Don’t waste time on problems you aren’t sure of. Be clear and concise. A cluttered response will not get full credit.

1. A parallel plate capacitor has one plate at -4.0 V and the other at 12.0 V, relative to the ground wire in the lab. They carry equal and opposite charges of ±8.0μ C.
 a. (5 pts) Find its capacitance. Indicate which plate is positively charged.

\[
C = \frac{Q}{ΔV} = \frac{8 \times 10^{-6} C}{16 V} = 0.5 \times 10^{-6} F = 0.5 μF
\]

\[
\left(\frac{ΔV}{C} = F\right)
\]

b. (5 pts) Find the electrical energy stored by the capacitor.

\[
U = \frac{1}{2} C (ΔV)^2 = \frac{1}{2} \left(0.5 μF\right) (16 V)^2 = 64 μJ
\]

\[
\left(F - V^2 = J\right)
\]

c. (5 pts) 100 electrons are moved from the positive plate to the negative plate. Find the change in energy stored by the capacitor. (A positive sign means the energy has gone up.)

\[
\text{Make negative plate more negative, so } \Delta U > 0 \text{ (energy rises)}
\]

\[
dU = dQ (ΔV) \Rightarrow \Delta U = \int (dQ) (ΔV) = (100 \times 1.6 \times 10^{-19} C) (16 V)
\]

\[
= 2.56 \times 10^{-16} J
\]

2. Consider two concentric spherical conducting shells of radii \(a\) and \(b\) with \(a < b\). Let a charge \(Q\) be on the inner (outer) shell. What follows is a difficult problem.

a. (10 pts) Starting from Gauss’s Law relating flux and charge, find the electric field in the region between the shells; explain your reasoning.

\[
\Phi_E - \int \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0} \quad \text{Gauss's Law}
\]

For a concentric spherical Gaussian surface, as in Figure, \(\hat{n} = \hat{r}\).

For a spherical charge distribution, \(\vec{E} = \vec{E}_r \hat{r} \) and \(\vec{E}_r\) depends only on \(r\).

Thus \(\oint \vec{E} \cdot d\vec{A} = \oint \vec{E}_r \hat{r} \cdot d\hat{A} = \int \vec{E}_r \cdot d\vec{A} = \int \vec{E}_r \cdot (d\vec{A} = E_r d\vec{A} = E_r 4\pi r^2 d\vec{A})\)

Thus \(E_r (4\pi a^2) = 4\pi \frac{k \Phi_{\text{enc}}}{r^2}\), so \(E_r = \frac{kQ_{\text{enc}}}{r^2}\).

For \(a < r < b\), \(Q_{\text{enc}} = Q\), so \(E_r = \frac{kQ}{r^2}\).

b. (6 pts) Find \(V(r) - V(a)\) for \(a < r < b\).

\[
\begin{align*}
V(r) - V(a) &= -\int_a^r \vec{E}_r \cdot d\vec{r} = -\int_a^r E_r \hat{r} \cdot (\hat{r} dr) = -\int_a^r E_r dr \\
&= -\int_a^b \frac{kQ}{r^2} dr = kQ \left[1 \right]_a^b = kQ \left(\frac{1}{r} - \frac{1}{a} \right)
\end{align*}
\]

c. (4 pts) Find the capacitance of this system.

\[
C \equiv \frac{Q}{ΔV} = \frac{Q}{kQ \left(\frac{1}{b} - \frac{1}{a} \right)} = \frac{1}{k \left(\frac{1}{b} - \frac{1}{a} \right)} = \frac{1}{k \left(\frac{b}{b-a} \right)}
\]

\[
V_a V_\text{b} (>0)
\]
3. Consider three capacitors. \(C_1 = 12 \, \mu F \) and \(C_2 = 6 \, \mu F \) are in parallel, and \(C_3 = 9 \, \mu F \) is in series with them. \(V_a = 8 \, V \) and \(V_d = -4 \, V \).

a. (12 pts) Find the charge and voltage difference for each capacitor. Find \(V_b \).

\[
\begin{align*}
C_{12} &= C_1 + C_2 = 18 \, \mu F \\
C_{12}^{-1} &= \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{12} + \frac{1}{6} = \frac{2}{18} = \frac{1}{9} \\
\Rightarrow \quad C &= 6 \, \mu F \\
\Delta V &= V_d - V_a = -8 - 4 = -12 \, V \\
\Delta V_3 &= V_b - V_d = \frac{Q_3}{C_3} = \frac{2Q_3}{9} = \frac{8V}{3} \quad \text{so} \quad V_b = V_d + \frac{8V}{3} = -4 + \frac{8V}{3} = \frac{4V}{3}
\end{align*}
\]

\[
\begin{align*}
\Delta V_1 - \Delta V_2 &= \Delta V - \Delta V_3 = 12 - 8 = 4 \, V \\
Q_1 &= C_1 \Delta V_1 = (6 \, \mu F)(4 \, V) = 24 \mu C \\
Q_2 &= C_2 \Delta V_2 = (6 \, \mu F)(4 \, V) = 24 \mu C \\
Q_3 &= C_3 \Delta V_3 = (6 \, \mu F)(4 \, V) = 24 \mu C
\end{align*}
\]

b. (8 pts) Using insulating gloves, \(C_3 \) is disconnected at \(b-c \) and then with connecting wires is placed in parallel with \(C_1 \) and \(C_2 \) (so \(b \) and \(d \) are in contact, and \(a \) and \(c \) are in contact). Find the new charge and voltage difference for each capacitor.

4. A parallel plate capacitor has electrical energy \(3.6 \times 10^{-6} \) ergs when connected to a 6 V battery.

a. (4 pts) Find the charge on positive plate, and the voltage difference.

\[
Q = \frac{\Delta V}{\epsilon_0} = \frac{7.2 \times 10^{-6} \times 10^{-7} J}{6 \, V} = 1.2 \times 10^{-13} \, \epsilon_0
\]

b. (4 pts) The capacitor is now disconnected from the battery. A slab of dielectric constant \(\kappa = 4 \) and nearly the same thickness as the capacitor is slid into the capacitor. Find the charge on positive plate, and the voltage difference.

\[
\begin{align*}
Q' &= Q = 1.2 \times 10^{-13} \, \epsilon_0 \\
\Delta V' &= \frac{\Delta V}{\kappa} = 1.5 \, V
\end{align*}
\]

c. (7 pts) Was the dielectric attracted, repelled, or did it feel no force when it was part way in the capacitor? Give a physical reason why; no reason, no credit.

It was attracted by the amber effect (polarization in non-uniform electric field).
5. You are given a voltaic cell with internal resistance of 8 \Omega. When shorted, it briefly produces a current of 0.4 A.
 a. (5 pts) Find its emf and the rate at which energy is initially discharged.
 \[\mathcal{E} = I r = (0.4 A)(8 \Omega) = 3.2 \text{ V} \]
 \[P = I^2 r = (0.4)^2 (8) = 0.32 \text{ W} \]
 b. (5 pts) For what load resistance \(R \) does this voltaic cell provide maximum power to load? Find that maximum power.
 \[\text{Impedance matching: } R = r = 8 \Omega \]
 \[\frac{I} {r + R} = \frac{3.2} {16} = 0.2 A \]
 \[P = I^2 R = (0.2)^2 (8) = 0.32 \text{ W} \]
 c. (5 pts) A coffee maker for home use produces 840 Watts. Find the current it uses, and its resistance.
 \[\Delta V = 120 \text{ V. Then } P = I(\Delta V) \text{ and } R = \frac{\Delta V^2} {P} = \frac{120^2} {840} = 1.54 \text{ \Omega} \]

6. A voltaic cell has internal resistance \(r = 0.05 \Omega \) and open circuit voltages across the left and right electrodes of 0.4 V and 1.9 V, for a net emf of \(\mathcal{E} = 1.5 \) V. It is in series with a resistor \(R = 0.25 \Omega \). Let \(V_a = 0.0 \) V. The connecting wires have zero resistance.
 a. (14 pts) Find the current, the voltage drops across the resistances, and sketch the voltage around the circuit.
 \[\mathcal{E} = 1.5 = 1.9 - 0.4 \]
 \[I = \frac{\mathcal{E}} {r + R} = \frac{1.5} {0.3} = 5 \text{ A} \]
 \[\Delta V_R = I r = 5(0.05) = 0.25 \text{ V} \]
 \[\Delta V = I R = 5(0.25) = 1.25 \text{ V} \]

b. (6 pts) If the voltaic cell discharges in 40 minutes, find its initial "charge" and its initial energy.
 \[Q = \int I \, dT = (SA)(40 \times 60) = 12,000 \text{ C} \]
 \[S = \frac{2} {3} \text{ hr} = \frac{10} {3} \text{ A} \cdot \text{hr} \]
 \[U_{init} = \mathcal{E}(Q) = (1.5)(1.2 \times 10^4 \text{ C}) = 1.8 \times 10^7 \text{ J} \]
7. (15 pts) A 14 cm long rod of semiconductor with 5 mm-by-3 mm cross-section carries 2 mA when a voltage difference of 25 V is placed across its ends. Find the conductivity. Find the electric field within the rod. Estimate the drift velocity of the charge-carriers, taken to be of density \(n = 2.4 \times 10^{24} \text{m}^{-3} \).

\[
I = \frac{\Delta V}{R} \Rightarrow R = \frac{\Delta V}{I} = \frac{25 \text{V}}{2 \text{mA}} = 12.5 \text{ k}\Omega
\]

But \(R = \rho \frac{l}{A} = \frac{1}{\sigma} \frac{l}{A} \), so \(\sigma = \frac{1}{R} \frac{l}{A} = \frac{1}{12.5 \times 10^{3} \Omega} \times \frac{0.14 \text{m}}{15 \times 10^{-6} \text{m}^{2}} = 0.74 \text{ S/m} \)

\[
E = \frac{\Delta V}{l} = \frac{25 \text{V}}{0.14 \text{m}} = 178.6 \text{ V/m}
\]

\[J = ne \nu, \text{ so } \nu = \frac{J}{ne} = \frac{I}{Ane} = \frac{2 \times 10^{-3} \text{A}}{(15 \times 10^{-6} \text{m}^{2})(2 \times 10^{-3} \text{m}^{3}/\text{s})} = 0.347 \text{ m/s} \]

8. Let \(V_{A} = 6 \text{V}, I = 8 \text{A}, \text{ and } \epsilon = 16 \text{V}, \) with the resistances being 4 ohms and 2 ohms.

\[
\Sigma_{4} + \Sigma_{2} = I = 8
\]

\[\Delta V = V_{A} - V_{C}, \quad \Sigma_{4} = \frac{\Delta V}{4}, \quad \Sigma_{2} = \frac{\epsilon + \Delta V}{20} \]

\[\frac{\Delta V}{4} + \frac{I_{4} + \Delta V}{20} = 8 \Rightarrow \Delta V \left(\frac{6}{5} \right) = 7 \frac{1}{5} = \frac{36}{5} \]

\[\Rightarrow \Delta V = 24 \text{V} \]

\[\Sigma_{2} = 8 - \Sigma_{4} = 2A \]

a. (10 pts) Find \(\Sigma_{4} \) and \(\Sigma_{2} \).

\[\Sigma_{4} = \frac{\Delta V}{4} = \frac{24}{4} = 6 \text{A}, \quad \Sigma_{2} = I - \Sigma_{4} = 8 - 6 = 2 \text{A} \]

\[
\text{or } \Sigma_{2} = \frac{16 + 24}{20} = 2 \text{A}
\]

b. (5 pts) Find \(V_{B} \) and \(V_{C} \).

\[V_{A} - V_{B} = \frac{\Delta V}{2} - 2(2) = 40, \Rightarrow V_{B} = V_{A} - 40 = 6 - 40 = -34 \text{V} \]

\[V_{A} - V_{C} = \Sigma_{4} = 6, \Rightarrow V_{C} = V_{A} - 24 = 6 - 24 = -18 \text{V} \]

9. (15 pts) Find the unknown currents and the unknown resistance for the circuit in the figure.

\[\Delta V_{R} = (2A)(6 \Omega) = 12 \text{V}, \quad \bar{I}_{R} = \frac{\Delta V_{R}}{R} = \frac{12 \text{V}}{6 \Omega} = 2 \text{A} \]

\[\text{No current through } 2 \Omega \text{ or } 5 \Omega \text{ resistors on left N} \]

9A through 7Ω resistor \((\Sigma_{7} = 9 \text{A}) \)

\[\frac{1}{R'} = \frac{1}{6} + \frac{1}{3} + \frac{1}{2} = \frac{1 + 2 + 6}{6} = \frac{9}{6} = \frac{1}{3} \]

\[R' = \frac{9}{3}, \Delta V' = \bar{I} R' = 9 \times \frac{9}{3} = 27 \text{V} \]

\[I_{1} = \frac{\Delta V'}{1} = 27 \text{A} \]

\[I_{2} = \frac{6}{3} = 2 \text{A} \]

\[I_{6} = \frac{6}{6} = 1 \text{A} \]
10. (20 pts) For the circuit below, take $E_1 = 8 \text{ V}$, $E_2 = 6 \text{ V}$, $r_1 = 0.04 \text{ } \Omega$, $r_2 = 0.01 \text{ } \Omega$, $R = 0.02 \text{ } \Omega$. (1) Indicate and label the directions of positive currents and indicate the positive side of the voltage ΔV across R. (2) Analyze the circuit using Kirchhoff's rules. (3) Solve for the voltage across R. (4) Find the current through R and the currents provided by each of the batteries.

\[\Delta V_R = \Delta V \]
\[I_1 + I_2 = I \]
\[\frac{E_1 - \Delta V}{r_1} + \frac{E_2 - \Delta V}{r_2} = \frac{\Delta V}{R} \Rightarrow \frac{E_1}{r_1} + \frac{E_2}{r_2} = \Delta V \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \]

\[\Rightarrow \frac{8}{.04} + \frac{6}{.01} = \Delta V \left(\frac{1}{.02} + \frac{1}{.04} + \frac{1}{.01} \right) \Rightarrow 200 + 600 = \Delta V \left(50 + 25 + 100 \right) \]
\[\Rightarrow \Delta V = \frac{800}{115} = 6.97 \text{ } \text{V} \]
\[I_1 = \frac{E_1 - \Delta V}{r_1} = \frac{8 - 6.97}{.04} = \frac{2.03}{.04} = 50.75 \text{ } \text{A} \]
\[I_2 = \frac{E_2 - \Delta V}{r_2} = \frac{6 - 6.97}{.01} = \frac{-.97}{.01} = 97 \text{ } \text{A} \]
\[I = \frac{\Delta V}{R} = \frac{6.97}{.02} = 348.5 = I_1 + I_2 = 228.6 \text{ } \text{A} \]

11. The capacitor is uncharged initially. The switch is then closed at $t = 0$. Let $E=12\text{ V}$, $r = 3\text{ } \Omega$, $R = 6\text{ } \Omega$, $C = 4\mu\text{F}$.

a. (10 pts) Find I_r, Q, I, and I_R just after the switch is closed.

In general, $I_t = I_R + I$. \\
At $t=0$, have $Q=0$, so $\Delta V_R = \Delta V_R = \frac{Q}{C} = I_R R = 0$. \\
Thus $I_R = 0$ at $t=0$. \\
Thus $I_t = I$, and
\[I_t = I = \frac{E}{r} = \frac{12}{3} = 4 \text{ A} \]

b. (10 pts) Find I_t, Q, I, and I_R a long time after the switch is closed.

After a long time, $I_t \rightarrow 0$.
Then
\[I_t = I_R = \frac{E}{r+R} = \frac{12}{3+6} = \frac{4}{9} = 1.333 \text{ A} \]
Also, $\Delta V_R = I_R R = \frac{4}{3} \times 6 = 8 \text{ V} = \Delta V \frac{Q}{C}$, so $Q = C \Delta V \frac{R}{R} = 4 \mu \text{F} \times (8 \text{ V}) = 32 \mu \text{C}$

c. (5 pts) Sketch I as a function of time.