Z’ VBF at the LHC

Peisi Huang
Texas A&M University
Nov 23, 2016
Z’

- Are there any new gauge bosons beyond the ones associated with the $SU(3)\times SU(2)\times U(1)$ gauge group?
- In many beyond standard model theories, new gauge bosons are predicted.
- simplest way, include a second $U(1)$ group. new gauge boson $Z’$
- $Z’$ mixes with the Z boson, $Z’WW$ coupling $\sim \sin\phi$
- $Z’$ also couples to fermions,

$$\mathcal{L} = \sum_f z_f g_Z Z'_{\mu} \bar{f} \gamma^\mu f$$

fermion charges coupling
current LHC Z’ searches

• qq ->Z’-> l+l−

2.7 fb⁻¹ (13 TeV, ee) + 2.9 fb⁻¹ (13 TeV, ϒυ)

$E_6 \rightarrow SO(10) \otimes U(1)_\psi$

$\rightarrow SU(5) \otimes U(1)_\chi \otimes U(1)_\psi$

sequential SM:
Z’ has SM Z couplings.

easy to compare
not gauge invariant

Only sensitive to Z’ff couplings
VBF is sensitive to $Z'WW$ coupling.

VBF process has distinctive kinematics -- easy to suppress backgrounds

- energetic jets in the forward direction, because of the t-channel kinematics
- large rapidity separation and large invariant mass of the two jets
VBF Z' cross section

For a 1 TeV Z', assuming its coupling to a pair of W is the same as a Z boson,

$$\sigma_{pp \rightarrow WWjj \rightarrow Z'jj} = 6.8 \text{ pb}$$ \hspace{1cm} \text{MadGraph}$$

Very different from a heavy Higgs

$$\sigma_{pp \rightarrow WWjj \rightarrow Hjj} = 62 \text{ fb}$$ \hspace{1cm} \text{MadGraph}$$

full NNLO calculation, VBFNNLO

$$\sigma_{pp \rightarrow WWjj \rightarrow Hjj} = 87 \text{ fb}$$

Both have weak coupling, why Z' cross section so much larger?
Zprime VBF cross section, effective W approximation

• At the LHC, $\sqrt{s} \gg m_W$, one can consider the initial beams of quarks as sources which emit Ws. Then W interact to produce new states. Or equivalently, giving Ws structure function. (Kane, Repko, and Rolnick, 1984. Dawson 1985)

• When using the effective W approximation,

 • First calculate $\hat{\sigma}(W^+W^- \rightarrow Z')$

 • Then calculate the W luminosity $L_{W^+W^-|pp}(\hat{s})$
\[\hat{\sigma}(W^+W^- \rightarrow Z') \]

Assume Z'WW coupling is the same as ZWW

\[
\hat{\sigma}(W^+W^- \rightarrow Z' \rightarrow W^+W-) = \frac{16\pi}{3} \frac{m_{Z'}^2}{m_{Z'}^2 - 4m_W^2} \frac{(\Gamma(Z' \rightarrow WW))^2}{((\hat{s}_{WW} - m_{Z'}^2)^2 + \Gamma_{tot}^2 m_{Z'}^2)}
\]

\[\Gamma(Z' \rightarrow WW) = \frac{g^2 \cos^2 \theta_w}{192\pi} \frac{m_{Z'}^5}{m_W^4} \]

\[\Gamma(Z' \rightarrow ff) = \frac{5}{8} \frac{\alpha m_{Z'}^2}{\cos^2 \theta_w} \]

large enhancement factor for heavy Z'

Dutta and Nandi, 1993

Small, compared to Z' \rightarrow WW

Rizzo, 1995

\[\hat{\sigma}(W^+W^- \rightarrow Z') \simeq \hat{\sigma}(W^+W^- \rightarrow Z' \rightarrow W^+W^-) \]
Effective W approximation

Distribution of a W inside a quark is given by

$$dF(x, k) = \frac{(E + E' + \omega)^2}{(64\pi^3 EE'\omega)} \frac{\langle |M|^2 \rangle}{(2p \cdot k - m_W^2)^2} |P| dx dk d\phi$$

Kane, Repko, and Rolnick, 1984. Dawson 1985

$$M = \bar{u}(p') \gamma(g_V + g_A \gamma_5) u(p)$$

$$dF(x)dx = \frac{1}{12\pi^2 (g_V^2 + g_A^2)} \{1 + \frac{(1 - x)^2}{x} \log(p^2 + (1 - x)m_W^2)\} \frac{1}{(1 - x)m_W^2} + \frac{(1 - x)p^2}{x(p^2 + (1 - x)m_W^2)} \} dx$$

transverse

Longitudinal
Effective W approximation

WW luminosity in a two-quark system

\[\left. \frac{dL}{d\tau} \right|_{qq/WW}^{\tau} = \int_{\tau}^{1} f(q/W)(x) f(\tau/x) \frac{dx}{x} \]

WW luminosity in a proton-proton system

\[\left. \frac{dL}{d\tau} \right|_{pp/WW}^{\tau} = \int_{\tau}^{1} \frac{d\tau'}{\tau} \int_{\tau}^{1} \frac{dx}{x} f_i(x) f_j(1) d\xi \left. \frac{dL}{d\xi} \right|_{qq/WW} \]

Z' production cross section through VBF

\[\sigma = \int_{m_{Z'}}^{1} \frac{d\tau}{d\tau} \left. \frac{dL}{d\tau} \right|_{pp/WW} \sigma_{WW \rightarrow Z'} \]
VBF Z' vs Higgs

For the Higgs, only longitudinal mode contributes

$$\frac{dL}{d\tau}|_{qq/V^tV^t} = \left(\frac{g_V^2 + g_A^2}{4\pi^2}\right)^2 \frac{1}{\tau} [(1 + \tau)\log(1/\tau) + 2(\tau - 1)]$$

For a Z', transverse mode, longitudinal mode, and transverse-longitudinal mode contribute. The transverse mode dominates.

$$\frac{dL}{d\tau}|_{qq/V^tV^t} = \left(\frac{g_V^2 + g_A^2}{8\pi^2}\right)^2 \frac{1}{\tau} \log\left(\frac{\hat{s}}{m_W^2}\right)^2 [(2 + \tau)^2 \log(1/\tau) - 2(1 - \tau)(3 + \tau)]$$

Large enhancement factor when the Z' is heavy
VBF Z’ cross section

For a 1 TeV Z’, assuming its coupling to a pair of W is the same as a Z boson

Using effective W approximation, \(\sigma_{pp\rightarrow WWjj\rightarrow Z'jj} = 5.3\text{pb} \)

Corrections of effective W approximation are \(O(m_W^2/m_{Z'}^2) \), and \(O(m_{Z'}^2/s) \)

For a 1 TeV heavy Higgs

Using effective W approximation, \(\sigma_{pp\rightarrow WWjj\rightarrow Hjj} = 50\text{fb} \)

In models where Z’WW is generated through Z-Z’ mixing, the cross section scales as

\(\sim g_{WWZ'}^2 \sim \sin^2 \theta_{Z-Z} \)
Constraints on Z-Z’ mixing

- A Z’ mixes with SM Z distorts the Z properties.
- Strong constraints from LEP, from $e^+e^- \rightarrow ff$ measurements.
- In canonical models, VBF Z’ cross section is small, not the most sensitive channel.
- In case of discovery (from Drell-Yan process), VBF is important to establish models, and couplings.

![Graph showing constraints on the mass and mixing angle for the Z and Z’ from [17]. The solid lines show the regions allowed by precision electroweak data at 95% C.L. assuming Higgs doublets and singlets, while the dashed regions allow arbitrary Higgs. The labeled curves assume specific ratios of Higgs doublet VEVs.](image_url)
fermiophobic Z'

• All constraints (direct searches, electroweak precisions) are strongly weakened for fermiophobic models, where there is no direct coupling of Z' to SM fermions. (The constraints are also weak for leptophobic Z', or Z' does not couple to first generation leptons)

• One example, consider a hidden $U(1)$, which can only couple to SM through a mixed anomaly. The gauge anomaly is cancelled by Green-Schwarz mechanism.

 Kumar, Rajaraman and Wells, 2007.

• In fermiophobic models, Z' can only be produced through VBF.

• possible decay modes, $Z' \rightarrow WW, ZZ, Z\gamma$
fermiophobic Z’

![Graph showing the cross section as a function of M_X for various values of M_Z']

- Z’ -> ZZ->4l
- Cross section can be sizable
- Worth studying other channels

Kumar, Rajaraman and Wells, 2007.
$Z'\rightarrow WW$

This year data, exclude $\sim 1.4 - 1.6$ TeV
Long term, exclude up to 3 TeV
Conclusion

• A new gauge boson is predicted in many beyond Standard Model theories.
• Current LHC searches are focused on Drell-Yan mode.
• For canonical models (E6, B-L), VBF process is important for establishing models.
• For fermiophobic models (and baryophobic models), Z’ can only be produced through VBF, and decay to two bosons (not a pair of photons).
• with this years data at CMS (~ 40^{-1} fb), emu can exclude up to ~ 1.6 TeV. Similarly, mumu can exclude up to ~ 1.4 TeV. with this year's data.
• Long term --> exclusions can be closer to 3 TeV.