Search for charginos and neutralinos produced in Vector Boson Fusion processes through $\tau_+\tau_- + 2$ jets final state with CMS detector at $\sqrt{s} = 8$ TeV

Amandeep Kalsi¹, A. Gurrola², Nithish Dhingra³, J. B. Singh¹, T. Kamon⁴, V. Bhatnagar⁵

¹Panjab University
²Vanderbilt University
³Texas A & M University

On the behalf of CMS Collaboration

Introduction

- Supersymmetry (SUSY) is one of the best studied theories for physics beyond the Standard Model (SM).
- Provides natural solution to hierarchy problem, origin of dark matter and many other unsolved problems.
- In SUSY, to each fermion (boson) of SM, there corresponds a supersymmetric boson (fermion).
- Minimal Supersymmetric Standard Model (MSSM) is the simplest extension of the SM that includes SUSY.
- MSSM involves five Higgs bosons (h^0, H^0, A^0, H^+, H^-) along with four neutralinos ($\chi_1^0, \chi_2^0, \chi_3^0, \chi_4^0$) and four charginos ($\chi_1^\pm, \chi_2^\pm$) produced from mixing of gaugino and higgsino states.
- No experimental evidence of SUSY particles found till date, which implies it is a broken symmetry with sparticles masses large enough to evade current experimental bounds.
- SUSY models involving conservation of R-parity, resulting in pair-production of SUSY particles with a stable Lightest SUSY particle (LSP) which is considered as a Dark Matter candidate.
- Each generation SUSY particles are less constrained in those searches.
- Based on searches performed so far, gluinos and 1st/2nd generation SUSY particles found till date.
- Provides natural solution to hierarchy problem, origin of dark matter and many other unsolved problems.
- Provides a way to probe scenarios with compressed spectra by selecting two forward jets with mass $M(jj) \sim 1$ TeV.
- Provides a strong handle on backgrounds by selecting two forward jets with mass $M(jj) \sim 1$ TeV.
- Cross-section of slepton production via Drell-Yan and VBF processes becomes almost comparable at \sqrt{s} = 8 TeV.
- VBF production provides a very strong handle on backgrounds by selecting two forward jets with mass $M(jj) \sim 1$ TeV.
- Experimental evidence of SUSY particles found till date, which implies it is a broken symmetry with sparticles masses large enough to evade current experimental bounds.

VBF as SUSY probe

Based on searches performed so far, gluinos and 1st/2nd generation SUSY particles are less constrained in those searches.

SUSY in VBF processes - complementary to searches for gluinos and 1st/2nd generation SUSY particles.

Provides a way to probe SUSY scenarios with compressed spectra by selecting two forward jets with mass $M(jj) \sim 1$ TeV.

VBF Kinematics

Benchmark Point: $M(\chi_2^+) = M(\chi_2^-) = 180$ GeV, $M(\chi_1^0) = 90$ GeV, $M(\chi_1^+) = 300$ GeV.

QCD Background Estimation

- QCD multijet is the dominant background for fully hadronic final state.
- The MC statistics is not sufficient to model it properly so fully data-driven approach is used.
- Keep the same central selections, but invert opposite-sign requirement i.e. select like-sign $\tau\tau$ pairs (No VBF selections).
- Subtract the like-sign non-QCD MC backgrounds from the like-sign data (contamination from like-sign non-QCD MC backgrounds is very very small ~ 1%).
- R_{QCD} is measured using a sample of non-isolated taus.
- Extract the shapes and QCD contribution by applying R_{QCD} to the like-sign region.

Z-$\tau\tau$ Background Estimation

- For additional validation, obtained a semi-clean enriched sample of Z-$\tau\tau$ background by requiring opposite-sign tau-pair to have invariant mass < 90 GeV.
- Enhances confidence in the understanding of Tau ID selections and double-Tau trigger.
- Data-to-MC scale factor = 1.07 \pm 0.17.
- Negligible Bkg contribution in the Signal Region.

Signal and Background Processes

- QCD: Multijets fake hadronic taus.
- Z-$\tau\tau$: Two real taus decay hadronically.
- Z-\rightarrow\mu\mu/ee: ℓ+ν+ℓ+ν fake hadronic taus.
- W+τ+ν: Isolated leptons combined with non-isolated jets.
- τ+ν+b: Two τs from top decay provide jets (fake τs) along with b-jets.

Analysis Strategy

- **Central Selections:**
 - Standard TauID selections.
 - Central selections expected to be well simulated by MC.
 - Whenever possible, obtain background enriched control regions.
 - Obtain Data-to-MC correction factor in these control regions.

- **VBF Selections:**
 - Select at least one pair of high p_T jets with large separation (ΔR) and large invariant mass.
 - VBF selections provide background suppression of the order of $\sim 10^{-3}$-10^{-4}.
 - Mis-modelling of background rate in the Signal Region is expected to come from VBF selections.

- **Standard Model Backgrounds:**
 - Z+\rightarrow\mu\mu/ee: ℓ+ν+ℓ+ν fake hadronic taus.
 - Z+\rightarrow\mu\mu/ee: ℓ+ν+ℓ+ν fake hadronic taus.
 - W+τ+ν: Isolated leptons combined with non-isolated jets.

- **Analysis Strategy:**
 - **QCD Multijet Background:**
 - For additional validation, obtained a semi-clean enriched sample of Z+\rightarrow\mu\mu/ee by requiring opposite-sign tau-pair to have invariant mass < 90 GeV.
 - **Z+\rightarrow\mu\mu/ee Background:**
 - Enhances confidence in the understanding of Tau ID selections and double-Tau trigger.
 - **W+τ+ν Background:**
 - Data-to-MC scale factor = 1.07 \pm 0.17.
 - **Negligible Bkg contribution in the Signal Region.**

SUMMARY

- The SM backgrounds can be controlled by VBF cuts (2 energetic forward jets) to probe light EWKinos and slepton sectors.
- Searches for EWKinos and sleptons via VBF processes are complementary to existing SUSY searches.

References