1. **(25 points)** A block (mass m_1) lying on a frictionless inclined plane is connected to a mass m_2 by a massless cord passing over a pulley, as shown in the figure.

 a. **(10 pts)** Express the acceleration of the system in terms of m_1, m_2, θ, and g.

 b. **(5 pts)** What condition apply to masses m_1 and m_2 for the acceleration to be in one direction (say, m_1 down the plane)?

 c. **(5 pts)** If $m_1 = 1.00 \text{ kg}$ and $\theta = 30^\circ$, and the system remains at rest, what must the mass m_2 be?

\[F_{\text{T}} \]
\[F_{\text{T}} \]
\[F_{\text{N}} \]
\[m_2 g \]
\[m_1 g \]
\[\theta \]
\[x \]
\[y \]

\[\text{FBD 1 point/each force} \]
\[5 \text{ points in total} \]

\[(a) \quad \text{From Newton's 2nd law:} \]
\[\begin{align*}
 &2 \text{ pts} \quad m_1 g \sin \theta - F_{\text{T}} = m_1 a \\
 &2 \text{ pts} \quad F_{\text{T}} - m_2 g = m_2 a \\
 \end{align*} \]

\[\text{Eliminate } F_{\text{T}}: \]
\[m_1 g \sin \theta - m_2 g = (m_1 + m_2) \sin \theta \]

\[1 \text{ pt} \quad \boxed{a = \frac{m_1 \sin \theta - m_2 \sin \theta}{m_1 + m_2} g} \]

\[(b) \quad m_1 \text{ down the plane} \rightarrow a > 0 \]
\[\boxed{m_1 \sin \theta - m_2 > 0} \]

\[3 \text{ pts} \quad \boxed{m_2 = (1.00 \text{ kg}) \sin 30^\circ = 0.5 \text{ kg}} \]

\[2 \text{ pts} \quad \boxed{m_2 = (1.00 \text{ kg}) \sin 30^\circ = 0.5 \text{ kg}} \]