Recent exotic results from CMS

Keti Kaadze (CERN)

on behalf of the CMS collaboration

Implications of LHC results for TeV-scale physics
Introduction

• Very exciting news on new boson with ~125 GeV mass!
 • Whether it is the Higgs boson or a Higgs boson, or something entirely different – we cannot say yet…

• Even if it is SM Higgs, there must be New Physics beyond the SM
 • Mass of a Higgs candidate is a bit too low from comfortable 130-170 GeV range of the stability chimney.
 • Other puzzles: no dark matter candidate, neutrino masses, matter-antimatter asymmetry, number of generations, etc.

• Keep digging: study new boson + search for new physics!

14 July 2012

Keti Kaadze, CERN
Strategy for BSM searches

• Unlike Higgs/SUSY searches no well defined guide on the parameter space/signatures
 • Look for an interesting features in data
 • Resonant structure
 • Anomalous couplings
 • Look at all possible signatures for disagreement with expectations
 • Utilize the very efficient identification of physics objects
 • Probe interesting new BSM models
BSM searches at CMS

- New resonances
 - Z', W', dijet resonances

- Extra dimensions
 - Black holes, ADD/RS Gravitons

- New symmetries/interactions
 - Leptoquarks, heavy neutrinos

- Fourth generations
 - Heavy bottom/top – like quarks

- The latest public results from CMS can be found at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Covering only new results after Moriond 2012
New heavy gauge bosons

• The SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ can be extended to solve some of the puzzles not explained by the SM
 • Additional $U(1)$ group gives rise to new heavy neutral boson Z'
 • Additional $SU(2)$ group gives rise to new heavy charge boson W'

• Various models predicting such new resonances
 • Sequential standard model – couplings to W and Z similar as in the SM
 • Superstring-inspired E_6 model
 • Left-right symmetric model $SU(2)_L \times SU(2)_R$
 • More complicated models, such as technicolor or ED, predict a chain of new bosons
Z'→ee/μμ

- **Signature with two energetic, isolated leptons**
 - Electrons and muons
- **Backgrounds**
 - Drell-Yan, top, diboson, multijets
 - Estimated from data

EXO-12-015

14 July 2012

Keti Kaadze, CERN
Z' → ee/μμ

- Limits from combined 2011-2012 data

\[M(Z'_{\text{ssm}}) > 2590 \text{ GeV} \]
\[M(Z'_{\psi}) > 2260 \text{ GeV} \]

8 TeV: ee (3.6 fb\(^{-1}\)) + μ⁺μ⁻ (4.1 fb\(^{-1}\))
7 TeV: ee (5.0 fb\(^{-1}\)) + μ⁺μ⁻ (5.3 fb\(^{-1}\))

\[R_\sigma = \frac{\sigma(pp \rightarrow Z' + X \rightarrow \ell\ell + X)}{\sigma(pp \rightarrow Z + X \rightarrow \ell\ell + X)} \]

Reduces dependence on uncertainty in luminosity, acceptance and efficiency
• There are models in which Z' preferentially couple to the 3$^{\text{rd}}$ generation fermions
 • Signature with $e\mu$, $e\tau$, $\mu\tau$, $\tau\tau$
 • Backgrounds from Drell-Yan $Z\rightarrow\tau\tau$, W+jets, Diboson, mujltijet -- estimated from data when possible

$M(Z'_{\text{SSM}}) > 1.4 \text{ TeV}$
$M(Z'_{\psi}) > 1.1 \text{ TeV}$
Z’→ttbar

- New physics at high M_{tt} scale would explain the observed FB asymmetry in ttbar events – focusing on $M_{tt} > 1$ TeV
- Z’ with 1% and 10% widths and RS KK gluon wide resonance
- Signature with fully hadronic decays of ttbar events – two or three jets

Using jet substructure to identify boosted tops

Limits are set on any generic process that would interfere SM tt production

EXO-11-006
W’ → lν

- New gauge boson decaying to a lepton and a neutrino
 - Signature of isolated, energetic lepton and large missing E_T
 - Backgrounds from W+jets, top, diboson, Drell-Yan
 - Data are found in agreement with the SM background prediction

$$M_T = \sqrt{2p_T^l E_T^{miss} (1 - \cos \Delta \varphi_{l,\nu})}$$
$W' \rightarrow l \nu$

- Combined limits

$$M(W'_{SSM}) > 2.85 \text{ TeV}$$

Electron and muon channel

7 TeV and 8 TeV data
W’→td

- Light W’ production with an additional top – ttbar + jet
 - signature with lepton, jets, and missing transverse energy
- At least 5 jets and at least 1 b-tagged jet

M(W’) > 840 GeV

EXO-11-056
Hadronic resonances

- Many extensions of the SM predict new massive objects that couple to quarks and gluons
 - String resonances which decay to \(qg \)
 - Excited quarks decaying to \(qg, qW, qZ \)
 - Diquarks predicted by GUT decaying to quark-anti-quark
 - New gauge bosons predicted by new symmetries decaying to quark-anti-quark
 - Randall-Sundrum Graviton decaying to quark-anti-quark or \(gg \)
 - Color octet scalar decaying to \(gg \) or \(bb \)
 - Axigluon or coloron decaying to \(qq \)
Dijet resonances

- Search for resonance in smoothly falling mass spectrum
- Background is estimated by fitting data

EXO-12-016
Dijet low mass

- Novel techniques for trigger, DAQ, analysis to search for dijet resonance with mass < 1 TeV
- Store reduced data format → bandwidth under control

EXO-11-094

14 July 2012

Keti Kaadze, CERN
Dijet resonances with btag

- Search for resonance in b-enriched sample
 - Signature with 0, 1, 2-tag
 - Multijet background is reduced by factor 50
 - Set model-independent limit as a function of the signal branching ratio fraction

\[
f_{bb} = \frac{BR(X \rightarrow b \bar{b})}{BR(X \rightarrow jj)}
\]

\[
\frac{BR(X \rightarrow bb)}{BR(X \rightarrow jj)} = \frac{BR(X \rightarrow b \bar{b})}{BR(X \rightarrow jj)}
\]

EXO-11-008

14 July 2012

Keti Kaadze, CERN
Extra dimension

- Attractive extension of the SM
 - Explains hierarchy and several other problems
- Can be searched in both resonant and non-resonant states
Graviton

- Search for $G \rightarrow ZZ \rightarrow 2\ell 2j$
 - High branching fraction and high purity
 - Likelihood discriminant built from 5 helicity angles
 - Backgrounds estimated from sidebands in M_{ZZ}
• Limit on RS1 and ADPS models

RS1:
M > 945 GeV for k= 0.05
720 < M < 760 GeV, M > 850 GeV for k=0.10

ADPS
M > 720 GeV for k= 0.05
M > 610 GeV for k=0.10
G→ZV

- V is highly boosted for heavy G resulting in signature with 2l+1 jet
 - V is identified from highest pT jet 60<M_J<100 GeV
 - M_J efficiency is determined in ttbar control sample
 - Limits set on RS1 G and W’

M(G) > 933 GeV for k/M_{pl} = 0.05

EXO-12-014
Black holes

- Signature of high multiplicity of high pT objects
- Background from multijet process is estimated from the fit
 - For each multiplicity bin separately at ST = 1.8-2.2 TeV

EXO-12-009
Black holes

- Model independent limit vs ST and multiplicity
- Setting limit on specific BH models

\[n=2, \ M_{BH} > \sim 4.8 \ -- \ 5.8 \ TeV \]
\[n=6, \ M_{BH} > \sim 5.2 \ -- \ 6.1 \ TeV \]
Heavy neutrino & W_R

- Predicted from left-right symmetric model
 - Signature of $\mu\mu jj$ and $ee jj$, with high p_T isolated leptons
 - Backgrounds from Drell-Yan, top, multijet estimated from data
Heavy neutrino & W_R

- Combining 2011-2012 data for dimuon channel
 - Assuming small W_R-W_L and N_1-N_1' mixing

$M(W_R) > 2800 \text{ GeV}$ for $M(N_\mu) = 1/2M(W_R)$
Leptoquarks

- Predicted by composite models, GUT, Technicolor
 - Two energetic leptons and two jets
 - Lepton, missing transverse energy and two jets
 - Backgrounds from DY+jets, ttbar, W+jets
 - Using M(lj), MET, ST to reject
 - Remaining background estimated from data

14 July 2012

EXO-11-028
1st/2nd generation scalar LQ

- Limits on LQ mass and decay branching fraction
 - $\beta = \text{BR}(\text{LQ} \rightarrow \text{lq})$

- $M_{\text{LQ1}} > 830 (640) \text{ GeV}$ for $\beta=1 (0.5)$
- $M_{\text{LQ2}} > 840 (650) \text{ GeV}$ for $\beta=1 (0.5)$
3rd generation LQ

- LQ decaying to tau and b quark
 - Signature with $e\tau bb$ and $\mu\tau bb$
 - Major backgrounds from ttbar and V+jets
 - Rejected by $M(\tau,b)$
 - Using ST distribution to extract limits

EXO-12-002

CMS Preliminary | $\sqrt{s} = 7$ TeV, 4.8 fb$^{-1}$

- Data
- ttbar
- W/Z + jets
- Other
- Signal $M_{LQ} = 450$ GeV

Events vs $M_{\tau,b}$ (GeV)

Events vs S_T (GeV)
3rd generation LQ

- Limits set on both scalar and vector LQ
 - The difference in kinematics of vector and scalar LQ decay products have effect of a few percents on the selection efficiency

\[M_{SLQ3} > 525 \text{ GeV for } \beta=1 \]
\[M_{VLQ3} > 763 \text{ GeV for } \beta=1 \]

Limits are also interpreted for RPV stop
4th generation

- Inclusive t' and b' search, assume $V_{tb}^2 = V_{tb'}^2 = A$
 - Final topology with 1-4 W and 2 bjets
 - Signature with single, same-sign double, or triple leptons, jets, missing ET
 - Discriminator against backgrounds ST

Assuming $m_{t'} = m_{b'}$, $m_q > 685$ GeV
Assuming $A=1$, $\Delta m = 25$ GeV
mass of up-type 4th gen quarks > 640 GeV
B’ → Zb

- Signature with dileptons and b jet
- Search for resonant peak in Zb mass spectrum
 - B candidate is reconstructed using leading Z and b jet

EXO-11-066

M(B’) > 550 GeV assuming 100% Br.
Summary of CMS searches

14 July 2012

Keti Kaadze, CERN
A lot of results made public since Moriond 2012
- Unfortunately no BSM discoveries (yet)
- Note that a lot of updates with full statistics will follow shortly
Where we go from here

• These first results from CMS (LHC) is an “ouverture”
 • Excellent performance of detector, trigger, computing, object identification

• Is new physics too rare and too heavy for 7/8 TeV?
 • Higher statistics and higher center of mass energy is the way to go

• We should also think outside the box
 • Adequate coverage of “unusual” topologies is crucial
 • Important to have close collaboration with phenomenologists and theorists to test new models/ideas

• My hope that the discovery of a new boson is the first drop in the end of a long dry season!
BACKUP