seconds. Through what angle did it turn in those 2.00 seconds?
 $t = 2.00 \text{ s}, \omega_0 = 0, \omega = 33 \frac{1}{3} \text{ rpm}$

(3) A computer hard drive rotates at 5400 rpm. What angular acceleration will get it up to speed in just 150 revolutions starting from rest?
 Use Eq. (3) with $\theta - \theta_0 = 150 \text{ rev.} = ? \text{ rad}$

Example 1 (cont’d)

(4) A hard drive reaches 5400 rpm in 3.20 seconds. What was the average angular speed assuming constant angular acceleration?

(5) A dentist’s drill accelerates to 1800 rpm in 2.50 seconds. What is its angular acceleration?

(6) The angular velocity changes from 47.0 rad/s to −47.0 rad/s in 2.00 seconds. What is the angular acceleration?
Example 2

A grinding wheel turns at a constant angular acceleration of 60.0 rad/s² from 24.0 rad/s for 2.00 sec. Then, a circuit breaker trips. It turns through 432 rad as it coasts to a stop at a constant angular acceleration.

Find:
(a) the total angle between \(t = 0 \) and the time it stopped;
(b) the time it stopped;
(c) the angular acceleration as it slowed down.

Also sketch \(\theta \) vs. \(t \) graph.

Practice Problem 1

Problem 3: (25 points)
A grinding wheel turns at a varying angular acceleration of \(\alpha(t) = (30.0 \text{ rad/s}^2) t \) for 2.00 sec. Assume the initial angular speed of 20.0 rad/s. Then, a circuit breaker trips. It turns through 400 rad as it coasts to a stop at a constant angular acceleration.

a. (5 pts) Find the total angle (\(\theta_{\text{total}} \)) between \(t = 0 \) and the time it stopped.
b. (10 pts) Find the time (\(t_{\text{total}} \)) it stopped. Find the angular acceleration as it slowed down.
c. (10 pts) Sketch \(\theta \)-\(t \), \(\omega \)-\(t \), \(\alpha \)-\(t \) graphs.
Practice Problem 2

A solid cylinder (radius \(R = 2 \) m and height \(H = 5 \) m) turns at a constant angular acceleration of \(60.0 \text{ rad/s}^2 \) from \(24.0 \) rad/s for \(2.00 \) sec. Then, a circuit breaker trips. It turns through \(432 \) rad as it coasts to a stop at a constant angular acceleration.

(a) Find the total angle between \(t = 0 \) and the time it stopped.
(b) Find the time it stopped.
(c) Find the angular acceleration as it slowed down.
(d) Find the speed \((v)\) of point \(P\) at \(t = 2.00 \) sec.
(e) Sketch the motion of point \(P \) in \(v-t \) graph. Also sketch \(\theta t \) graph.

Part II

1. Remember how Newton’s Laws for translational motion were studied:
 1. Kinematics \(x = x_0 + v_0 t + \frac{1}{2} a t^2 \)
 2. Dynamics \(F = m a \)
 3. Momentum Conservation

2. Now, we repeat them again, but for rotational motion:
 1. Kinematics \(\theta, \omega, \alpha \)
 2. Dynamics \(\tau = I \alpha \)
 3. Angular Momentum
Torque due to Gravity?

\[\tau = \vec{r} \times \vec{F} = ? \]

We assume:

Center of mass (CM or cm) = Center of gravity (if uniform gravity)

Rotational Motion
Net Torque due to Gravity?

One extra sphere!
Do we need a new concept? No!

\[\vec{\tau}_{\text{net}} = \vec{\tau}_{\text{rod}} + \vec{\tau}_{\text{sphere}} \]

Solid sphere \((M, r)\)

Note: sign of \(\tau\) and \(\Sigma \tau\)

\[\tau_1 = F_1 \left(R_1 \sin 90^\circ \right) \]
\[= (50.0 \text{N})(0.300 \text{ m}) = 15.0 \text{ N} \cdot \text{m} \]

\[\tau_2 = F_2 \left(R_2 \sin 60^\circ \right) \]
\[= (50.0 \text{N})(0.500 \text{ m})(0.866) \]
\[= 21.7 \text{ N} \cdot \text{m} \]

\[\vec{\tau}_{\text{net}} = \vec{\tau}_1[\text{c.c.w.}] + \vec{\tau}_2[\text{c.c.w.}] \]
\[= \tau_1[1] + \tau_2[-1] \]
\[= [(15.0 \text{N} \cdot \text{m}) - (21.7 \text{N} \cdot \text{m})][\text{c.c.w.}] \]
\[= -6.7 \text{ N} \cdot \text{m}[\text{c.c.w.}] \rightarrow 6.7 \text{ N} \cdot \text{m}[\text{c.w.}] \]
Example 1

Calculate the torque on the 2.00-m long beam due to a 50.0 N force (top) about
(a) point C (= c.m.)
(b) point P

Calculate the torque on the 2.00-m long beam due to a 60.0 N force about
(a) point C (= c.m.)
(b) point P

Calculate the torque on the 2.00-m long beam due to a 50.0 N force (bottom) about
(a) point C (= c.m.)
(b) point P

Example 1 (cont’d)

Calculate the net torque on the 2.00-m long beam about
(a) point C (= c.m.)
(b) point P
Practice Problem 2

Determine the net torque (magnitude and direction) on the 2.00-m-long beam about:

a. (15 pts) point C (the CM position);
b. (10 pts) point P at one end.

\[\vec{\tau}_i = \vec{r}_i \times \vec{F}_i = ? \]

\[\vec{\tau}_{\text{net}} = \sum_i \vec{\tau}_i \]

Practice Problem 2

Determine the net torque (magnitude and direction) on the disk about pin.

\[\vec{\tau}_i = \vec{r}_i \times \vec{F}_i = ? \]

\[\vec{\tau}_{\text{net}} = \sum_i \vec{\tau}_i \]

\[|\vec{F}_1| = 50 \text{ N} \]

\[|\vec{F}_2| = 25 \text{ N} \]
Newton’s Laws for Rotation

\[\bar{\tau}_{\text{net}} = I \bar{\alpha} \]

- 2nd part [N m]
- 1st part [s^{-2}]
- 3rd part

Parallel-axis Theorem

\[I = I_1 + I_2 \]

Rotation Motion
2(a) Express the moment of inertia of the array of point objects about the y-axis in terms of m, M, X_1, X_2, and/or Y.

![Diagram of point objects and axes]

Newton’s Laws for Rotation

$$\vec{\tau}_{\text{net}} = I \vec{\alpha}$$

2nd part [N m]
3rd part [kg m2]
1st part [s$^{-2}$]

$K_{rot} = (1/2) I \omega^2$ ($K = (1/2) m v^2$)

Application?
Rolling Motion (w/o slipping)

Rotational Motion

Rolling Motion w/o Slipping (2)

Translation

\[\omega \]

Rotation

\[\omega \]

Rolling

\[\omega \]

Instantaneously rest
Instantaneous axis

Faster

Rotational Motion
Example 3

What will be the speed of each of the following objects when it reaches the bottom of an incline if it starts from rest at a vertical height H and rolls without slipping? Find the speed using the conservation of mechanical energy.

(i) Solid sphere (M, R_o)
(ii) Solid cylinder (M, R_o, l)
(iii) Thin hoop (M, R_o, l)

Example 4

Analyze the rolling sphere in terms of forces and torques: find the magnitudes of the velocity v and the friction force F_{fr}.

1. F.B.D.?

2. Is F_{fr} static or kinetic friction?
 - Static Friction
 - No work
 - No energy loss
 - $K+U=\text{constant}$

Thus:
- The motion of the wheel is a pure rotation about the instantaneous axis through P at the instant.

Rotational Motion
Example 5

A string is wrapped around a uniform solid cylinder of mass \(M (= 0.500 \text{ kg}) \) and radius \(R (= 0.200 \text{ m}) \), and the cylinder starts falling from rest. Draw the free-body diagram for the cylinder while it descends. Also find (a) its acceleration, (b) the tension in the string, and (c) the speed after the cylinder has descended \(h = 0.800 \text{ m} \).

Example 5 - Challenge

A string is wrapped around a hollow cylinder of mass \(M (= 0.500 \text{ kg}) \), inner radius \(R_1 (= 0.100 \text{ m}) \), outer radius \(R_2 (= 0.200 \text{ m}) \). The cylinder starts falling from rest. (a) Draw the free-body diagram for the cylinder while it descends. Also find:
(b) its acceleration;
(c) the tension in the string;
(d) the speed after the cylinder has descended \(h = 0.800 \text{ m} \).