Search for Supersymmetry with Vector Boson Fusion-like Topology in Proton-Proton Collisions at CMS

Ali Celik1,2

On behalf of the CMS Collaboration

1Texas A&M University

2Fermilab

Lake Louise 2017
Outline

• Classical SUSY Searches
• Supersymmetry in VBF
• What is VBF and Why?
• 8 TeV Analysis
 ❖ VBF + MET+Dilepton SUS-14-005, JHEP 11 (2015) 189
 ❖ VBF + MET SUS-14-019, PRL 118 (2017) 021802
• Prospect for 13 TeV search:
 ❖ New Approach with Mu+VBF Trigger
• Summary
• Many SUSY searches focused on the colored sector
• Limits of these models probe masses up to ~ 1.7 TeV for squark gluinos.
• These type of signatures have final states with MET+multijets (+leptons)(+photons)
• Colored objects expected to be heavy and the production cross-sections are large
• In compressed mass spectra scenarios MET is small and jets (+leptons) (+photons) are soft
• No good sensitivity for compressed spectra scenarios

• DM particles produced in pairs after cascade decay of chargino neutralino
• Signature: Met+leptons and ISR Jet
SUSY Electroweak Searches with VBF

Why VBF?

• VBF tagging useful in tackling some of the interesting physics channels
• VBF topology provides a complementary probe to look for compressed spectra
• Smaller predicted cross sections but lower level of hadronic activity
• Complements the color searches
• EWK’s expected to be light compared to the colored particles
While V+Jets more central with small dijet invariant mass, Signal characterized by non-central Jets with large dijet invariant mass
Main BG’s

- $Z \rightarrow \ell\ell + \text{jets}$:
 1. $Z \rightarrow e\bar{e}/\mu\mu$: fake E_T^{miss} from mis-measured jets + ISR jets conforming to the VBF topology
 2. $Z \rightarrow \tau\tau$: real E_T^{miss} from the tau decays + ISR jets.

- $W + \text{jets}$: prompt lepton from the W ($W \rightarrow \mu/e/\tau + \nu$) and recoil jets and ISR jets passing the VBF cuts.

- multijets:
 1. b-jets and leptons from $t\bar{t}$
 2. QCD light quark/gluon
Our general strategy to predict backgrounds across all channels:

1. Scale background estimation before VBF cuts with a control region ‘CF(CR w/o VBF)’ where CF is correction factor data to MC.
2. Determine efficiency of VBF cuts with another (independent) control region ‘ϵ_{VBF}’.
3. A closure test is performed in MC. The difference between the nominal and predicted yields in the closure test, is taken as a systematic error.
• Data: 19.7 fb\(^{-1}\) at 8 TeV with inclusive muon trigger ($p_T^\mu > 24\) GeV\) and di-tau trigger ($p_T^\tau > 35\) GeV\)
• Final states with $e\mu$, $\mu\mu$, $\mu\tau_h$, $\tau_h\tau_h$ plus MET and 2 VBF Jets
• Both Opposite and Same sign charge pair
• $|\eta_{\text{lepton}}|<2.1$, $|\Delta\eta_{\text{jets}}|>4.2$ and $\eta_1\eta_2<0$, $p_T^{\text{jets}}>30/45\) GeV\) $p_T^{\text{miss}}>75/30\) GeV\)
• Main Backgrounds: ttbar, V+Jets, VV
• Analysis performed by looking at shape of M_{jj} as discrimination variable
- All 8 channels combined
- Observed upper bound limit of 170 GeV and an expected limits of 180 GeV set for Compressed scenario where multi lepton search has no sensitivity.
For the average-mass assumption with an uncompressed-mass spectrum the corresponding limit is ~ 300 GeV, comparable the multilepton search.
Signature

• 2 high-p_T forward jets and large MET
• Same VBF-like topology strategy as in the EWKino case
• Pair production of the lightest bottom squark and two associated jets where small mass difference between LSP and sbottom give rise to large MET

Selection: Two jets ($p_T > 50$ GeV with $\eta_1 \eta_2 < 0$; large rapidity gap $|\eta_1-\eta_2| > 4.2$ and invariant mass $m_{12} > 750$ GeV; no b-tag); MET > 250 GeV; veto further jets ($p_T > 30$ GeV)

Dominant bgs: ($Z \rightarrow \nu \nu$) + jets & ($W^\pm \rightarrow l^\pm \nu$) + jets estimated from data
Up to 315 GeV (obs.) and ~315 (exp.) for $\Delta M < 10$ GeV for compressed sbottom (& stop) where the monojet analyses by ATLAS and CMS exclude masses below 250 GeV
Prospects of Run II at 13 TeV

- Mu+VBF trigger is commissioned in Run II
 - $p_T^\mu > 8$ GeV, $M_{jj} > 750$, $p_T^j > 40$ GeV, HT (scalar sum of Jet p_T) > 600 GeV and MET > 60 GeV.

- Mu+VBF Trigger reaches plateau at low MET while VBF+MET trigger reaches plateau around 200 GeV.

- L1 VBF trigger (L1_Mu6_Mj30j30_360) with L1 seeds including HF → One jet with $|\eta| < 3.0$, one jet with $|\eta| > 3.0$
 - There is a significant difference, Sharp trigger turn-on!
 - improved eff. with L1 VBF

- At least one HF jet at L1
• First VBF topology based search performed successfully with 8 TeV data of CMS
 ❖ SUS-14-005 in dilepton + VBF channels (published in JHEP)
 ➡ A combined observed upper bound limit of 280 GeV and an expected limit on 295 GeV is set, for the large mass gap scenario
 ➡ For the compressed mass spectra scenario we set a combined observed upper bound limit of 170 GeV and an expected limits of 180 GeV
 ❖ SUS-14-019 in MET + VBF channel (published in Phys. Rev. Letter)
 ➡ The stringent limit of 315 GeV obs. and (~315 GeV expected) for squark in compressed mass spectrum scenario ($\Delta M \sim 5$ GeV)
• New Dedicated lepton+VBF trigger for Run II to improve search sensitivity
 ❖ Trigger active for all of 2016, 2017 data taking
• Stay tuned for interesting results!
Back-Up
Standard Model (SM)

- SM includes 12 elementary particles known as fermions and 3 force carriers known gauge bosons + Higgs boson.
- SM Lepton/Quarks → Spin-1/2 particles
 Gauge bosons → Spin 1 particles
- Higgs boson → Spin 0

Standard Model Problems?

- Inability to explain CDM
- Why are there three fermion generations?
- Why are there large differences on the masses of each generation?
- Hierarchy problem in Higgs mass.
- Why do neutrinos have mass?
Supersymmetry (SUSY) introduces a set of new particles by symmetrizing the theory between fermions and bosons.

- Slepton/Squarks → Spin 0 particles
- Gauginos → Spin 1/2 particles
- It has great potential for solving theoretical problems of the SM
- Stable Lightest Supersymmetric particle (LSP) is a leading candidate for dark matter
R-Parity

- \(R = (-1)^{3B + L + 2S} \)
- \(R = 1 \) for SM particles, \(R = -1 \) for SUSY
Event Yields (SUS-14-005)

<table>
<thead>
<tr>
<th>Process</th>
<th>$\mu^+\mu^+jj$</th>
<th>$e^+\mu^+jj$</th>
<th>$\mu^+\tau^+jj$</th>
<th>$\tau^+\tau^+jj$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY + jets</td>
<td>4.3 ± 1.7</td>
<td>$3.7^{+2.1}_{-1.9}$</td>
<td>19.9 ± 2.9</td>
<td>12.3 ± 4.4</td>
</tr>
<tr>
<td>W + jets</td>
<td>< 0.01</td>
<td>$4.2^{+3.3}_{-2.5}$</td>
<td>17.3 ± 3.0</td>
<td>2.0 ± 1.7</td>
</tr>
<tr>
<td>VV</td>
<td>2.8 ± 0.5</td>
<td>3.1 ± 0.7</td>
<td>2.9 ± 0.5</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>24.0 ± 1.7</td>
<td>$19.0^{+2.3}_{-2.4}$</td>
<td>11.7 ± 2.8</td>
<td>$-$</td>
</tr>
<tr>
<td>QCD</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>6.3 ± 1.8</td>
</tr>
<tr>
<td>Higgs</td>
<td>1.0 ± 0.1</td>
<td>1.1 ± 0.5</td>
<td>$-$</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>VBF Z</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>Total</td>
<td>32.2 ± 2.4</td>
<td>$31.1^{+4.6}_{-4.1}$</td>
<td>51.8 ± 5.1</td>
<td>22.9 ± 5.1</td>
</tr>
<tr>
<td>Observed</td>
<td>31</td>
<td>22</td>
<td>41</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>$\mu^+\mu^+jj$</th>
<th>$e^+\mu^+jj$</th>
<th>$\mu^+\tau^+jj$</th>
<th>$\tau^+\tau^+jj$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY + jets</td>
<td>< 0.01</td>
<td>$0^{+1.7}_{-0}$</td>
<td>0.5 ± 0.2</td>
<td>< 0.01</td>
</tr>
<tr>
<td>W + jets</td>
<td>$0.1 \pm 8.2 \times 10^{-4}$</td>
<td>$0^{+3.0}_{-0}$</td>
<td>9.3 ± 2.3</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>VV</td>
<td>2.1 ± 0.3</td>
<td>$1.9^{+0.4}_{-0.2}$</td>
<td>1.1 ± 0.2</td>
<td>$0.1 \pm 6.5 \times 10^{-2}$</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>3.1 ± 0.1</td>
<td>$3.5^{+0.7}_{-0.9}$</td>
<td>6.7 ± 2.8</td>
<td>$0.1 \pm 1.2 \times 10^{-2}$</td>
</tr>
<tr>
<td>Single top</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>< 0.1</td>
</tr>
<tr>
<td>QCD</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>7.6 ± 0.9</td>
</tr>
<tr>
<td>Higgs</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total</td>
<td>5.4 ± 0.3</td>
<td>$5.4^{+3.5}_{-3.0}$</td>
<td>17.6 ± 3.8</td>
<td>8.4 ± 0.9</td>
</tr>
<tr>
<td>Observed</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>9</td>
</tr>
</tbody>
</table>
Event Yields (SUS-14-019)

<table>
<thead>
<tr>
<th>Sample</th>
<th>L_{Vetos}</th>
<th>$L_{\text{Vetos}+2j}$</th>
<th>$L_{bVetos+2j}$</th>
<th>E_T^{miss}</th>
<th>μ_VBFcuts</th>
<th>$\mu_\text{VBFTriggers}$</th>
<th>$\Delta\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W+\text{Jets}$</td>
<td>$3.702 \cdot 10^8 \pm 1.135 \cdot 10^5$</td>
<td>$2.717 \cdot 10^6 \pm 4433$</td>
<td>$1.972 \cdot 10^6 \pm 3775$</td>
<td>4015 ± 99.62</td>
<td>43.61 ± 10.28</td>
<td>43.61 ± 10.28</td>
<td>43.61 ± 10.28</td>
</tr>
<tr>
<td>$Z_{\nu}+\text{Jets}$</td>
<td>$1.22 \cdot 10^7 \pm 6109$</td>
<td>$7.936 \cdot 10^5 \pm 1209$</td>
<td>$5.58 \cdot 10^5 \pm 1018$</td>
<td>8401 ± 99.37</td>
<td>96.08 ± 10.66</td>
<td>95.88 ± 10.65</td>
<td>88.17 ± 9.83</td>
</tr>
<tr>
<td>$\text{Higgs}_{\text{VBF}}$</td>
<td>456.9 ± 21.4</td>
<td>66.97 ± 8.192</td>
<td>45.15 ± 6.727</td>
<td>0.3936 ± 0.6278</td>
<td>0.129 ± 0.3593</td>
<td>0.128 ± 0.3572</td>
<td>0.128 ± 0.3572</td>
</tr>
<tr>
<td>Z+Jets</td>
<td>$2.555 \cdot 10^8 \pm 4.644 \cdot 10^4$</td>
<td>$9.845 \cdot 10^5 \pm 2436$</td>
<td>$7.849 \cdot 10^5 \pm 2151$</td>
<td>19.15 ± 5.389</td>
<td>0.02945 ± 0.1737</td>
<td>0.02945 ± 0.1737</td>
<td>0.02945 ± 0.1737</td>
</tr>
<tr>
<td>WW</td>
<td>$5.521 \cdot 10^5 \pm 805$</td>
<td>$5.103 \cdot 10^4 \pm 244.9$</td>
<td>$2.967 \cdot 10^4 \pm 186.8$</td>
<td>42.18 ± 7.032</td>
<td>0.06022 ± 0.2468</td>
<td>0.06022 ± 0.2468</td>
<td>0.06022 ± 0.2468</td>
</tr>
<tr>
<td>WZ</td>
<td>$8.497 \cdot 10^4 \pm 303.3$</td>
<td>6841 ± 86.26</td>
<td>4288 ± 68.3</td>
<td>132.3 ± 12.03</td>
<td>0.3801 ± 0.6434</td>
<td>0.3801 ± 0.6434</td>
<td>0.3801 ± 0.6434</td>
</tr>
<tr>
<td>ZZ</td>
<td>$9.144 \cdot 10^4 \pm 320.1$</td>
<td>6968 ± 88.45</td>
<td>3899 ± 66.15</td>
<td>120.1 ± 11.61</td>
<td>0 ± 0.1872</td>
<td>0 ± 0.1872</td>
<td>0 ± 0.1872</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$1.808 \cdot 10^6 \pm 1744$</td>
<td>$4.214 \cdot 10^4 \pm 266.3$</td>
<td>4664 ± 88.59</td>
<td>38.25 ± 8.032</td>
<td>0 ± 0.6829</td>
<td>0 ± 0.6829</td>
<td>0 ± 0.6829</td>
</tr>
<tr>
<td>Σ_{MC}</td>
<td>$6.405 \cdot 10^8 \pm 1.228 \cdot 10^5$</td>
<td>$4.602 \cdot 10^6 \pm 5215$</td>
<td>$3.357 \cdot 10^6 \pm 4468$</td>
<td>$1.277 \cdot 10^4 \pm 142.2$</td>
<td>140.3 ± 14.83</td>
<td>140.1 ± 14.82</td>
<td>132.4 ± 14.24</td>
</tr>
<tr>
<td>Data</td>
<td>$2.536 \cdot 10^7$</td>
<td>$5.883 \cdot 10^6$</td>
<td>$4.054 \cdot 10^6$</td>
<td>307</td>
<td>120</td>
<td>120</td>
<td>118</td>
</tr>
</tbody>
</table>
8 TeV DM and Compressed Mass-Spectra SUSY

![Graph showing the observed and expected cross sections for DM and compressed mass spectra in SUSY](image)

- **Observed**
- **Expected ± 1σ**
- **Expected ± 2σ**

Observations:
- **σ(pp → ̃b̃b jj) (NLO)**
- **σ(pp → χχ jj) (LO), Λ = 600 GeV**

CMS

Integration: 18.5 fb⁻¹ (8 TeV)

Axes:
- **σ [fb]**
- **M [GeV]**
VBF Kinematics?

- One jet pair with $m_{jj} > 250$
- Jet $P_T > 50$
- $|\Delta \eta| > 4.2$
- While V+Jets more central with small dijet invariant mass, Signal characterized by non-central Jets with large dijet invariant mass

- MET > 75